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Immune checkpoint blockade (ICB) has been recognized as a promising immunotherapy
for colorectal cancer (CRC); however, most patients have little or no clinical benefit. This
study aimed to develop a novel cancer-immunity cycle–based signature to stratify
prognosis of patients with CRC and predict efficacy of immunotherapy. CRC samples
from The Cancer Genome Atlas (TCGA) were used as the training set, while the RNA data
from Gene Expression Omnibus (GEO) data sets and real-time quantitative PCR (RT-
qPCR) data from paired frozen tissues were used for validation. We built a least absolute
shrinkage and selection operator (LASSO)-Cox regression model of the cancer-immunity
cycle–related gene signature in CRC. Patients who scored low on the risk scale had a
better prognosis than those who scored high. Notably, the signature was an independent
prognostic factor in multivariate analyses, and to improve prognostic classification and
forecast accuracy for individual patients, a scoring nomogram was created. The
comprehensive results revealed that the low-risk patients exhibited a higher degree of
immune infiltration, a higher immunoreactivity phenotype, stronger expression of immune
checkpoint–associated genes, and a superior response to ICB therapy. Furthermore, the
risk model was closely related to the response to multiple chemotherapeutic drugs.
Overall, we developed a reliable cancer-immunity cycle–based risk model to predict the
prognosis, the molecular and immune status, and the immune benefit from ICB therapy,
which may contribute greatly to accurate stratification and precise immunotherapy for
patients with CRC.
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INTRODUCTION

The introduction of immunotherapy, especially immune
checkpoint inhibitors (ICIs), which boost the antitumor
activity of T cells and rescue immune surveillance by blocking
programmed cell death protein 1 (PD-1), programmed cell death
1 ligand 1 (PD-L1), and cytotoxic T lymphocyte associated
antigen 4 (CTLA-4), has elicited tremendous excitement owing
to its success in various types of cancers, including melanoma
(1), hepatocellular carcinoma (2), and lung cancer (3). Two PD-
1–blocking antibodies, pembrolizumab and nivolumab, are
major therapeutic options for mismatch repair-deficient and
microsatellite instability-high (dMMR/MSI-H) tumors in
patients with metastatic colorectal cancer (mCRC) (4, 5).
Unfortunately, the great majority of individuals with mCRC (>
95%) have cancers that are not dMMR/MSI-H. ICIs-based
immunotherapies currently offer little to no clinical benefit (6,
7). Therefore, it is crucial to establish reliable predictive
biomarkers to identify subgroups that may have benefits
from ICIs.

The cancer-immunity cycle is characterized by an
arrangement of stepwise events required for the immune
system to effectively control cancer development, integrating
seven key anticancer immune steps (8). Several elements, both
stimulatory and inhibitory in nature, must be coordinated at
each phase of the cancer-immunity cycle (8–10). Based on the
theory of the cancer-immunity cycle, cancer immunotherapy is
mainly divided into two categories as described below. One class
aims to boost the stimulatory immune factors, which may
improve anticancer immune responses and enhance the cycle’s
final self-propagation (11–13). The other class, including the PD-
1/PD-L1 blockade, is intended to prevent immune effector
inhibition based on immune evasion mechanisms (11–14).
There is increasing evidence that the efficacy of ICIs stemmed
from a thorough understanding of the dynamics of antitumor
immune responses and immunosuppressive circumstances in the
tumor microenvironment (TME) (15). Therefore, the foundation
for adopting treatment strategies specific to each patient, which is
required to facilitate the development of more effective
immunotherapies, is a comprehensive evaluation of the tumor
immunophenotype, including the status of the cancer-immunity
cycle and immune cell infiltration of individuals. At present, ICIs
are standard-of-care options for first-line or later-line treatment
in patients with dMMR/MSI-H mCRC, where they show a
striking antitumor activity (5–7). More importantly, several
ongoing clinical trials have revealed that ICIs in conjunction
with molecular-targeted therapies or radiation might offer
clinical utility of ICIs with immunomodulatory effects for
patients with mismatched repair-proficient and microsatellite-
stable (pMMR/MSS) tumors (16). Although these findings have
emphasized the necessity of ICIs for CRC, the immunological
landscape and molecular properties of CRC immunophenotype,
as well as their potential implications for the immunotherapy
response, remain unclear.

In this study, by combining the multigene expression data
sets, we developed and validated a novel cancer-immunity cycle–
based signature for risk stratification, subgroup categorization,
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and prognosis evaluation in CRC patients. Moreover, we
comprehensively investigated the signature’s link to the
landscape of immune-related characteristics, immunotherapy
responses, and chemotherapy sensitivity in patients with CRC.
Our results revealed that this cancer-immunity cycle–based
signature may be used as a potential biomarker to predict
clinical prognosis and immunotherapy efficacy among patients
with CRC.
MATERIALS AND METHODS

Data Collection
Transcriptomic information and clinical data of colon
adenocarcinoma (COAD) and rectum adenocarcinoma
(READ) were acquired from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov), and the entire
TCGA cohort was COAD database combined with READ
database. The training set consisted of data from 597 TCGA-
CRC patients with accessible clinicopathological characteristics
and complete follow-up information. External validation sets
contained Affymetrix microarray data for colon cancer cohorts
GSE39582 (n = 562) (17) and GSE37892 (n = 130) (18), which
were retrieved from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo). The expression
and localization of the corresponding proteins from CRC
tumor tissues and normal tissues were assayed using
immunohistochemical data based on the Human Protein Atlas
(HPA) database (http://www.proteinatlas.org). Consensus
molecular subtypes (CMSs) for patients in the three cohorts
were downloaded from Colorectal Cancer Subtyping
Consortium Synapse (19). Transcriptome RNA sequencing
data for the immunotherapeutic cohort IMvigor210 (20) were
downloaded from the Creative Commons 3.0 license (http://
research-pub.gene.com/IMvigor210CoreBiologies).

