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Rotterdam, Rotterdam, Netherlands, 6 Neuroimmunology Research Group, Netherlands Institute for Neuroscience,
Amsterdam, Netherlands

In early multiple sclerosis (MS), an IFN-ghighGM-CSFhighIL-17low CD4+ T-cell subset
termed T helper 17.1 (Th17.1) reveals enhanced capacity to infiltrate the central
nervous system. Th17.1 cells express high levels of multidrug resistance protein 1
(MDR1), which contributes to their poor glucocorticoid responsiveness. In this study,
we explored whether glucocorticoid sensitivity of Th17.1 cells can generically be improved
through synergy between steroid hormones, including calcitriol (1,25(OH)2D3), estradiol
(E2) and progesterone (P4). We showed that human blood Th17.1 cells were less
sensitive to 1,25(OH)2D3 than Th17 cells, as reflected by lower vitamin D receptor
(VDR) levels and reduced modulation of MDR1, IFN-g and GM-CSF expression after
1,25(OH)2D3 exposure. Upon T-cell activation, VDR levels were increased, but still lower in
Th17.1 versus Th17 cells, which was accompanied by a 1,25(OH)2D3-mediated decline in
MDR1 surface expression as well as secretion of IFN-g and GM-CSF. In activated Th17.1
cells, 1,25(OH)2D3 amplified the suppressive effects of methylprednisolone (MP) on
proliferation, MDR1 surface levels, secretion of IFN-g and granzyme B, as well as
expression of brain-homing markers CCR6 and VLA-4. The addition of P4 to 1,25(OH)

2D3 further enhanced MP-mediated reduction in proliferation, CD25, CCR6 and CXCR3.
Overall, this study indicates that glucocorticoid sensitivity of Th17.1 cells can be enhanced
by treatment with 1,25(OH)2D3 and further improved with P4. Our observations implicate
steroid hormone crosstalk as a therapeutic avenue in Th17.1-associated inflammatory
diseases including MS.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory disease of the
central nervous system (CNS) (1). In the early phases of the
disease, attacks of MS are treated with high dosages of pulsed
synthetic glucocorticoids such as methylprednisolone (MP) (2).
Although this treatment shortens attacks, it does not improve the
level of recovery (3–5) and is associated with various adverse
effects (6, 7). Remarkably, the glucocorticoid sensitivity of white
blood cells during MS disease progression is decreased (8). Since
the mechanism of MP action relies on the chemokine-dependent
redirection of CNS-infiltrating T cells in EAE (9, 10), this raises
the question whether CNS-homing T cells in humans are
selectively able to circumvent this drug and thus determine the
longevity of this treatment in MS.

Previously, we showed that a chemokine receptor-defined
CD4+ T-cell subset termed T helper 17.1 (Th17.1;
CCR6+CXCR3+CCR4-/dim) is associated with early MS activity
(11). This subset is not only characterized by the expression of
IFN-g, GM-CSF and granzyme B, but is also refractory to
glucocorticoids due to the abundance of surface multidrug
resistance receptor 1 (MDR1) expression (11–13). Th17.1 cells
were absent in the peripheral blood of early MS patients and
selectively targeted by natalizumab, an anti-VLA4 antibody that
prevents immune cells from entering the CNS and allows for their
selective accumulation in the circulation (11). Accordingly, Th17.1
cells dominated the cerebrospinal fluid (CSF) of treatment-naive
early MS patients and were present in MS brain white matter
lesions (12). Intriguingly, the effector function of these cells
seemed to be controlled during pregnancy and related to a
postpartum relapse (14), indicating that female hormones can
suppress the pathogenicity of Th17.1 cells.

Functional studies have shown that calcitriol (1,25(OH)2D3),
the active metabolite of vitamin D3, enhances MP action in vitro
(15), but vitamin D3 supplementation showed limited to no
clinical benefits in MS trials (16). Interestingly, vitamin D3 was
able to ameliorate disease activity in EAE (17, 18), which
depended on the presence of female hormones (19–21).

