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The metabolic characteristics of COVID-19 disease are still largely unknown.

Here, 44 patients with COVID-19 (31 mild COVID-19 patients and 13 severe

COVID-19 patients), 42 healthy controls (HC), and 42 patients with

community-acquired pneumonia (CAP), were involved in the study to assess

their serum metabolomic profiles. We used widely targeted metabolomics

based on an ultra-performance liquid chromatography–tandem mass

spectrometry (UPLC-MS/MS). The differentially expressed metabolites in the

plasma of mild and severe COVID-19 patients, CAP patients, and HC subjects

were screened, and the main metabolic pathways involved were analyzed.

Multiple mature machine learning algorithms confirmed that the metabolites

performed excellently in discriminating COVID-19 groups from CAP and HC

subjects, with an area under the curve (AUC) of 1. The specific dysregulation of

AMP, dGMP, sn-glycero-3-phosphocholine, and carnitine was observed in the

severe COVID-19 group. Moreover, random forest analysis suggested that

these metabolites could discriminate between severe COVID-19 patients and

mild COVID-19 patients, with an AUC of 0.921. This study may broaden our

understanding of pathophysiological mechanisms of COVID-19 and may offer

an experimental basis for developing novel treatment strategies against it.
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Introduction

The COVID-19 pandemic remains an ongoing critical

threat. As of January 20, 2022, 336,790,193 confirmed cases

worldwide, including 5,560,718 deaths, have been reported by

the World Health Organization (https://covid19.who.int/).

Although COVID-19 has been effectively controlled in China,

sporadic cases have emerged that counteracted the controlling

efforts. In fact, in a 2021 Nature poll, many prominent experts

expressed their opinion on the future of the SARS-CoV-2 virus,

and nearly 90% believed that it would continue spreading

globally for years to come (1).

Viral infections perturb the host metabolism, and the

outcome depends on the stage of viral infection (2). Using

mass spectrometry-based metabolomics, Shen et al. identified

that the levels of over 100 lipid metabolites were abnormal

during COVID-19 infection (3). The perturbed metabolites were

mainly related to activation of the complement system,

macrophage function, and platelet degranulation. Tiffany

Thomas et al. reported that COVID-19 infection could trigger

changes in host tryptophan metabolic pathways, and this

metabolic reprogramming is also related to inflammation and

immune regulation in vivo (4). However, our knowledge of the

changes of host metabolic pathways after COVID-19 infection

is still very limited. In addition, the mechanism driving

metabolite change during the infection is poorly understood.

Metabolomics is a relatively new method that quantifies

metabolites in a biological sample and explores the occurrence

and development of human diseases (5, 6). Unlike other omics

approaches, it is highly conserved and endogenous, having a

high potential to discover biomarkers. Most metabolomic

studies of COVID-19 were nontargeted, but this method has

certain limitations in identifying metabolites. Therefore, more

advanced and reliable technology for identifying and quantifying

metabolites is paramount to understand the metabolic changes

in patients with COVID-19.

In this study, we first employed a widely targeting

technology based on Metabolon ultra-performance liquid

chromatography–tandem mass spectrometry (UPLC-MS/MS)

to determine the global metabolic profile of patients with

COVID-19. Next, we explored whether the COVID-19

infection can induce disturbances in metabolite abundance in

order to explore its underlying pathophysiology.
Materials and methods

Blood sample collection and clinical data

The study was conducted according to the Declaration of

Helsinki and was approved by the Ethics Committee of the First
Frontiers in Immunology 02
Affiliated Hospital of Zhejiang University School of Medicine,

China. All patients and healthy volunteers signed the informed

consent, and their fasting blood samples were collected in the

morning hours. The diagnosis of CAP was based on the physical

examination, clinical manifestations, and chest X-ray changes.

All patients enrolled in present study were initial diagnosed, and

blood sampling were performed before any intervention. A

disposable EDTA-anticoagulated vacuum blood collection tube

was used to store 5 ml of the freshly drawn peripheral blood.

Plasma was separated and stored as aliquots at −80°C and

clinical information was recorded (Table 1). The samples were

further processed in a biosafety level 2 laboratory qualified for

SARS-CoV-2 testing following the Laboratory Biosafety

Guidelines for COVID-19 (2nd edition) issued by the National

Health Commission of China. Plasma samples of 44 patients

with COVID-19 (31 mild COVID-19 patients and 13 severe

patients), 42 healthy volunteers, and 42 patients with

community-acquired pneumonia (CAP) were collected. In

addition, clinical information was recorded, and the sample

information for all patients and healthy volunteers are

presented in Table 1.
Full-spectrum metabolic identification
and data acquisition