The Tumor Immunophenotype (TIP) database (21) (http://
biocc.hrbmu.edu.cn/TIP) is a web-based tool that can assess the
immune microenvironment on the basis of the cancer-immunity
cycle (8). From the TIP, we collected 178 signature genes engaged
in the seven stages of the cancer-immunity cycle, including
checkpoints, cytotoxic factors, chemokines, and major
histocompatibility complex (MHC) molecules. A total of 174
signature genes obtained in the expression profile of TCGA
cohort were used as candidate genes in this study.
Signature Construction
Based on the 174 candidate genes, least absolute shrinkage and
selection operator (LASSO)-Cox regression was performed using
the “glmnet” R package to reduce the likelihood of overfitting. At
the penalty parameter (lmin) = 0.032, the optimal risk model was
constructed based on 13 cancer-immunity cycle–related genes,
including five chemokine and chemokine receptor family
members [C-C motif chemokine ligand (CCL)11, CCL19,
CCL22, CCL28, C-X-C motif chemokine receptor 5 (CXCR5)],
three immune checkpoint genes [indoleamine 2,3-dioxygenase 1
(IDO1), lymphocyte activating 3 (LAG3), T cell immunoglobulin
May 2022 | Volume 13 | Article 892512
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and mucin domain containing 4 (TIM4)], three heat shock
protein 70 (HSP70) family members [HSP70 member 1A
(HSPA1A), HSP70 member 8 (HSPA8), HSP70 member 9
(HSPA9)], and two cytokines [nitric oxide synthase 2 (NOS2)
and transforming growth factor beta 1 (TGFb1)]. The risk score
for each patient was calculated according to the following
formula:

Risk score =o
n

i=1
   Coefficient (mRNAi)� Expression (mRNAi)

Based on the median value of the risk score, patients were
divided into two groups, including the low-risk group and the
high-risk group. Associations between the risk score and
clinicopathological features (age, gender, race, histological type,
TNM stage, clinical stage, CMS subtype, and MSI status) were
analyzed, and Sankey diagrams were obtained to evaluate the
correlation between the risk score and different survival
outcome, clinical stage, and CMS subtype.

Prognostic Values of the Risk Signature
The prognostic value of the cancer-immunity cycle based-
signature was evaluated in TCGA data set and validated in two
independent GEO data sets (GSE39582 and GSE37892). The KM
curves were plotted to compare the overall survival (OS) or
progression-free survival (PFS) between the low- and high-risk
groups via R package “survival”. The result of univariate and
multivariate Cox analysis was visualized as a forest plot.
Additionally, the time-dependent receiver operating
characteristic (ROC) curve analysis (including one-, three-, and
five-year survival) was developed to indicate the specificity and
sensitivity of the risk signature utilizing R package
“survivalROC”. The area under the curve (AUC) value was
calculated and used to designate the ROC effect.

Construction and Validation of the
Nomogram Model
The “rms” program was used to create a predicted nomogram
based on independent prognostic criteria utilizing the clinical
features and risk score. In the nomogram scoring system, each
variable was assigned a score, and the total score was calculated by
adding the scores from all factors in each sample. To determine
the consistency of the nomogram prediction and clinical
observation in three- and five-year OS, PFS, or relapse-free
survival (RFS), calibration curves were utilized. The nomogram
was evaluated using ROC curves for three- and five-year survival.
Meanwhile, the concordance index (C-index) was computed to
determine the nomogram’s predictive potential.

Biological Process and Pathway
Enrichment Analysis
The R package “DESeq2” was used to filter differentially
expressed genes (DEGs) between high- and low-risk patients.
Genes with adjusted P value < 0.05 and |logFC| ≥ 0.5 were
considered statistically significant. Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway and Gene Ontology (GO)

n

i=1
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analyses were performed for genes enriched in the low- and
high-risk categories using the R package “clusterProfiler”.

Gene Set Enrichment Analysis (GSEA) was performed to
distinguish hallmark pathways involved in the gene signature.
The Java GSEA software (version 4.1.0) was used and
“h.all.v7.2.symbols.gmt” was set as the reference database.
Pathways with normalized P value < 0.05 and false-discovery
rate (FDR) q value < 0.25 were defined as statistically significant.
Top enriched pathways were selected by ranking of normalized
enrichment scores (NESs).

Assessment of Immune Cell Infiltration
We used the currently accepted methodologies to compute the
immune infiltration status among samples from TCGA database
to analyze the association between infiltrating immune cells and
the risk signature. First, the Estimation of STromal and Immune
cells in Malignant Tumor tissues using Expression data
(ESTIMATE) algorithm (22) was applied to calculate
StromalScore and ImmuneScore of each sample in CRC in
terms of respective gene expression profiles of stromal and
immune cells via the R package “estimate”. Then, the
distribution and ratio of different kinds of infiltrating immune
cells were calculated using Estimating the Proportions of Immune
and Cancer cells (EPIC) (23) algorithm and Microenvironment
Cell Populations-counter (MCP-counter) (24). To determine the
proportions of immune cells in each risk group, a set of metagenes,
containing nonoverlapping sets of genes that are representative of
28 specific immune cell subpopulations, was obtained (25). The 28
types of immune cells were quantified using a single-sample GSEA
(ssGSEA) algorithm in the light of the transcriptome data and
related gene sets with the R package “GSVA”. Wilcoxon rank-sum
test was used to compare the content of infiltrating immune cells
in CRC between the low- and high-risk groups. Furthermore,
Spearman correlation analysis was applied to analyze the
association between the risk score values and critical
components of tumor immunity, such as effector cells,
suppressor cells, immunoregulatory factors, and MHC molecules.

Analysis of Immunotherapy Efficacy
To explore the somatic mutations in CRC between low- and high-
risk patients, the Mutation Annotation Format (MAF) for TCGA-
COAD and TCGA-READ cohorts was obtained from TCGA data
portal (https://portal.gdc.cancer.gov) and analyzed with R package
“maftools.” The number of somatic mutations and neoantigens for
TCGA database was retrieved from The Cancer Immunome Atlas
(TCIA) (https://tcia.at) (25). Tumor Immune Dysfunction and
Exclusion (TIDE) is a machine learning approach that simulates
two main processes of tumor immune escape, and may be
employed to predict cancer patients’ responsiveness to ICIs (26).
The TIDE score is superior to recognized immunotherapy
biomarkers [tumor mutation burden (TMB), PD-L1 level, and
interferon g] for measuring the effect of anti-PD1 and anti-CTLA4
treatment (26). The TIDE score, T cell dysfunction score, and MSI
score were retrieved from the TIDE portal (http://tide.dfci.
harvard.edu) on the basis of normalized transcriptome data
from the TCGA-CRC data set. Furthermore, IMvigor210 cohort
May 2022 | Volume 13 | Article 892512
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was used as an independent validation cohort, which profiled
patients with advanced urothelial cancer who received
atezolizumab, an anti-PD-L1 antibody, as a treatment (20). We
used the IMvigor210CoreBiologies package to extract the
complete expression data and detailed clinical information.
Afterward, the risk score was computed for each patient in
IMvigor210 cohort, and the correlation between the risk score
and response to anti-PD-L1 treatment was evaluated. Moreover,
the relationships between the risk scores and the expression levels
of immune checkpoint-related genes as well as distinct tumor
immune phenotypes were analyzed.

