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HSP90 family of molecular chaperones has been shown to be implicated in various stages
of tumor growth and development. Recent studies have highlighted the role of
extracellular HSP90 in tumor immunology, however, the role that HSP90 plays in the
regulation of immune responses and the impact of cancer immunotherapy, including
immune checkpoint blockade, on HSP90 is still unclear. Here we assessed the surface
and intracellular expression of constitutive cytosolic HSP90b isoform, mitochondrial
HSP90 homolog TRAP1 and co-chaperone STIP1/HOP in T, NK, B and NKT cells
derived from peripheral blood and bone marrow samples of patients with Hodgkin and B-
cell Non-Hodgkin lymphomas. HSP90b and STIP1 were overexpressed in B
lymphocytes, while TRAP1 expression was decreased in T, B, NK and NKT cells of
lymphoma patients. HSP90 overexpression in B cells was not associated with malignant B
cell clones, since no clonotypic B cells were detected by immunoglobulin heavy chain (IgH)
gene rearrangements. PD-1 blockade was found to differently affect the intracellular and
surface HSP90 in T, B, NK and NKT cells in patients with relapsed or refractory classical
Hodgkin lymphoma. Modulating HSP90 was found to affect the NK cell degranulation
response and IFNg production in lymphoma patients. These findings provide the rationale
to further explore HSP90 homologs for improving pat ient response to
cancer immunotherapy.

Keywords: HSP90, lymphocytes, cancer immunotherapy, extracellular HSP90, PD-1 blockade, Hodgkin lymphoma,
Non-Hodgkin lymphoma
INTRODUCTION

HSP90 family of molecular chaperones plays crucial in protein folding, degradation and maturation
of client proteins (1, 2). HSP90 family is composed of four homologs, such as stress-inducible
HSP90a, constitutive HSP90b, tumor necrosis factor receptor-associated protein 1 (TRAP1) and
glucose-regulated protein 94 (GRP94) (1, 3, 4). HSP90a and HSP90b isoforms primarily reside in
cytosol, TRAP1 in mitochondria and GRP94 in endoplasmic reticulum (ER), where HSP90 isoforms
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act in a variety of cellular processes, including unfolded protein
response, mitochondrial metabolism, lipid metabolism,
autophagy and apoptosis (4). Cytosolic HSP90s work in
collaboration with co-chaperones, including HSP70-HSP90
organizing protein (HOP/STIP1), protein phosphatase 5,
cyclophilin 40, FK506-binding protein, activator of HSP90
ATPase homolog 1 (Aha1), p23 and cell division cycle 37
(Cdc37) (5–7). Under various stress conditions, HSP90
homologs may translocate from their primary location and can
be released into the extracellular milieu (8–10). In the context of
cancer, HSP90 homologs have been shown to be implicated in
the regulation of epithelial-mesenchymal transition, metastasis,
cancer cell stemness, invasion, apoptosis resistance and tumor
immunity [reviewed in (4)].

Lymphoma is a heterogeneous group of tumors divided into
two main types, such as Hodgkin lymphoma (HL) and Non-
Hodgkin Lymphoma (NHL) (11, 12). Classical HL (cHL) is the
most common subtype of HL, which is characterized by the
presence of malignant Hodgkin and Reed-Sternberg (HRS) cells
(13, 14). Even though HRS cells are germinal cell –derived B
cells, they rarely express classical B cell markers (11). NHL
lymphoma primarily consists of B-cell lymphomas (BCL) while
other NHL subtypes include T- and NK- cell lymphomas (15).
HL patients are usually treated with chemotherapy and
radiotherapy whi le NHL patients are treated with
chemotherapy combined with anti-CD20 (11, 12, 16). Even
though the response rate is high, relapses occur in substantial
number of lymphoma patients. Relapsed or refractory (r/r) cHL
patients are treated with high-dose chemotherapy followed by an
autologous hematopoetic stem cell transplantation (ASCT) (11).
r/r cHL can also be treated with Nivolumab, an inhibitor of
immune checkpoint programmed death-1 (PD-1) (11, 17). Even
though cancer immunotherapy showed encouraging results in
r/r patients, still some patients do not benefit from it, suggesting
that it is critical to identify patients who will likely respond to
the therapy.