In this study, we hypothesized thatMP responsiveness of human
Th17.1 cells can be optimized through crosstalk between 1,25(OH)
2D3 and female hormones. Since these cells are absent in the
circulation of MS patients (11), and steroid resistance is a generic
trait of these cells (12), we primarily utilized Th17.1 from healthy
blood donors for the current experiments. We first investigated the
sensitivity of blood Th17.1 and Th17 cells to 1,25(OH)2D3 and how
this is influenced upon T-cell receptor (TCR) activation. Next, we
assessed whether 1,25(OH)2D3 and further addition of pregnancy-
related dosages of estradiol (E2) and progesterone (P4) could
enhanceMP-mediated suppression of activated Th17.1 cells in vitro.
MATERIALS AND METHODS

Sampling and Ethics
Healthy donor peripheral blood mononuclear cells (PBMCs) were
collected using CPT tubes (BD Biosciences, Erembodegem,
Belgium) containing sodium heparin for cell-based analysis and
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isolated according to manufacturer’s instructions. PBMCs were
frozen down in RPMI 1640 with L-Glutamine (Lonza, Verviers,
Belgium) containing 20% fetal calf serum (Thermo Fisher
Scientific, Landsmeer, The Netherlands) and 10% dimethyl
sulfoxide (Sigma-Aldrich, St Louis, MO, USA), and stored in
liquid nitrogen until further use. MS patients were diagnosed
based on the McDonald 2017 criteria and included at the MS
center ErasMS, Erasmus MC. Blood samples were collected from
MS patients treated with natalizumab for 18 months. The studies
involving human participants were reviewed and approved by
Medical Ethics Committee Erasmus MC (MEC-2014-033).
Cohort characteristics are summarized in Supplementary Table 1.

Flow Cytometry and Cell Sorting
The fluorescently labeled anti-human monoclonal antibodies
used for this study are shown in Supplementary Table 2.
Surface markers were stained for 30 min at 4°C in the dark.
When applicable, prior to each staining, cells were incubated
with anti-MDR1 antibody in RPMI 1640 containing 2% fetal calf
serum and 25 µM cyclosporine A (Sigma-Aldrich) for 20 min at
37°C. For exclusion of dead cells, Fixable Viability Stain 700 (BD
Biosciences) was added for 15 min at 4°C in the dark. Cells were
measured using an LSRII-Fortessa (BD Biosciences) and
analyzed using BD FACSDiva (version 8.0.1) software.
Memory CD4+ T cells were isolated from fresh healthy donor
blood (Sanquin, Amsterdam, The Netherlands) using the human
Memory CD4+ T cell Isolation Kit and the autoMACS Pro
Separator (both Miltenyi Biotec, Bergisch Gladbach, Germany)
and frozen down as described above. Memory CD4+ (CD45RA-

CD25low/-) T-cell subsets Th17 (CCR6+CXCR3-CCR4+) and
Th17.1 (CCR6+CXCR3+CCR4-/dim) were purified using a
FACSAria-III machine (BD Biosciences).

RNA Isolation and Quantitative PCR
Th17 and Th17.1 cells were either used unstimulated or plated
at 0.5x106/ml in RPMI 1640 containing 5% inactivated human
AB serum (Sanquin), 100 U/ml penicillin (Pen) and 100 mg/ml
Streptomycin (Strep) at 37°C. After sorting, cells were directly
lysed or stimulated with aCD3/CD28 dynabeads (1:5; Thermo
Fisher Scientific) for 24 h and/or stimulated with phorbol 12-
myristate 13-acetate (PMA; 50 ng/ml) and ionomycin (1 µg/ml;
both Sigma-Aldrich) for 5 h the following day. In case of 1,25
(OH)2D3 (0.1 µM; Sigma-Aldrich) stimulations, cells were
plated at a concentration of 1.25×105/ml in the same
medium. RNA isolation, complementary DNA synthesis, and
real-time quantitative PCRs were performed as previously
described (11). Primer-probe sets were designed using the
Universal ProbeLibrary (Roche Applied Science, Penzberg,
Germany) and primer sequences are disp layed in
Supplementary Table 3.

In Vitro Proliferation Assay
Healthy donor memory CD4+ T cells were stained with 0.075 µM
CellTrace Carboxyfluorescein Succinimidyl Ester (CFSE)
according to manufacturer’s instructions (Thermo Fisher
Scientific). After staining, Th17.1 cells were sorted, plated at
1.25 × 105 cells/mL and activated with aCD3/CD28 dynabeads
May 2022 | Volume 13 | Article 893702
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(1:5; Thermo Fisher Scientific) for 72 h. Cells were
simultaneously cultured in RPMI 1640 supplemented with 100
U/ml Pen and 100 mg/ml Strep, 5% human AB serum (Sanquin),
and a patient-relevant dosage (15) of 75 µM MP (Pfizer, Capelle
a/d IJssel, The Netherlands) and/or different combinations of 0.1
µM 1,25(OH)2D3 (Sigma-Aldrich), 0.1 µM water-soluble E2
(Sigma-Aldrich), 2 µg/ml g-irradiated P4 (Sigma-Aldrich), in
addition to the appropriate vehicle controls. Finally, cells were
washed and stained for flow cytometry as described. After 72 h,
supernatants were collected and stored at -80°C until further use.
Values of the treatment conditions were divided against the
relevant vehicle controls and converted into percentages. These
values were subtracted from 100 to depict the percentage
of suppression.