Real-Time Quantitative PCR Validation
A total of 45 CRC and matched adjacent normal (distance to
cancer greater than 5 cm) tissue samples used for RT-qPCR assay
were obtained from patients who had been diagnosed with CRC
by pathological examination of tissue biopsy and undergone
operations at The Affiliated Hospital of Qingdao University. The
inclusion criteria were as follows (1): diagnosis of CRC based on
pathological analysis and imaging; (2) radical resection; (3) intact
data on clinicopathological findings such as gender, age, tumor
size, differentiation, tumor site, histological stage, and TNM
classification; (4) TNM classification according to the 8th
edition of the American Joint Committee on Cancer; (5) no
history of other malignancies. The following patients were
excluded: (1) patients who had recurrent CRC and/or
nonprimary cancers; (2) patients who received neoadjuvant
chemotherapy and/or radiotherapy before operation. Informed
consents were obtained from all of the participating patients.
This work was approved by the Research Ethics Committee of
The Affiliated Hospital of Qingdao University and was carried
out in accordance with the 1964 Helsinki Declaration and its
later revisions. The enrolled patients and their clinical
characteristics are listed in Supplementary Table S1.

After washing with cold phosphate-buffered saline, tissue
specimens were immediately immersed into liquid nitrogen
and then transferred and stored at –80°C. Total RNA was
extracted from the tissue specimens using the RNeasy kit
(Beyotime, Shanghai, China, R0027). SuperScript II reverse
transcriptase was used to synthesize first-strand cDNA from an
RNA template (1 mg) (TaKaRa, Japan, RR047). The SYBR Green
Mix (TaKaRa, Japan, RR820) was then used by the ABI 7900 HT
Real-Time PCR machine to perform RT-qPCR (Applied
Biosystems, California, USA). Normalization to glyceraldehyde
phosphate dehydrogenase (GAPDH) yielded relative expression
levels. Supplementary Table S2 shows the sequences of the
primers utilized in our study. Each patient’s risk score was
determined, and the median risk score was used to sort the
patients into two categories.

Analysis of Drug Sensitivity
The pharmacogenomics database Genomics of Drug Sensitivity
in Cancer (GDSC; https://www.cancerrxgene.org) was utilized to
assess CRC patients’ response to chemotherapy treatments (27).
The R program “oncoPredict” was used to calculate the half-
maximal inhibitory concentration (IC50) (28). We selected some
of the drugs commonly used for chemotherapy and molecular-
Frontiers in Immunology | www.frontiersin.org 4
targeted therapy in CRC, and analyzed the differences in
sensitivity to the above drugs between the low- and high-risk
categories using the Wilcoxon rank-sum test.

Statistical Analysis
R software (version 4.1.3) with necessary packages, as well as
SPSS22.0 (IBM Corp., Armonk, New York, United States) and
GraphPad Prism 8.0 (GraphPad Software Inc., San Diego, CA,
United States), were used for data analysis and visualization. The
Wilcoxon rank-sum test or Kruskal–Wallis test was performed to
analyze continuous variables; the Fisher’s exact test or chi-square
test (c2) was used to analyze categorical variables. Relationships
between risk scores and expression levels of different genes were
examined by Spearman’s correlation analysis. Statistical
significance was defined as a P value lower than 0.05.
RESULTS

Construction of the Cancer-Immunity
Cycle–Based Signature for
Patients With CRC
The graphic flowchart summarizes the main design of the
present study (Figure 1). LASSO and multivariate Cox
analyses for 174 cancer-immunity cycle–related genes in
TCGA cohort were performed to build the optimum risk
signature for evaluating the prognosis of patients with CRC.
The resultant change trajectory of each independent variable is
depicted in Figure 2A (left), followed by the LASSO regression
analysis. The confidence interval under each lambda is exhibited
in Figure 2A (right). There were 13 cancer-immunity cycle–
associated genes with an optimal l value, including five
chemokine and chemokine receptor family members (CCL11,
CCL19, CCL22, CCL28, CXCR5), three immune checkpoint
genes (IDO1, LAG3, TIM4), three HSP70 family members
(HSPA1A, HSPA8, HSPA9), and two cytokines (NOS2 and
TGFb1). To determine the clinical relevance of the candidate
genes’ expression, the HPA database was used to explore the
expression of the proteins encoded by these markers in CRC
tumor tissues and normal tissues. Consistent with our results in
TCGA (Supplementary Figure S1A), HSPA9 and HSPA8 were
significantly upregulated in CRC tissues compared with normal
tissues, and mainly localized to the cell membrane and cytoplasm
in the tumor cells (Supplementary Figure S1B). In contrast, the
protein expression levels of CCL28, HSPA1A, CXCR5, and TIM4
in CRC tissues were significantly lower than those in normal
tissues, while those of IDO1, TGFb1, and NOS2 showed no
difference (Supplementary Figure S1B). However, the data for
CCL11 and CCL22 are not available in the HPA database. Our
results suggested that the expression levels of the model proteins
had similar trends to the expression levels of the corresponding
model genes. The patients were divided into the low- and high-
risk categories based on the median risk score value generated
using the risk formula. More death events were observed in the
high-risk group, which suggests that low-risk patients had a
better clinical outcome than high-risk patients (Figure 2B). As
May 2022 | Volume 13 | Article 892512
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shown by univariate Cox regression analysis in patients with
CRC, among the included genes, four (NOS2, HSPA8, HSPA9,
and CCL22) were protective factors with HR (hazard ratio) < 1,
whereas HSPA1A was the risk factor with HR > 1 (Figure 2C).
The heat map showed that NOS2, CCL22, CCL28, HSPA8, and
HSPA9 expression levels markedly decreased with raised risk
scores, while HSPA1A expression significantly increased along
with the increased risk scores (Figure 2D).