In our previous study, we have used machine learning to show
that HSP90b and TRAP1 are aberrantly expressed in the urine of
cancer patients and that the HSP90b, TRAP1 and co-chaperones
can be used to identify cancer patients (18). Since lymphoma
originates from lymphocytes we sought to analyze the expression
of HSP90b, TRAP1 and STIP1 co-chaperone in peripheral blood
and bone marrow lymphocytes of patients with Hodgkin and
Non-Hodgkin lymphomas. We show that B lymphocytes have
the highest expression of HSP90b and STIP1 in lymphoma
patients. We also show that PD-1 blockade differentially affects
intracellular and surface HSP90s content in lymphocytes of r/r
cHL patients. Since HSP90s may modulate immune responses,
altering HSP90 expression and localization may further affect
functional activity of immune cells. In this regard, we found that
HSP90 downregulation impairs NK cell degranulation response
and IFNg production. To the best of our knowledge, this is the
first study to assess the expression of HSP90b, TRAP1 and STIP1
in peripheral blood and bone marrow lymphocytes and the role
of anti-PD-1 immunotherapy on HSP90 expression in
cancer patients.
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MATERIALS AND METHODS

Patient Samples
Peripheral blood (PB) and bone marrow (BM) samples were
collected from B-NHL (n=5) and cHL (n=3) patients and healthy
individuals (n=4). B-NHL group consisted of patients with
diffuse large B-cell lymphoma (DLBCL, n=3) and primary
mediastinal large B-cell lymphoma (PMBCL, n=2) while cHL
group consisted of patients with nodular sclerosis HL (NSHL,
n=3). HL and B-NHL patients included in the study were newly
diagnosed patients with no previous history of treatment, unless
otherwise specified. Samples were also obtained from relapsed or
refractory cHL patients (n=3) receiving Nivolumab (Opdivo,
Bristol-Myers Squibb) prior to the therapy and after 24 hours
post-Nivolumab treatment. All patients were Epstein-Barr virus
(EBV)- negative to exclude EBV-associated lymphomas. The
median age of patients was 42 years old. Peripheral blood
mononuclear cells (PBMCs) and bone marrow mononuclear
cells (BM MNCs) were isolated using Ficoll-Paque density
gradient centrifugation. The study was approved by the
Research Ethics Committee of the Federal State Budgetary
Institution ‘National Medical Research Center for Hematology’
of the Ministry of Health of the Russian Federation. All subjects
had provided written informed consent in accordance with the
Declaration of Helsinki.

Antibodies and Flow Cytometry
Cells were stained with fluorescently conjugated anti-human
antibodies: APC/Cy7 anti-CD3 (HIT3a), APC anti-CD19
(HIB19), Pacific Blue anti-CD3 (HIT3a), FITC anti-human
IFNg (4S.B3) (all Sony Biotechnology), PE-Vio 770 anti-CD56
(REA196), FITC anti-Granzyme B (REA226), APC/Cy7 anti-
CD107a (LAMP-1) (H4A3) (all Miltenyi Biotec).

HSP90b, TRAP1 and STIP1 Surface and
Intracellular Staining
Cells were stained with anti-human TRAP1-RPE (3H4-2H6,
Sigma-Aldrich) , primary antibody against HSP90b
(EPR16621), STIP1 (EPR6605) and the secondary antibody
goat anti-rabbit IgG H&L PE preadsorbed (all Abcam). Mouse
IgG1-PE (Invitrogen) and PE-rabbit IgG (Abcam) were used as
isotype controls. FcR blocking reagent (Miltenyi Biotec) was used
to block non-specific binding. For intracellular staining, cells
were fixed and permeabilized with Cytofix/Cytoperm (BD
Biosciences) and stained with antibodies for intracellular
proteins. For surface and intracellular staining, dead cells were
excluded from gating with the use of Sytox Blue dead stain and
Fixable Viability Dye eFluor 506 (Invitrogen), respectively.