Cytokine Measurement
Culture supernatants were diluted twofold and analyzed for GM-
CSF, granzyme B, IFN-g, IL-10, tumor necrosis factor alpha (TNF-
a) and lymphotoxin-a (LT) levels using a custom Luminex
multiplex bead immunoassay (R&D Systems, add City, UK).
Measurements were performed on a Bio‐Plex MAGPIX machine
and data were analyzed using Bio‐Plex Manager MP software
(both Bio-Rad, Hercules, California, USA).

Statistics
Statistics were performed using GraphPad Prism 9 software and
are described in detail within each figure legend. Data are
displayed as individual data points with or without the
standard error of the mean. For all tests, a P value of < 0.05 (*)
was considered significant.
RESULTS

Reduced Sensitivity of Glucocorticoid-
Resistant Th17.1 Cells to Calcitriol Is
Enhanced Upon Activation
In contrast to paired MDR1low Th17 cells (p < 0.01), ex vivo
MDR1high Th17.1 cells from healthy donors showed no
reduction in ABCB1 (MDR1) levels after 24 h stimulation with
1,25(OH)2D3 (Figures 1A, B) (12). Additionally, the relative
expression of Th17-associated IL17A (IL-17A) and CFS2 (GM-
CSF) was decreased (p < 0.05 and 0.01), while this was not the
case for Th17.1-associated IFNG (IFN-g) and CSF2 (Figure 1C).
Vitamin D receptor (VDR) levels were significantly lower in
resting Th17.1 compared to Th17 cells (Figure 1D; p < 0.05),
supporting their reduced sensitivity to 1,25(OH)2D3. Because
vitamin D3 effects are induced upon T-cell activation (22), we
stimulated purified Th17.1 and Th17 cells with anti-CD3/CD28
for 24 h. VDR levels were increased in both subsets (Figure 1E, p
< 0.001), but remained higher in Th17 versus Th17.1 cells
(Figure 1F; p < 0.01). This was consistent with the reduced
VDR signaling observed in Th17.1 compared to Th17 cells,
reflected by the lower expression of Cytochrome P450 family 24
subfamily A member 1 (CYP24A1) after exposure to 1,25(OH)
2D3 (Figure 1G; p < 0.05) (23). Nonetheless, the activation-
Frontiers in Immunology | www.frontiersin.org 3
induced upregulation of VDR did allow us to study whether 1,25
(OH)2D3 has the potential to modulate the pathogenicity of
Th17.1 cells. Upon activation, 1,25(OH)2D3 attenuated the
excretion of Th17.1-associated IFN-g and GM-CSF, as well as
TNF-a, LT and granzyme B (Figure 1H; all p < 0.01). No
changes were observed for IL-10 (Figure 1H). Moreover, MDR1
surface expression was lowered after stimulation of activated
Th17.1 cells with 1,25(OH)2D3 (Figure 1I; p < 0.01).

These results indicate that ex vivo Th17.1 cells are relatively
insensitive to 1,25(OH)2D3, which potentially contributes to their
pro-inflammatory and glucocorticoid-resistant phenotype
(Figure 1J). However, following activation, 1,25(OH)2D3 seems
to be useful to reduce MDR1 expression and thereby increase
glucocorticoid responsiveness. Previously, we showed no difference
in VDR and CYP24A1 expression between CD4+ T cells of MS and
control donors (24), and others showed no differences betweenMS
and control donors in suppression of CD4+ T cell proliferation and
cytokine production by 1,25(OH)2D (25). We currently expanded
these data by showing no difference in VDR expression between
control and natalizumab-treated MS Th17 and Th17.1 cells
(Supplementary Figure 1). Therefore, we assume similar
vitamin D responsiveness between Th17.1 cells of MS and
control donors.