To examine whether clinicopathological features are
associated with the risk signature, risk scores were generated
for the training set (TCGA) and two independent validation
groups (GSE39582, GSE37892). In TCGA cohort, CRC patients
with clinical stage IV, CMS4, and advanced TNM stage had
higher risk scores (Figure 2E and Supplementary Figure S2),
while age, gender, race, histologic type, and MSI status had no
bearing on the risk score (Supplementary Figure S2). Likewise,
patients with advanced clinical stage and CMS4 presented a
significantly higher risk score in GSE39582 and GSE37892
(Figure 2E). Both in the training set and in the validating
groups, the distribution of patients in terms of alive/dead
status, clinical stages, and CMS subtypes showed striking
disparities between the low- and high-risk groups (Figure 2F).

Prognostic Significance of the Cancer-
Immunity Cycle–Based Signature
Patients in the high-risk group had a lower survival rate than
those in the low-risk group, according to the Kaplan–Meier
(KM) survival curves, which was observed both in TCGA and in
two GEO cohorts (Figure 3A). Based on the ROC analysis, the
Frontiers in Immunology | www.frontiersin.org 5
risk signature had a potential capability to predict OS in TCGA
cohort [AUC of one-year OS = 0.717; AUC of three-year OS =
0.722; AUC of five-year OS = 0.744; Figure 3B]. Similarly, the
risk signature had relatively high AUC values in the two external
validation groups, indicating a good prediction accuracy
(Figure 3B). ROC curves were used to compare the prediction
performance of the risk signature with other clinical parameters.
We showed that our risk score model was superior to other
clinical parameters for predicting the OS of CRC patients in the
TCGA cohort (Supplementary Figure S3A) and GSE37892
cohort (Supplementary Figure S3B), and it showed the
maximum AUC value. The Cox analysis, both univariate and
multivariate, was utilized to investigate if age, gender, clinical
stage, and risk score of CRC patients were independent
prognostic factors (Supplementary Figure S4 and Figure 3C).
The forest plot results confirmed that clinical stage and risk score
were independent risk factors for predicting OS and PFS
(Figure 3C), indicating their relevance for predicting the
prognosis of patients with CRC. In the 13 candidate genes, we
found that five cancer-immunity cycle–related genes were
significantly associated with survival outcomes by univariate
Cox regression analysis. To further verify the risk model based
on 13 cancer-immunity cycle–related genes, another risk model
comprising five genes was used to evaluate the prognostic values
in CRC by ROC curve analysis. The ROC analysis demonstrated
that the AUC values for OS in TCGA cohort were 0.734 and
0.665, in the 13-gene signature risk model and 5-gene signature
risk model, respectively (Supplementary Figure S5A).
Meanwhile, relative to the 5-gene signature risk model, the
FIGURE 1 | The workflow of identification of the cancer-immunity cycle–based signature for patients with CRC.
May 2022 | Volume 13 | Article 892512
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AUC for OS of the 13-gene signature risk model significantly
improved from 0.687 to 0.761 in the GSE37892 cohort
(Supplementary Figure S5B). These results indicate that the
risk model of the 13 cancer-immunity cycle–related genes for
CRC is considerably reliable in monitoring survival.

Establishment and Validation of a
Nomogram Combined With Clinical
Characteristics
To make the cancer-immunity cycle–based risk signature more
clinically applicable and usable, we established a prognostic
Frontiers in Immunology | www.frontiersin.org 6
nomogram using the risk status and common clinical
characteristics, with the goal of developing a quantitative
analytic algorithm that can predict individual CRC patients’
expected survival. Each element (age, gender, clinical stage, and
risk score) was utilized to calculate the individual sample’s score
summary and total score, which can evaluate three- and five-year
survival probabilities (Figure 4A). To show the consistency
between the actual measured prognostic value and the value
projected by the nomogram, a calibration curve was utilized. As
shown in Figure 4B, calibration curves of three-year OS, three-
year PFS, and five-year PFS prediction in TCGA cohort were
A B

D

E

F

C

FIGURE 2 | Construction of the cancer-immunity cycle–based signature for CRC patients. (A) Analysis of LASSO regression in TCGA database. The determination
of “lambda” for optimal selection of gene signature. (B) The risk score distribution and patient survival status are depicted in ranked dot and scatter plots. (C) Forest
plot of the prognostic ability of the 13 cancer-immunity cycle–related genes included in the risk signature. (D) Heat map of the correlations between the risk score
and 13 cancer-immunity cycle–related genes constructing the risk signature. (E) Association between the risk score and clinicopathological features, including clinical
stage and CMS in TCGA, GSE39582, and GSE37892. (F) Sankey diagram illustrating the flow from the two risk subgroups to different clinical outcome, clinical
stage, and CMS subtype; the breadth of the flow rate is proportional to the number of patients. ***P < 0.001; **P < 0.01; *P < 0.05.
May 2022 | Volume 13 | Article 892512
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near to optimal performance, indicating the nomogram’s
predictive accuracy. The subsequent calibration plots also
showed excellent agreement between the predicted probability
of three- and five-year OS and the actual OS in the GSE39582
group (Figure 4B), with consistent results for three- and five-
year RFS prediction observed in the GSE39582 group
(Figure 4B). ROC analysis was also used to assess the
nomogram’s prediction accuracy. The results revealed that, in
both the training and the validating sets, the predicted AUC
values of the OS, PFS, and RFS nomograms were higher than
those of the risk score or the clinical stage (Figure 4C), implying
that the nomogram outperformed the other predictors when
predicting survival of CRC patients. It is also noteworthy that the
C-index indicated a stable and robust predictive power of the
nomogram in TCGA data set (OS: C-index = 0.783; PFS:
Frontiers in Immunology | www.frontiersin.org 7
C-index = 0.732) and the GSE39582 data set (OS: C-index =
0.714; RFS: C-index = 0.717). These results demonstrated that
the nomogram using the cancer-immunity cycle–based signature
risk scores was reliable and accurate for predicting the survival of
patients with CRC.