IgH Gene Rearrangement Detection
B-cell clonality (IgH gene rearrangements) was assessed using
fragment analysis for V-D-J rearrangements of IgH (FR1, FR2,
FR3), as previously described (19). The reaction mixture
included 100–200 ng of DNA. PCR conditions: initial
denaturation at 95°C (5 min), 35 cycles of PCR at 92°C (35s),
60°C (35s) and 72°C (35s) and final elongation at 72°C (10 min).
April 2022 | Volume 13 | Article 893137
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PCR was performed on an automatic thermal cycler DNA
Engine (BioRad, Hercules, USA). The ABI PRISM 3130
Genetic Analyzer (Applied Biosystems, USA) was used for
fragment analysis of PCR products. Results were visualized
using the GeneMapper v. 4.0 (Applied Biosystems, USA).

NK Cell Stimulation, HSP90 Inhibition,
CD107a/Granzyme B and IFNg Analysis
NK cells were stimulated as previously described (20). Briefly,
PBMCs and BM MNCs were incubated in RPMI 1640 with L-
glutamine (Capricorn Scientific), supplemented with 10% Fetal
Bovine Serum (FBS, Capricorn Scientific) and penicillin/
streptomycin (Capricorn Scientific) with HSP90 inhibitor -
geldanamycin (GA, 0.1µM) (Abcam) or DMSO in the presence
or absence of the recombinant human (rh) IL-2 (100 IU/ml)
(Miltenyi Biotec) and rhIL-15 (10 ng/ml) (Miltenyi Biotec)
overnight at 37°C 5% CO2 prior to the addition of APC-Cy7
anti-CD107a (Miltenyi Biotec). Cells then were stimulated with
anti-NKp46/anti-CD2 (human NK cell activation/expansion kit,
Miltenyi Biotec) for 5 hours at 37°C, according to the manufacturer
instruction. The incubation was done in complete RPMI medium,
supplemented with Brefeldin A (Sony Biotechnology) at a final
dilution of 1/1000. Cells were then stained for surface markers and
intracellular Granzyme B (Miltenyi Biotec) or IFNg (Sony
Biotechnology) and analyzed by flow cytometry.

Statistics
All statistical analyses were performed using GraphPad Prism 9.
Results are expressed as mean ± standard error of the mean
(SEM). In accordance with the data distribution, parametric tests
including two-sample t-test and ANOVA and non-parametric
Frontiers in Immunology | www.frontiersin.org 3
methods including Mann Whitney test were employed for
the data analysis. P values < 0.05 were considered to be
statistically significant.
RESULTS

Immune Subpopulations in PBMCs and
BM MNCs in HL and NHL Patients
Patients with newly diagnosed HL and B-NHL lymphoma had
abnormal frequency of lymphocytes in peripheral blood
compared to healthy controls (Figure 1A). HL and NHL
patients differed by the frequency of immune population in
PBMCs and BM MNCs (Figure 1). HL patients had higher
frequency of T cells (CD3+CD56-) and NKT (CD3+CD56+) cells
in peripheral blood and bone marrow compared to NHL
patients. NHL patients had higher frequency of peripheral
blood NK cells compared to HL patients, however, the
difference was not statistically significant (p>0.05) (Figure 1A).
Increased frequency of B cells (CD19+CD3-) and decreased
frequency of NK cells (CD56+CD3-) were observed in bone
marrow compared to peripheral blood in HL and NHL
lymphoma (Figure 1).