Calcitriol and Progesterone
Optimally Sensitize Th17.1 Cells
to Methylprednisolone
To address whether 1,25(OH)2D3 potentiates their response to
glucocorticoids, we added MP to purified, activated Th17.1 cells
for 3 days with and without 1,25(OH)2D3. Since female hormones
are able to increase 1,25(OH)2D3 sensitivity (21), we also
investigated whether there was an enhanced effect when
pregnancy-related dosages of E2 or P4 were added. Both MDR1
surface expression and CFSE-based cell proliferation were more
suppressed byMP in the presence of 1,25(OH)2D3 (Figure 2A; p =
0.01 and 0.05, respectively). 1,25(OH)2D3 did not induce MP-
mediated reduction in CD25 surface levels (Figure 2A). The
addition of P4 to 1,25(OH)2D3 and MP further reduced
proliferation rates and resulted in a downregulation of CD25
(Figure 2B; both p < 0.05). This was not seen when using E2
(Figure 2B). 1,25(OH)2D3 also inducedMP-mediated suppression
of IFN-g and granzyme B excretion (Figure 2C; both p < 0.05),
which was not potentiated by P4 and E2 (Figure 2D). The
inhibitory effects of MP on GM-CSF, TNF-a, LT and IL-10
excretion were not affected by 1,25(OH)2D3, P4 and E2
(Figures 2C, D). Finally, 1,25(OH)2D3 enhanced the MP-
induced downregulation of surface CCR6 and VLA-4 (both p <
0.01), while surface CXCR3 expression was not affected
(Figure 2E). In contrast to E2, P4 further reduced CCR6 and
additionally lowered CXCR3 levels (both p < 0.05), which was not
seen for VLA-4 (Figure 2F).

These data indicate that 1,25(OH)2D3 and P4 optimize
MP-mediated suppression of Th17.1 cells, as reflected by
steroid-dependent reductions in MDR1 levels, proliferative
capacity and both pro-inflammatory and brain-homing
markers (Figure 3).
May 2022 | Volume 13 | Article 893702
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FIGURE 1 | The sensitivity of MDR1low Th17 and MDR1high Th17.1 cells to 1,25(OH)2D3. (A) FACS plot showing representative gating for CCR6+ memory T helper
(CD4+CD45RA-CD25low) subsets Th17 (CCR4+CXCR3-) and Th17.1 (CCR4-/dim). (B) Relative ABCB1 expression for healthy donor Th17 and Th17.1 cells as
determined by qPCR (n = 16 per group). (C) Relative IL-17A, IFNG and CSF2 expression for healthy donor PMAionomycin and anti-CD3/CD28-stimulated Th17 and
Th17.1 cells before and after 1,25(OH)2D3 exposure as determined by qPCR (n = 7 per group). (D) Relative VDR expression for healthy donor non-activated Th17
and Th17.1 cells as determined by qPCR (n = 7 per group). (E) Relative VDR expression for healthy donor non-activated versus anti-CD3/CD28 activated Th17 and
Th17.1 cells, including a comparison for these activated Th17 and Th17.1 cells (F), as determined by qPCR (n = 8 per group). (G) Relative CYP24A1 expression for
healthy donor PMAionomycin and anti-CD3/CD28-stimulated Th17 and Th17.1 cells after 1,25(OH)2D3 exposure as determined by qPCR (n = 7 per group). (H)
Amount (pg/ml) of IFN-g, GM-CSF, TNF-a, LT, granzyme B, and IL-10 measured in the supernatants of healthy donor anti-CD3/CD28-stimulated Th17.1 cells before
and after 1,25(OH)2D3 exposure as determined by Luminex (n = 8 per group). (I) MDR1 surface expression (median fluorescent intensity) on healthy donor anti-CD3/
CD28-stimulated Th17.1 cells before and after 1,25(OH)2D3 exposure (n = 13 per group). (J) Graphical model displaying the 1,25(OH)2D3 sensitivity of non-activated
versus activated Th17.1 cells. When TCR-activated, Th17.1 cells increase their VDR expression resulting in 1,25(OH)2D3-signaling and a decrease in their pro-
inflammatory (IFN-g+GM-CSF+) and MDR1-expressing phenotype. Lines represent paired observations for cells from the same donors. Data were compared using
either Wilcoxon rank-sum or (E) Mann-Whitney U tests. *p < 0.05, **p < 0.01 and ***p < 0.001. “D3 = 1,25(OH)2D3”, “MDR1”, multidrug resistance protein 1; “MFI,
median fluorescence intensity”; “1,25(OH)2D3, calcitriol”, “TCR”, T-cell receptor and “VDR, vitamin D receptor”.
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FIGURE 2 | The suppressive capacity of steroid hormone cocktails on glucocorticoid-resistant Th17.1 cells. (A) MDR1 expression, proliferation rates (CFSE-) and
CD25 surface expression (MFI) by healthy donor anti-CD3/CD28-stimulated Th17.1 cells exposed to MP with and without D3 as determined by flow cytometry (n =
8). Percentages are relative to their appropriate vehicle control. (B) The same parameters as in A) for healthy donor anti-CD3/CD28-stimulated Th17.1 cells exposed
to MP+D3 with and without E2 or P4 as determined by flow cytometry (n = 8). Percentages are relative to their appropriate vehicle control. (C) Amount (pg/ml) of
IFN-g, GM-CSF, TNF-a, LT, granzyme B, and IL-10 measured in the supernatants of healthy donor anti-CD3/CD28-stimulated Th17.1 cells exposed to MP with and
without D3 as determined by Luminex (n = 8 per group). (D) Amount (pg/ml) of IFN-g, GM-CSF, TNF-a, LT, granzyme B, and IL-10 measured in the supernatants of
healthy donor anti-CD3/CD28-stimulated Th17.1 cells exposed to MP+D3 with and without E2 or P4 as determined by Luminex (n = 8 per group). (E) CCR6,
CXCR3 and VLA-4 surface expression on healthy donor anti-CD3/CD28-stimulated Th17.1 cells exposed to MP with and without D3 as determined by flow
cytometry (n = 8). Percentages are relative to their appropriate vehicle control. (F) The same parameters (as in E) for healthy donor anti-CD3/CD28-stimulated Th17.1
cells exposed to MP+D3 with and without E2 or P4 as determined by flow cytometry (n = 8). Percentages are relative to their appropriate vehicle control. Data were
compared using either Wilcoxon rank-sum or (D) Friedman tests with the false discovery rate of Benjamini, Krieger and Yekutieli correction. *p < 0.05 and **p < 0.01.
“D3 = 1,25(OH)2D3”, “E2, Estradiol”; “MFI, median fluorescence intensity”; “MP, methylprednisolone” and “P4, progesterone”.
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DISCUSSION