Biological Pathways and Functional
Enrichment Analysis of the Cancer-
Immunity Cycle–Based Signature
To investigate the underlying mechanisms that contribute to the
different results stratified by the risk signature, we performed
KEGG pathway, GSEA, and GO analysis. Volcano plot analysis
identified 1794 DEGs between the low- and high-risk subgroups
in TCGA cohort (Figure 5A). The KEGG pathway enrichment
analysis demonstrated that the most significantly altered
A B

C

FIGURE 3 | Prognostic value of the cancer-immunity cycle–based signature in CRC patients. (A) Kaplan–Meier curves for OS and PFS between the high- and low-
risk groups in CRC from TCGA and different GEO data sets. (B) ROC curves to evaluate the specificity and sensitivity of one-, three-, and five-year OS and PFS
according to the risk score in TCGA and GEO data sets. (C) Multivariate Cox analyses of the risk score and clinicopathological parameters for OS and PFS in TCGA
and GEO data sets. OS, overall survival; PFS, progression-free survival; HR, hazard ratio; CI, confidence interval.
May 2022 | Volume 13 | Article 892512
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pathways in the low-risk subgroup were those involving
cytokine–cytokine receptor interactions, interleukin 17 (IL-17)
signaling pathway, chemokine signaling, and viral protein
interactions with cytokines and cytokine receptors (Figure 5B).
However, patients with high risk scores were mainly converged
in tumor-related pathways, for instance, calcium signaling
pathway, Hippo signaling pathway, and extracellular matrix
(ECM)–receptor interaction (Figure 5B). Meanwhile, the
GSEA showed that the gene sets involved in interferon g/a
response and inflammatory response were gathered together in
low-risk patients; in contrast, signaling pathways promoting
Frontiers in Immunology | www.frontiersin.org 8
tumor progression, including epithelial–mesenchymal
transition (EMT), apical junction, Wnt-b-catenin signaling,
and Hedgehog signaling, were predominant in high-risk
patients (Figure 5C). The GO analysis further revealed that
many biological functions in low-risk patients primarily
correlated with immune-related biological processes and
inflammatory reactions (Figure 5D). The immunological and
inflammatory features of the cancer-immunity cycle–based
signature were clearly proven, and the potential mechanism of
this risk signature for evaluating the prognosis of patients with
CRC was strongly validated using these results.
A B

C

FIGURE 4 | Establishment and verification of the nomogram. (A) The predictive nomogram built in combination with the risk signature and clinical characterization
predicted three- and five-year survival rates of patients with CRC. OS and PFS prediction for CRC patients in TCGA data set, and OS and RFS prediction for CRC
patients in the GSE39582 data set. (B) The probabilities of OS, PFS, and RFS at three and five years were assessed by calibration plots of the nomogram in TCGA
and GSE39582. (C) ROC curves of the nomograms compared with those of other clinical variables with regard to three- and five-year survival in TCGA and
GSE39582. OS, overall survival; PFS, progression-free survival; RFS, relapse-free survival.
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Immune Microenvironment and Immune
Characterization of the Cancer-Immunity
Cycle–Based Signature
Owing to the tight correlation between the risk signature and
immune-related biological pathways, we further investigated the
connection between the risk score and tumor-infiltrating
immune cells. First, we used ESTIMATE algorithm to quantify
the overall infiltrating immune cells based on TCGA cohort. The
results showed that the low-risk group exhibited high immune
scores, indicating a significantly increased immune cell
infiltration in the TME with a low risk score (Figure 6A). We
further analyzed the specific difference in infiltrating immune
Frontiers in Immunology | www.frontiersin.org 9
cells between the two subgroups. Based on EPIC algorithm, the
low-risk subgroup had a higher proportion of B cells, CD4+ T
cells, and CD8+ T cells, while cancer-associated fibroblasts
(CAFs) were shown to be significantly greater in high-risk
patients (Figure 6B). In addition, we utilized MCP-counter
algorithm. We showed that, compared with the high-risk
group, T cells, cytotoxic scores, natural killer (NK) cells, B
cells, myeloid dendritic cells, and neutrophils were more
abundant, whereas the proportion of CAFs was lower in the
low-risk group (Figure 6C). To validate the above findings,
ssGSEA was conducted to evaluate 28 types of tumor-
infiltrating immune cells. The distribution and proportion of
A

B D

C

FIGURE 5 | Functional analysis of DEGs based on the cancer-immunity cycle–related signature between low- and high-risk CRC patients. (A) Volcano map of DEGs
between the low- and high-risk groups from TCGA data set. (B) KEGG pathways enriched in the low- and high-risk CRC patients. (C) GSEA enrichment plots of the
high-risk and low-risk CRC patients. (D) The 15 most significantly enriched GO terms in low-risk CRC patients are listed. DEGs, differentially expressed genes.
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different immune cells between the low- and high-risk categories
are shown in Figure 6D. As expected, antitumor immune cells
were considerably more elevated in the low-risk group than in
the high-risk group (Figure 6D), indicating that the low-risk
group had a more active immune response. Furthermore, we
investigated the immune microenvironment in the two
subgroups using a clustering analysis of immune-related genes.
As shown in the heat map (Figure 6E), immune checkpoints
were markedly upregulated in low-risk patients, and similar
trends of cytotoxic molecules and MHC family genes were also
observed in low-risk patients. Our analysis illustrated that the
risk score was negatively associated with the expression of
immune checkpoints, stimulatory immune factors, cytotoxic
molecules, and MHC family genes (Figure 6F). Our findings
Frontiers in Immunology | www.frontiersin.org 10
revea led substant ia l var ia t ions in intr ins ic tumor
immunogenicity and anticipated immunotherapy response
between the low- and high-risk groups.