Intracellular and Surface HSP90b,
TRAP1 and STIP1 Expression in
PB- and BM-Derived Lymphocytes in
Lymphoma Patients
The intracellular expression of HSP90b (iHSP90b), iTRAP1 and
iSTIP1 varied in peripheral blood lymphocytes of NHL and HL
A

BB

FIGURE 1 | Frequency of lymphocytes in peripheral blood and bone marrow samples derived from patients with HL and NHL patients. The percentage of T cells
(CD3+ CD56-), B cells (CD3-CD19+), NK cells (CD3-, CD56+) and NKT cells (CD3+CD56+) in peripheral blood (A) derived from HL, NHL patients and healthy controls
and bone marrow samples (B) derived from HL and NHL patients. Graphs show mean ± SEM. ns, not significant. PB, peripheral blood; BM, bone marrow.
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FIGURE 2 | Intracellular and surface HSP90b, TRAP1 and STIP1 expression in PB- and BM- derived lymphocytes of lymphoma patients. The mean level of
intracellular expression of HSP90b (iHSP90b) (A), iTRAP1 (B) and iSTIP1 (C) (as mean fluorescence intensity; MFI) in lymphocytes derived from PB of HL (n=3), NHL
(n=3) patients and healthy controls (n=2). The expression of iHSP90b (D), iTRAP1 (E) and iSTIP1 (F) in lymphocytes derived from BM of HL (n=2) and iHSP90b (G),
iTRAP1 (H) and iSTIP1 (I) in NHL (n= 3) patients. (J–L) Surface HSP90b and STIP1 expression in B lymphocytes derived from PB and BM samples of lymphoma
patients. (J) The expression of sHSP90b and sSTIP1 in B cells derived from PB of HL (n=3), NHL patients (n=3) and healthy controls (n=2). (K) The expression of
sHSP90b and sSTIP1 in B cells derived from PB and BM of HL (n=2). (L) The expression of sHSP90b and sSTIP1 in B cells derived from PB and BM of NHL (n=3)
patients. Graphs show mean ± SEM. ns, not significant, *p<0.05, **p< 0.01.
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patients. B cells showed significantly higher iHSP90b expression
compared to other peripheral blood lymphocytes (T, NK and
NKT cells) in lymphoma patients (Figure 2A). iHSP90b and
iSTIP1 were significantly overexpressed in peripheral B cells of
HL patients compared to healthy controls (Figures 2A, C). Bone
marrow B lymphocytes showed significantly lower iHSP90b and
iSTIP1 expression compared to peripheral B cells in HL patients
(Figures 2D, F). By contrast, iHSP90b and iTRAP1 expression
was comparable in BM- and PB- derived B cells of NHL patients
(Figures 2G, H). Similar to HL patients, PB-derived B cells
showed increased expression of iSTIP1 in NHL patients
(Figure 2I). iTRAP1 was significantly decreased in peripheral
blood lymphocytes in lymphoma patients compared to healthy
controls (Figure 2B). Notably, HL patients showed higher
iTRAP1 expression in bone marrow NK cells compared to
peripheral blood NK cells (Figure 2E). sSTIP1 was
significantly increased on the surface of B cells in peripheral
blood of patients with HL lymphoma compared to healthy
controls and NHL patients (Figure 2J). sHSP90b was
significantly increased in bone marrow-derived B cells
compared to the peripheral blood B cells of HL patients while
sSTIP1 was significantly increased in peripheral blood B cells
compared to bone marrow B cells in HL patients (Figure 2K). By
contrast, sHSP90b and sSTIP1 were decreased in BM-derived B
cells compared to peripheral blood B cells in NHL patients,
however the difference was not statistically significant (p>0.05)
(Figure 2L). These data suggest that surface and intracellular
expression of HSP90b vary between peripheral blood and bone –
marrow B cells and that the HL and NHL lymphomas differ by
the expression of intracellular and surface HSP90b and STIP1 in
B lymphocytes.