Synthetic glucocorticoids are often used to shorten clinical symptoms
in chronic inflammatory diseases, including MS (2). However, a
proportion of MS patients develop glucocorticoid resistance during
disease progression (8), long term prognosis and recovery are not
affected, and usage of this drug associates with putative side effects (6).
Further improvement of glucocorticoid responses could therefore be
of benefit in these patients, which makes it crucial to understand and
modulate the underlyingmechanism of resistance in immune subsets.
Previously, we identified that Th17.1 cells are refractory to
glucocorticoids, corresponding to their pro-inflammatory capacity
and selective recruitment to the CNS of MS patients (12). In this
study, we provide evidence that Th17.1 cells can be sensitized to MP
using 1,25(OH)2D3 in a process that is further potentiated by the
addition of P4.

We found that 1,25(OH)2D3 treatment decreased MDR1 gene
(ABCB1) expression in resting Th17, but not in Th17.1 cells, which
is consistent with a study showing that ABCB1 contains a VDRE in
its promotor region (26). Furthermore, others demonstrated that
1,25(OH)2D3 can suppress IL17A, CSF2 and IFNG levels in CCR6+

Th cells (27). We now demonstrate that such effects are different
between CCR6+ Th subsets, with Th17 cells being more sensitive to
1,25(OH)2D3 than Th17.1 cells. This impaired sensitivity of Th17.1
cells was also reflected by their lower VDR and CYP24A1 levels.
Besides for pro-inflammatory cytokines, the expression of other
known hallmarks for 1,25(OH)2D3 responses such as forkhead box
P3 and apoptosis-associated genes should be assessed to validate
these results (28). Given the fact that Th17.1 and not Th17 cells
preferentially infiltrate the MS brain (12), this makes it tempting to
speculate that the limited success of vitamin D3 in MS clinical trials
(16) is at least partially due to the insensitivity of such immune
subsets to 1,25(OH)2D3.
Frontiers in Immunology | www.frontiersin.org 6
In addition, VDR was upregulated in Th17.1 cells upon
activation, which is in line with earlier findings in T cells (29).
Under these conditions, 1,25(OH)2D3 treatment decreased IFN-g,
GM-CSF, TNF-a, LT and granzyme B excretion as well as MDR1
expression by Th17.1 cells. Together with the association of
activated Th17.1 cells (11, 14) and low circulating 25(OH)D
levels (30) with MS relapses, one can generate a hypothesis in
which there is a therapeutic window of opportunity for vitamin D3