Relationship between the Cancer-
Immunity Cycle–Based Signature and
Immunotherapy Response
Given that accumulative evidence has shown that somatic
mutations in solid tumors are strongly associated with
immunotherapy (29), we investigated the mutational landscape
in different risk subgroups. The distribution of somatic
mutations was assessed in the low- and high-risk patients from
TCGA-COAD (Figure 7A) and TCGA-READ (Supplementary
Figure S6A) cohorts, and each variant’s top 20 commonly
A B

D E

F

C

FIGURE 6 | The immune landscape of the cancer-immunity cycle–based signature in CRC. (A) Estimation of immune scores and stromal scores between low- and
high-risk patients using the ESTIMATE algorithm. (B) Estimation of immune cell proportions in low- and high-risk patients using the EPIC algorithm. (C) Estimation of
proportions of immune cell subsets using the MCP-counter algorithm. (D) Heat map displaying the relative proportions of 28 immune cell subsets in low- and high-
risk patients estimated using ssGSEA. (E) Heat map demonstrating gene expression profiles of immune checkpoint genes, immuno-stimulator signature, cytolytic
activity signature, and MHC family genes in low- and high-risk patients. (F) Heat map illustrating correlations between risk scores and expression levels of the above
corresponding genes. The Spearman correlation coefficient is shown by the number in each oval icon little box. Correlations with a P value ≥ 0.05 are marked with a
cross. ***P < 0.001; **P < 0.01; *P < 0.05; ns, not significant.
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altered genes were rated. Our analysis of the mutation data
showed that mutation frequencies of the top 10 mutated genes in
TCGA-COAD cohort were not substantially different between
the low- and high-risk categories, except for the mutation of zinc
finger homeobox 4 (ZFHX4) (Figure 7B). Similar trends were
observed in TCGA-READ cohort, except for the mutation levels
of APC regulator of Wnt signaling pathway (APC)
(Supplementary Figure S6B). Moreover, the risk score showed
no significant association with the number of somatic mutations
or neoantigens in patients with CRC (Figure 7C). To further
probe whether the risk signature may play a role in
immunotherapy responsiveness, we analyzed the difference in
Frontiers in Immunology | www.frontiersin.org 11
the expression of key immune checkpoints. The results
illustrated that immune checkpoints [PD-1, PD-L1, PD-L2,
CTLA4, T cell immunoreceptor with Ig and ITIM domains
(TIGIT), and LAG3] were highly expressed in the low-risk
group (Figure 7D). TIDE score, the more accurate predictor
for immune checkpoint blockade (ICB) therapies (26), was
introduced into our analysis. Interestingly, patients with CRC
from the low-risk group had a lower TIDE score (Figure 7E) but
a higher MSI score (Figure 7E) compared with high-risk
patients. A greater TIDE score suggests a higher probability of
tumor immune escape and lower likelihood of benefitting from
anti-PD-1/CTLA4 therapy (26), illustrating that low-risk
A B
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FIGURE 7 | Identification of the cancer-immunity cycle–based signature for predicting immunotherapy response in CRC. (A) The waterfall plot of somatic mutation
features in low- and high-risk patients using TCGA-COAD data set. (B) The forest plot illustrating the differences in the top 10 mutation frequencies of genes in
COAD patients of the low- and high-risk groups. (C) The number of somatic mutations and neoantigens in low- and high-risk CRC patients from TCGA data set. (D)
The expression levels of representative immune checkpoint genes in low- and high-risk CRC patients from TCGA cohort. (E) The TIDE score, T cell dysfunction
score, and MSI score in low- and high-risk CRC patients. (F) Comparison of the risk score between distinct immunotherapy responses using the TIDE algorithm in
TCGA cohort. R, responder; NR, non-responder. (G) The proportions of CRC patients with response to ICIs in the low- and high-risk categories. R, responder; NR,
non-responder. (H) The expression levels of PD-1, PD-L1, and CTLA4 in low- and high-risk patients using IMvigor210 cohort. (I) The proportions of patients with
response to PD-L1 blocking immunotherapy in the low- and high-risk categories from IMvigor210 cohort. CR, complete response; PR, partial response; SD, stable
disease; PD, progressive disease. (J) Distribution of the risk score in distinct responses to anti-PD-L1 treatment in IMvigor210 cohort. (K) Differences in the risk
score among specific tumor immunophenotype using IMvigor210 cohort. (L) The proportion of patients with distinct tumor immunophenotype in the low- and high-
risk categories. ***P < 0.001; **P < 0.01; *P < 0.05; ns, not significant.
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patients are candidates for ICB therapy. According to the TIDE
algorithm, risk scores were significantly elevated in ICB non-
responder CRC patients (Figure 7F), while the low-risk group
had significant therapeutic advantages and clinical response to
immunotherapy compared with the high-risk group in TCGA
cohort (Figure 7G). Furthermore, an immunotherapy cohort,
IMvigor210, was also used to investigate whether the risk
signature could predict patients’ responses to anti-PD-L1
therapy. Similarly, in the IMvigor210 validation cohort, low-
risk patients had greater expression of PD-1, PD-L1, and CTLA4
(Figure 7H), and were more sensitive to anti-PD-L1 therapy
than high-risk patients (Figure 7I). Meanwhile, risk scores were
significantly increased in patients with progressive disease (PD)
compared with those with complete response (CR) or partial
response (PR) (Figure 7J). More specifically, we found that the
Frontiers in Immunology | www.frontiersin.org 12
lower risk scores were remarkably associated with inflamed
immune phenotype (Figure 7K), whereas the proportions of
exclusion and desert immune phenotypes were remarkably
higher in high-risk patients than in low-risk patients
(Figure 7L), indicating the difficulty of checkpoint inhibitors
to exert antitumor effect in these phenotypes. These results
suggested that the cancer-immunity cycle–based signature was
able to identify low-risk patients who may benefit from ICB.