B-Cell Clonality Analysis in HL and
NHL Patients
To determine whether high HSP90 expression in B cells is
associated with malignant B cell clones, we performed B-cell
clonality analysis (IgH gene rearrangements) using PB and BM
samples from HL and NHL patients (Figure 3 and
Supplementary Figure 3). No malignant B cell clones were
detected in PB and BM of HL and NHL patients (Figures 3A–
D and Supplementary Figure 3), suggesting that high HSP90
expression in B cells may not be associated with malignant B
cell phenotype.

Anti-PD-1 Treatment Affects
HSP90s Expression in Lymphocytes
of r/r cHL Patients
Patients with refractory or relapsed cHL undergoing Nivolumab
treatment were presented with conglomerate lymph node masses
at diagnosis (Figure 4). We assessed the effect of anti-PD-1
therapy on the frequency of immune cells and the expression of
HSP90b, TRAP1 and STIP1 in T, B, NK and NKT cells prior to
and 24 hours after the treatment of patients with r/r cHL.
Blocking PD-1 affected the frequency of immune cell
population in the peripheral blood at 24 hours of the
treatment (Figure 5A). The median percentage of T cells was
Frontiers in Immunology | www.frontiersin.org 5
decreased after 24 hours of anti-PD-1 treatment (Figure 5A).
One patient showed increased frequency of peripheral blood NK
cells (Figure 5B). Increased frequency of NK cells after anti-PD-
1 therapy has been also shown previously in cancer patients (21).

iHSP90b decreased in T, B, NK and NKT cells. Two patients
showed increased HSP90b expression on the surface of
peripheral blood B cells (Figures 5C, D). PD-1 blockade did
not affect iTRAP1 expression, but increased sTRAP1
(Figures 5E, F). PD-1 blockade did not affect iSTIP1 in
lymphocytes, although 1 patient showed increased iSTIP1 in
NK cells (Figures 5G, H). sSTIP1 was decreased in lymphocytes
following anti-PD-1 treatment (Figures 5G,H). Since PD-1
blockade altered HSP90 expression in peripheral blood, we
sought to determine whether similar changes occur in bone
marrow lymphocytes. Consequently, we examined intracellular
and extracellular HSP90b, TRAP1 and STIP1 in bone marrow
lymphocytes from Patient 1 before and after the anti-PD-1
treatment and compared it to the HSP90 expression in
peripheral blood of this patient (Figure 6). PD-1 blockade
upregulated intracellular and downregulated surface HSP90b
in BM-derived B cells (Figures 6A, B). By contrast, anti-PD-1
blockade downregulated intracellular and upregulated STIP1
expression in bone marrow B cells (Figures 6E, F). PD-1
blockade also downregulated intracellular and surface HSP90b
and STIP1 expression in BM-derived NKT cells (Figures 6A, B,
E, F). sHSP90b was decreased in peripheral blood and bone
marrow B cells following anti-PD-1 therapy (Figure 6B).
Interestingly, anti-PD-1 therapy resulted in decreased
expression of iTRAP1 in BM-derived NK cells (Figure 6C). It
is also interesting to note that PB- and BM- derived B cells
differentially expressed iHSP90b after 24 hours of treatment with
anti-PD-1 (Figure 6A). These findings suggest that anti-PD-1
treatment affects the frequency of lymphocytes and their
intracellular and surface HSP90 expression in r/r cHL
lymphoma patients, however, further studies are required to
assess the effect of anti-PD-1 treatment on HSP90 expression and
localization in bone marrow and peripheral blood lymphocytes.

HSP90 Downregulation Affects NK Cell
Degranulation Response and IFNg
Production in Healthy Donors and
Lymphoma Patients
Since anti-PD-1 treatment may alter HSP90 expression, we
sought to determine whether modulating HSP90 level would
affect the functional activity of NK cells. IL-2/IL-15-
preactivated NK cells from healthy controls were more
responsive to anti-NKp46/anti-CD2 stimulation, resulting in
higher frequency of CD107a+ Granzyme B+ NK cells, as
compared to NK cells from BCL patients (Figure 7A). By
contrast, IL-2/IL-15/anti-NKp46/anti-CD2 stimulation
resulted in increased frequency of CD107a+IFNg+ NK cells in
BCL patients, as compared to healthy controls (Figure 7D).
HSP90 inhibition decreased the frequency of CD107a
+/Granzyme B+ in healthy controls, bone marrow and
peripheral blood NK cells of BCL patients (Figures 7A, B).
HSP90 inhibition downregulated the expression of CD107a on
April 2022 | Volume 13 | Article 893137
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A