supplementation, also in relation to improving glucocorticoid
responses, in the earliest relapsing phases of MS. As VDR
expression was not different between Th17.1 cells from healthy
controls and natalizumab-treated MS patients it can be expected
that there are no differences in the responses of these cells to 1,25
(OH2)D3 treatment as was shown previously for bulk CD4+ T cells
(25). Nevertheless, MS-specific in vivo differences in vitamin D
responsiveness of Th17.1 cells could be present. We cannot
exclude that VDR expression levels were influenced by
natalizumab. In addition, MS-associated single nucleotide
polymorphisms in both VDR (31) and CYP24A1 (32) genes
have been described, which also affect responses to vitamin D3

supplementation in MS (33). Therefore, these factors should be
accounted for when further addressing this hypothesis.

Cell proliferation and migration are important target
mechanisms of glucocorticoids. Previously, we confirmed that
MDR1high Th17.1 cells are relatively glucocorticoid resistant when
compared to MDR1low Th17 cells in the context of MS (12). After
TCR activation, 1,25(OH)2D3 co-treatment enhancedMP-mediated
suppression of Th17.1 cell proliferation. Although this is likely due
to downregulation of surface MDR1 expression, it is also known
that 1,25(OH)2D3 by itself can limit proliferation of T cells (34).
Interestingly, P4 supplementation further inhibited the proliferation
of Th17.1 cells, which was accompanied by a reduction in CD25
expression. These effects are probably interrelated given the impact
FIGURE 3 | Graphical model of the additive value of 1,25(OH)2D3 and progesterone on methylprednisolone-induced suppression of Th17.1 cells. In contrast to
when Th17.1 are only exposed to MP, treatment with 1,25(OH)2D3 lowers their MDR1 expression and thus increases GR-signaling, thereby providing some or
optimal inhibition of pathogenic markers. Addition of P4 leads provides additional suppression of some pathogenic markers. The exact modulated markers are given
in each subfigure. “1,25(OH)2D3 = calcitriol”, “CFSE”, Carboxyfluorescein Succinimidyl Ester; “MDR1”, multidrug resistance protein 1; “MP”, methylprednisolone”;
“GR, glucocorticoid receptor”; “GZMB”, granzyme B; “P4, progesterone” and “PGR, progesterone receptor” and “VDR, vitamin D receptor”.
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of autocrine IL-2 signaling on T-cell proliferation in relation to MS
(35, 36). 1,25(OH)2D3 also increased the MP-induced suppression
of IFN-g and granzyme B, which was not potentiated by co-
treatment with P4 or E2. MP impaired the expression of CCR6,
VLA-4 and CXCR3 by Th17.1 cells, of which CCR6 and VLA-4
were further reduced after co-treatment with 1,25(OH)2D3. This is
in line with other studies showing that 1,25(OH)2D3 modulates
CCR6 (27) and VLA-4 (37), but not CXCR3 expression (27). P4 co-
supplementation lowered CCR6 levels even more and showed a
reducing effect on CXCR3. This strongly implies that the brain-
homing potential of Th17.1 cells is selectively reduced through
synergy between MP, 1,25(OH)2D3 and P4. Efficient suppression of
such brain-homing markers is warranted to prevent CCR6-,
CXCR3- and- VLA-4-mediated transmigration of pathogenic T
cells across the choroid plexus (38) and the blood-brain barrier (39,
40) respectively. Furthermore, CXCL10 is highly enriched in MS
CSF (41), indicating that additional targeting of CXCR3 could be
crucial to completely suppress the brain-homing capability of
Th17.1 cells. Using cocktails of steroid hormones for this purpose
is further supported by the fact that 1,25(OH)2D3-treated CCR6+

Th cells are still able to migrate towards CXCL10 in vitro (27). Our
results indicate that especially P4 supplementation can increase the
efficiency of MP and 1,25(OH)2D3 co-treatment. Consistently, P4
was found to directly upregulate VDR expression and suppress
human T cells (42, 43). Lastly, it should be assessed whether these
observations are due to direct nuclear receptor-target gene
interaction or due to secondary responses. This would also be of
benefit to exclude to possibility of adverse effects.

Overall, co-supplementation of MP and vitamin D, eventually
further potentiated with P4, may optimize MP responses in MS
patients via the suppression of pathogenic Th17.1 cells. Since
Th17.1 cells are key drivers of MS activity (11, 12, 14), this
optimal suppression may induce not only a swifter but also a
better recovery and more long-term protection in these patients.
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