Validation of the Cancer-Immunity Cycle–
Based Signature in an Independent Cohort
To confirm the clinical significance of the risk signature, RT-
qPCR was performed to examine the expression of related genes
in 45 pairs of CRC tumor tissues and corresponding normal
tissues. The heat map showed the expression levels of 13 cancer-
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FIGURE 8 | Validation of the cancer-immunity cycle–based signature in an independent CRC cohort. (A) Heat map of the gene profiles involved in 13 cancer-
immunity cycle–related genes in 45 pairs of CRC tumor tissues and adjacent normal tissues. (B) The relationship between clinicopathological characteristics and the
risk score defined by the cancer-immunity cycle based-signature in patients with CRC. T stage: the depth of tumor infiltration; N stage: the extent or number of
metastasized lymph nodes. (C) Histogram showing the ratio of T2 vs. T3, N0 vs. N1+2 between the low- and high-risk groups. (D) RT-qPCR assay was performed
to examine the relative mRNA levels of immune checkpoint genes (PD-1, PD-L1, and CTLA4), immuno-inhibitor molecules (CD244, BTLA, PVRL2, and KDR), and
immuno-stimulator molecules (CXCL4, CD28, CD40LG, and CXCL12) in low- and high-risk patients with CRC. ***P < 0.001; **P < 0.01; *P < 0.05; ns, not
significant. (E) Correlation between the risk score and the immuno-inhibitor or immuno-stimulator molecules. The Spearman correlation coefficients (R) and
corresponding P values are shown.
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immunity cycle–related genes in frozen tissue samples
(Figure 8A). Using the risk formula, patients with CRC were
divided into two subgroups according to their median risk score.
Patients with CRC belonging to T3 or N1+2 showed higher risk
scores than those with T2 or N0, respectively (Figure 8B). In
addition, the risk score significantly correlated with tumor grade
and lymph node metastasis (Figure 8C). However, the risk score
did not significantly correlate with age and gender in the
validation cohort (Supplementary Figure S7). Interestingly,
h i g h - r i s k p a t i e n t s h ad h i gh e r mRNA l e v e l s o f
immunosuppressive molecules, including CD224, B and T
lymphocyte associated (BTLA), poliovirus receptor-related 2
(PVRL2), and kinase insert domain receptor (KDR)
(Figure 8D). Conversely, immuno-stimulator gene, such as
CXCL4, were highly expressed in the low-risk group compared
with the high-risk group (Figure 8D). In particular, the
expression levels of PD-1, PD-L1, and CTLA4 were statistically
similar in low- and high-risk patients (Figure 8D), which might
be related to the limited sample size. In addition, correlation
Frontiers in Immunology | www.frontiersin.org 13
analysis was also performed, and the risk score was found to
significantly positively correlate with immune-inhibitor
molecules, including CD224, PVRL2 and KDR (Figure 8E).

Analysis of the Correlation Between the
Cancer-Immunity Cycle–Based Signature
and Drug Sensitivity
To evaluate the risk signature’s usefulness in clinical therapy, we
analyzed the chemotherapeutic drug sensitivity in low- and high-
risk patients. Interestingly, the patients in the low-risk group
exhibited lower half-maximal inhibitory concentration (IC50)
values for 5-fluorouracil, oxaliplatin_1089, oxaliplatin_1806,
irinotecan, camptothecin, cisplatin, B-Raf proto-oncogene
serine/threonine kinase (BRAF) inhibitor dabrafenib, and
vascular endothelial growth factor receptor (VEGFR) inhibitor
sorafenib or axitinib (Figure 9). Three molecular-targeted drugs
displayed no statistically significant differences between the two
subgroups in terms of the estimated IC50 values (Figure 9). In
view of these data, the low-risk group might be more sensitive to
FIGURE 9 | Association between the cancer-immunity cycle–based signature and drug sensitivity, including chemotherapeutics and small molecular drugs targeting
BRAF and VEGFR. IC50: half-maximal inhibitory concentration.
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common chemotherapeutic agents and molecular-targeted
drugs. These results suggested that the risk signature can, to a
certain extent, predict drug sensitivity in patients with CRC.
DISCUSSION

PD-L1 expression on tumor and immune cells has been
intensively explored as a biomarker for ICI response in a
number of different cancers. However, in treatment studies
targeting mCRC, PD-L1 expression on tumor or immune cells
has not been associated with ICI responses (30–32).
Additionally, several other factors such as TMB (33), MSI (34),
somatic copy-number alterations (35), T cell signaling (36),
human leukocyte antigen (HLA) class I genotype (37), and
TGFb signaling (20) have been shown to correlate with the
clinical outcome of ICIs therapy, based on molecular profiling of
cancers treated with different immunotherapies. Unlike
conventional cancer therapies, ICIs do not directly kill
tumor cells; instead, they affect tumor cells through the
patient’s immune system or the TME. Therefore, different
factors that affect the cancer-immunity cycle and the
immunological microenvironment need to be taken into
account when developing predictive biomarkers for ICIs in
CRC treatment.

In this study, we established a 13-gene signature, composed
of five chemokine and chemokine receptor family members
(CCL11, CCL19, CCL22, CCL28, CXCR5), three immune
checkpoint genes (IDO1, LAG3, TIM4), three HSP70 family
members (HSPA1A, HSPA8, HSPA9), and two cytokines
(NOS2 and TGFb1). Chemokines and members of the
chemokine receptor family have been shown to be extensively
involved in tumor development and have potential value in
tumor immunotherapy (38, 39). Our previous study has
demonstrated that the combined IDO1 and CD8A classifier
was more accurate in predicting clinical outcomes than the
known methods for molecular subtyping identification in
patients with colon cancer (40). Higher levels of IDO1 have
also been detected in hypermutated colorectal cancers,
suggesting a link with clinical benefit who receives anti-PD-1,
anti-PD-L1, and anti-CTLA4 treatment (41). Additionally,
given that CRC is a cancer with high expression of LAG3,
targeting LAG3 may be an excellent therapeutic approach to
treat such solid tumors (42). Moreover, elevation of TIM4
promotes proliferation and tumor stroma remodeling in CRC,
thereby accelerating tumor progression (43). The prognostic
significance of distinct HSP70 family members has been
reported in colon cancer (44). Recent studies have highlighted
the role of the TGFb pathway activation in inducing immune
evasion and primary resistance to ICIs therapy (20, 45, 46),
thereby suggesting its evaluation as a predictive biomarker.
Although the roles and expression levels of these molecules in
numerous cancer types have been reported, the clinical
significance of integrating these genes in CRC remains
unrevealed. The above studies supported the novel cancer-
immunity cycle–related signature as a potentially measurable
Frontiers in Immunology | www.frontiersin.org 14
prognostic indicator in patients with CRC, which may provide a
theoretical basis for predicting immunotherapy.