B

D

C

FIGURE 3 | B-cell clonality analysis (IgH gene rearrangements) in PB and BM of HL and NHL patients. Representative graphs showing a Gaussian distribution of
multiple peaks in (A) peripheral blood and (B) bone marrow in NHL patient and (C) peripheral blood and (D) bone marrow in HL patient.
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the surface of bone marrow and peripheral blood NK cells,
leading to double positive CD107a+ Granzyme B+ NK cells lose
their CD107a+ expression and become single positive
Granzyme B+ NK cells upon stimulation (Figure 7C). HSP90
inhibition also decreased the percentage of CD107+IFNg+ NK
cells in response to IL-2/IL-15 and anti-NKp46/anti-CD2
st imulat ion (Figure 7D ) . These data suggest that
downregulating HSP90 may impair NK cell degranulation
response and IFNg production in lymphoma patients.
DISCUSSION

We have assessed the expression of constitutive and
mitochondrial HSP90 and HSP90 co-chaperone STIP1/HOP in
two major types of lymphoma- Hodgkin lymphoma and Non-
Hodgkin lymphoma. We showed that two lymphomas differ by
the expression of intracellular and surface content of HSP90b
and STIP1 in peripheral blood and bone marrow lymphocytes.
Intriguingly, peripheral blood B cells showed to be the major type
of lymphocytes with abnormal expression of HSP90s inside and
on their surface in lymphoma patients. HSP90b and STIP1 were
also aberrantly expressed on the surface of bone marrow B cells
in lymphoma patients. Since HSP90 overexpression may
potentially be associated with circulating malignant B cell
clones, we have performed B-cell clonality analysis. No
malignant B cell clones were found in the blood and bone
marrow of HL and NHL patients, suggesting that high HSP90
expression in B cells may not be associated with malignant
phenotype. Several studies reported that extracellular HSPs
associate with B regulatory phenotype (22, 23). In a recent
study, Wang and colleagues reported that regulatory B cells
Frontiers in Immunology | www.frontiersin.org 7
have high expression of HSP70 (24). Along this line, Tang
et al. demonstrated that extracellular BiP/GRP78 induces
regulatory B cell phenotype (22). Extracellular HSP60
stimulates B cells to produce IL-10 and IL-6 while HSP60-
stimulated B cells induce the proliferation and IFNg and IL-10
production in T cells (23). These data suggest that altered
expression of HSP90 in B cells may affect B cell responses in
bone marrow and peripheral blood of lymphoma patients.

Recently, Zavareh and colleagues demonstrated that HSP90
inhibitors downregulate surface PD-L1 expression in mouse
models via the regulation of HSP90 clients (c-Myc and STAT3)
(25). HSP90 inhibition also showed to potentiate anti-tumor activity
of PD-1 and CTLA-4 blockade in vivo (26, 27). Here, we showed
that treatment with anti-PD-1 altered the expression and
localization of HSP90b, TRAP1 and STIP1 in peripheral blood
lymphocytes in refractory HL patients. PD-1 blockade also affected
HSP90 content and localization in bone marrow lymphocytes.
Notably, PD-1 blockade resulted in increased surface HSP90
expression in lymphocytes. Previous studies demonstrated that
HSPs can be upregulated on the surface of immune cells
following ER stress (28, 29). These studies suggest that there is
interplay between immune checkpoints and HSP90s and that
lymphocytes may upregulate surface HSP90 expression in
response to anti-PD-1 immunotherapy, however, further studies
are required to understand the role of cancer immunotherapy on
the HSP90 expression.