It should be emphasized that we used the median value of the
calculated risk score as a cutoff point for distinguishing the low-
and high-risk groups in both the training and the validation
cohorts. There were several explanations: 1) The median value is
a conservative way to avoid the risk of data manipulation and
present a comparative objective result. 2) For all cohort analyses,
the small number of patients in the low- or high-risk groups
would likely affect the prognostic values of the risk signature if
optimization of the cutoff was attempted. 3) The universality of
the developed model is largely limited by the optimal cutoff
value. It is more helpful to objectively evaluate the clinical
significance of the risk model according to the median risk
score. Thus, other signature-based studies have also divided
patients using the median value as the risk score cutoff for
predicting survival and immunotherapy efficacy in cancer (47,
48). The prognostic significance of the cancer-immunity cycle–
based signature was successfully established in several
independent datasets, thereby promoting the exploration of
biological mechanisms. Biological pathway and functional
enrichment analyses illustrated that immune-related processes
and inflammatory activities were significantly converged in low-
risk patients, but the special cancer signaling pathways were
mainly distributed in high-risk patients. Our findings suggested
that immunological heterogeneity between the low- and high-
risk groups may be the primary reason for the disparity in clinical
outcomes, supporting the risk model’s potential mechanism for
predicting CRC prognosis. To discover the connection between
tumor-infiltrating immune cells and the risk model, we used
various methods to estimate the immune cell infiltration,
including ESTIMATE, EPIC, MCP-counter, and ssGSEA
algorithm. By integrative analysis, our results revealed that
low-risk patients exhibited high immune score and high
infiltration by B cells, CD8+ T cells, CD4+ T cells, and NK
cells, suggesting that these individuals may be characterized with
stronger antitumor immunity activity. Simultaneously, high-risk
patients had an immunosuppressive microenvironment with the
presence of numerous CAFs. In CRC, infiltration by B cells is an
independent predictor of a favorable clinical outcome (49).
Meanwhile, a large infiltration of activated CD8+ and CD4+ T
cells is linked to favorable survival outcome in patients with
colon cancer (50–52). Furthermore, CAFs contribute to an
immunosuppressive TME, thereby inducing chemoresistance
and worse survival in patients with CRC (53–55). Consistent
with previous publications, our study demonstrated the accuracy
of our immunological phenotype categorization for different risk
scores according to the prognostic value of the risk signature
in CRC.

Interestingly, our study highlighted the potential role of the
cancer-immunity cycle–based signature in predicting the
response to immunotherapy in CRC. The immune-inflamed
phenotype is defined as the presence of a large number of
immune cell infiltrates in the parenchyma or stroma of a
tumor, and it characterizes so-called hot tumors, which have
been linked to a better response to ICIs treatment (9, 56). In this
May 2022 | Volume 13 | Article 892512

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hou et al. A Cancer-Immunity Cycle-Based Signature for CRC
study, low-risk patients possessed higher immunological scores
and stronger immune activities than high-risk patients,
indicating that ICI treatment might provide a greater benefit.
Different well-validated immunotherapy biomarkers were
employed to further examine the risk signature’s prediction
potential. Our results displayed that the expression of immune
checkpoint molecules, such as PD-1, PD-L1, and CTLA4, was
remarkably increased in low-risk individuals, although somatic
mutations and neoantigen levels were not different between low-
and high-risk patients. TIDE score is a recently discovered
approach for predicting immunotherapy response that is
considered to be more accurate than PD-L1 expression or
TMB (26). High-risk CRC patients exhibited a higher TIDE
score and a lower MSI score when compared to low-risk CRC
patients. The greater TIDE score is linked to the greater
possibility for immune evasion and the lower chance of
immunotherapy benefits (26), which helps to understand why
high-risk patients have a poor prognosis. Meanwhile, the TIDE
algorithm predicted significantly higher proportion of ICB
responders among low-risk patients, showing a significant
difference between non-responders and responders. In
IMvigor210 cohort, these results were well validated. Namely,
low-risk patients had a higher proportion of immune-inflamed
phenotype, suggesting that they may have a better response to
ICIs. To further validate the results of the bioinformatics
analysis, the mRNA expression of the corresponding model
genes was measured with RT-qPCR using a clinical CRC
cohort. The experimental results showed that the expression
levels of CCL11, CCL28, HSPA1A, LAG3, TIM4, CXCR5, and
CCL19 in CRC were significantly lower than those in normal
tissues but no significant difference was found in the expression
of IDO1, which was consistent with TCGA data set. The risk
score was calculated for each patient in the validation cohort
according to the formula and coefficient obtained from TCGA
cohort. Forty-five patients were identified as the low- and the
high-risk groups according to the median risk score. We further
analyzed the relationship between the risk scores and the
clinicopathological features of CRC. These results revealed that
a higher risk score was significantly related to a higher tumor
stage and metastatic lymph nodes, whereas the risk score was not
associated with age or gender. Further validation of CRC samples
showed that the risk score positively correlated with the
expression of immune-inhibitor molecules but was negatively
associated with the expression of immuno-stimulator gene.
These findings suggested that high-risk patients were
characterized by the aggressive clinical features and tumor
immune evasion potential, while low-risk patients were
characterized by the immune activation state and were more
likely to benefit from ICIs. Thus, the clinical significance of the
novel risk signature in the validation cohort was in accordance
with that of TCGA cohort. The bioinformatics prediction
combined with the experimental validation indicated that our
cancer-immunity cycle–based signature might serve as a
promising tool for identifying CRC patients suitable for the
treatment with ICIs. Additionally, the analysis of drug
sensitivity showed significant differences between low- and
Frontiers in Immunology | www.frontiersin.org 15
high-risk patients in response to some chemotherapeutic
agents and molecular-targeted drugs. These results illustrated
that the risk signature might be helpful in providing guidance for
the use of chemotherapy and targeted therapy. As a result, an
approach optimizing regimens of a combination of
immunotherapy, chemotherapy, and targeted therapy based on
the novel cancer-immunity cycle–based signature may be
effective for the individualized treatment of patients with CRC.

Despite the promising results, the present study had several
limitations. First, although this signature was evaluated and
validated in multiple data sets and fresh specimens, a
multicenter and large-scale prospective study is needed to
confirm our findings. Second, because all of the samples in our
investigation were gathered retrospectively, the results may have
been impacted by an inherent case selection bias. Some critical
clinical data were either incomplete or unavailable for analysis,
which might have caused errors. Third, the potential of this
signature to predict immunotherapy response was evaluated
indirectly because mRNA expression data from CRC patients
receiving immunotherapy were not available. In the future, in
vivo and in vitro investigations should be conducted to validate
the risk signature.

In conclusion, we comprehensively explored and validated
the predictive efficacy of the novel cancer-immunity cycle–based
signature on the prognosis of patients with CRC in public
cohorts and clinical samples. More importantly, our results
suggest that this signature may be a predictor of response to
ICIs, which might be helpful in identifying patients who would
benefit from antitumor immunotherapy. This may facilitate
individual risk stratification and offer innovative perspectives
into tailored immunotherapy for patients with CRC.
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