Several studies reported high expression of PD-1 on NK cells
in cancer patients (30, 31). Furthermore, Vari and colleagues
highlighted an important role of PD-1/PD-L1 axis in the
functional activity of NK cells in lymphoma patients (30).
Taking into account that anti-PD-1 immunotherapy may affect
HSP90 expression in NK cells, we assessed the effect of HSP90
FIGURE 4 | PET/CT of r/r cHL patients prior to the initiation of anti-PD-1 treatment. Patient 1 presented with conglomerate lymph node masses at the
anterosuperior mediastinum with the size of 37x21 mm, SUV 6.4 and the paragastric conglomerate with the size of 45x42 mm, SUV 7.4. Patient 2 presented
with cervical lymph nodes with the size of 6.6mm, SUV 4.7 and with conglomerate lymph node mass at the anterosuperior mediastinum with the size of 74x42
mm, SUV 7.7. Patient 3 presented with conglomerate lymph node mass at the anterosuperior mediastinum with the size of 43x32 mm, SUV 8.2. SUV,
standardized uptake value.
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downregulation on the degranulation response, granzyme B and
IFNg production in NK cells of lymphoma patients. We found
that HSP90 inhibition downregulates CD107a expression and
IFNg production in NK cells upon stimulation. These results are
consistent with previous findings showing that HSP90 inhibitors
Frontiers in Immunology | www.frontiersin.org 8
downregulate IFNg secretion by NK cells (32). It is important to
note that geldanamycin blocks HSP90 ATPase activity and thus,
inhibits all four HSP90 isoforms, including HSP90a, HSP90b,
TRAP1 and GRP94 in NK cells, suggesting that it is critical to
identify specific HSP90 homolog responsible for the regulation of
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FIGURE 5 | The effect of anti-PD-1 treatment on HSP90 expression in peripheral blood lymphocytes in r/r cHL patients. (A) Frequencies of T, B, NK and NKT cells
following 24hr treatment with Nivolumab in r/r cHL patients (n=3). (B) Representative histogram showing increase in NK cell frequency after 24hr treatment with
Nivolumab. iHSP90b expression (C) and sHSP90b (D), iTRAP1 (E) and sTRAP1 (F), iSTIP1 (G) and sSTIP1 (H) in peripheral blood lymphocytes of r/r cHL patients
at 24 hrs treatment with Nivolumab (n=3). ns, not significant, *p<0.05, **p< 0.01.
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CD107a+ expression and IFNg production in NK cells. Recent
studies have demonstrated that cell metabolism plays a critical
role in NK cell functional activity (33). Wang and colleagues
reported that inhibition of glycolysis downregulates NK cell IFNg
production and CD107a expression (34). Authors also showed
that glycolysis inhibition abrogated Granzyme B production
while inhibition of oxidative phosphorylation (OXPHOS) did
not affect Granzyme B production by NK cells (34). In our study
we showed that geldanamycin inhibited CD107a expression and
IFNg production while Granzyme B production was not affected,
suggesting that HSP90 inhibitor may affect both, i.e. glycolysis
and OXPHOS. In this regard, mitochondrial HSP90 homolog
TRAP1 showed to be a critical regulator of OXPHOS and
glycolysis, suggesting that TRAP1 may be a potential isoform
responsible for the downregulation of CD107a expression and
IFNg production in NK cells, however, this warrants further
investigation (35, 36).

In summary, we showed that lymphoma patients have
abnormal expression of HSP90s in bone marrow and
Frontiers in Immunology | www.frontiersin.org 9
peripheral blood B cells. PD-1 blockade altered the
intracellular and surface HSP90 expression in immune
population in r/r HL patients. Altering the level of HSP90 may
inhibit cytotoxic activity of peripheral blood and bone marrow
NK cells. Further understanding the effect of cancer
immunotherapy on intracellular and extracellular HSP90 may
help in identification of patients who will likely benefit from
the treatment.
CONCLUSION

HSP90 molecular chaperones play critical role in proteome
homeostasis and showed to be implicated in various hallmarks
of cancer. We show that constitutive, mitochondrial HSP90s and
HSP90 co-chaperone STIP1/HOP are aberrantly expressed in B
cells of lymphoma patients. Since approved and emerging cancer
immunotherapeutics include immune checkpoint inhibitors, we
A       B

T cells B cells NK cells NKT cells
0
50
100

150

200

250 iHSP90β

iH
SP
90
β
M
FI

Untreated PB
anti-PD-1 PB
Untreated BM
anti-PD-1 BM

* ** *
ns

nsns
0.0704

T cells B cells NK cells NKT cells
0
50
100

150

200

250

sHSP90β

sH
S
P
90

β
M
FI

Untreated PB
anti-PD-1 PB
Untreated BM
anti-PD-1 BM

0.0737

0.0766

*

C D

T cells B cells NK cells NKT cells
0
50
100

150

200

250 iTRAP1

iT
RA
P1
M
FI

Untreated PB
anti-PD-1 PB
Untreated BM
anti-PD-1 BM

* *

T cells B cells NK cells NKT cells
0
50
100

150

200

250 sTRAP1

sT
R
A
P
1

Untreated PB
anti-PD-1 PB

Untreated BM
anti-PD-1 BM

0.0704 0.0577

E F

T cells B cells NK cells NKT cells
0
50
100

150

200

250 iSTIP1

iS
TI
P1
M
FI *

0.0635 0.0515ns

Untreated PB
anti-PD-1 PB

Untreated BM
anti-PD-1 BM

T cells B cells NK cells NKT cells
0
50
100

150

200

250
sSTIP1

sS
TI
P1
M
FI

Untreated PB
anti-PD-1 PB

Untreated BM
anti-PD-1 BM*

*
*

*

FIGURE 6 | The effect of anti-PD-1 on the HSP90 expression in PB and BM lymphocytes in r/r cHL patient. Intracellular (A, C, E) and surface (B, D, F) expression
of HSP90b (A, B), TRAP1 (C, D) and STIP1 (E, F) in PB and BM lymphocytes in r/r cHL patient (n=1). Graphs show mean ± SD. ns, not significant, *p<0.05. PB,
peripheral blood; BM, bone marrow.
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FIGURE 7 | The effect of HSP90 inhibition on the NK cell degranulation response, granzyme B and IFNg production in lymphoma patients. NK cell degranulation, as
measured by CD107a surface expression, and granzyme B/IFNg production in PB (n=4) of lymphoma patients and healthy controls (n=5) and BM (n=3) of lymphoma
patients. PBMC (A) and BM MNC (B) were pre-treated with geldanamycin (0.1µM) or DMSO in the presence of IL-2 (100IU/ml) and IL-15 (10 ng/ml) and stimulated with
anti-NKp46/anti-CD2. (C) Representative flow cytometry plots of CD107a+/Granzyme B+ double positive NK cells on the left and the frequency of CD107a single positive
(SP) and Granzyme B SP NK cells in response to IL-2/IL-15 and anti-NKp46/anti-CD2 stimulation. (D) Representative flow cytometry plots of CD107a+ IFNg+ NK cells on
the left and the frequency of CD107a+IFNg+ NK cells in response to IL-2/IL-15 and anti-NKp46/anti-CD2 stimulation. Graphs show mean ± SEM. ns, not significant,
*p<0.05, **p< 0.01. GA, Geldanamycin; BCL, B-cell lymphoma.
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have assessed the effect of anti-PD-1 treatment on HSP90
expression in refractory/relapsed lymphoma patients. We
showed that anti-PD-1 affects HSP90 level and localization in
immune cells of lymphoma patients. Additionally, we found that
modulating HSP90 level may impair functional activity of NK
cells. Further understanding of the effect of immunotherapies on
HSP90 may improve treatment response in lymphoma patients.
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