The plasma metabolites were determined using UPLC-MS/

MS (ExionLC AD coupled to a QTRAP spectrometer) (https://

sciex.com.cn/). The liquid-phase conditions were as follows: (1)

chromatographic separation using Waters Acquity UPLC HSS

T3 column (1.8 µm particle size, 100 mm × 2.1 mm; (2) analyte

elution on a mobile phase with ultrapure water (0.1% formic

acid) for phase A and acetonitrile (0.1% formic acid) for phase B;

(3) elution gradients were water/acetonitrile (95:5 V/V) at 0 min,

10:90 V/V at 11.0 min, 10:90 V/V at 12.0 min, 95:5 V/V at

12.1 min, and 95:5 V/V at 14.0 min; (4) the flow rate was 0.4

ml/min, the column temperature was 40°C, and the injection

volume was 2 ml. The MS/MS conditions were as follows: 500°C,

electrospray ionization; 5500 V (positive) and −4500 V

(negative); 55 psi, ion gas source I; 60 psi, gas source II; 25 psi,

curtain gas; and high collision-activated dissociation parameters.

The ions were scanned and detected according to an optimized

decluttering potential and collision energy. They were subjected

to qualitative determination based on the retention time,

daughter–parent ion pair information, and secondary spectral

data of the detected substances using the MetWare database

(http://www.metware.cn/). The analytes were quantified using

the QTRAPmultiple-reaction monitoring mode. After collecting

data for different samples, the area under the peak was scored

separately for the chromatographic peaks of the extracted ions of

all metabolites. Finally, score correction for the chromatographic

peaks of the same metabolite in different specimens followed.
frontiersin.org

https://covid19.who.int/
https://sciex.com.cn/
https://sciex.com.cn/
http://www.metware.cn/
https://doi.org/10.3389/fimmu.2022.894170
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.894170
Quality control analysis

Quality control (QC) samples were prepared from the extract

mixture of all tested samples and analyzed under the same

conditions to monitor the reproducibility of the test. In the

process of sample testing, the QC samples were analyzed once

every 10 samples to ensure the stability of the analytical process. The

repeatability of metabolite extraction and detection can be

determined by overlapping analysis for the total ion current

(TIC) of mass spectrometry detection of different QC samples.

The results showed that the curve overlap of metabolites TIC is

high, which means that the retention time and peak intensity were

consistent, indicating that the signal stability of mass spectrometry

was good when detecting the same sample at different times

(Supplementary Figures 1A, B). Pearson analysis was performed

to evaluate the correlation between biological replicate samples.

Pearson’s correlation coefficient (r2) was used as the evaluation

index of correlation (Supplementary Figure 1C). PCA is a standard

unsupervised pattern recognition algorithm, which is mostly used to

identify the dominant signals in multi-dimensional data. In this

study, PCA was used to examine the overall differences in metabolic

profiles among the groups and the variability within groups. The

result indicated that the metabolic profiles in each group were

clearly clustered and obviously separated, and strong clustering

within QC samples (MIX) (Supplementary Figure 1D).
Differential metabolite
enrichment analysis

The metabolite data were analyzed with different univariate

and multivariate analyses to identify differentially expressed

metabolites. Principal component analysis (PCA) and

orthogonal partial least squares-discriminant analysis (OPLS-

DA) was performed in R (v. 4.1.1) and used to reduce data

dimensionality and verify the separation trends between groups.

OPLS-DA combines orthogonal signal correction (OSC) and

partial least squares-discriminant analysis (PLS-DA) method. In

this study, OPLS-DA was performed to decompose the X matrix

information (metabolic profile) into Y (groups) correlation and

irrelevance by OSC and PLS-DA, thereby screen differential
Frontiers in Immunology 03
metabolites by removing unrelated differences. The relative

contents of the differentially expressed metabolites were

normalized and centralized, and K-mean clustering (K-means)

analysis was performed to investigate the changing trends of the

relative metabolite contents in different samples. The OPLS-DA

results yielded variable importance in projection (VIP) for each

metabolite, and only those with VIP ≥ 1 were selected. The

permutation test was used to evaluate the OPLS-DA model. In

addition, metabolites with fold change ≥ 1.5 or ≤ 0.6 were

identified as significantly differentially expressed. Their

potential functions were investigated using the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis. MetaboAnalyst database (https://www.

metaboanalyst.ca/) was used to perform the metabolic set

enrichment analysis (MSEA).
Supervised analysis of
differential metabolites

The least absolute shrinkage and selection operator (LASSO)

regression model and random forest algorithms were used to

screen the candidate biomarkers for diagnosing COVID-19

(7, 8). The fivefold cross-validation was applied to assess the

power of prognostic classifiers. Briefly, the differential metabolite

profiles were first log2 transformed, and the whole cohort was

randomly classified into five equal portions. Subsequently, the

least absolute shrinkage was used to screen feature selection on

four-fifths of the cohort, while the remaining fifth was applied

for prediction. In addition, the receiver operating characteristic

(ROC) curves were plotted to assess the predictive ability of all

five iterations.
Statistical analysis

Experimental data are presented as mean ± standard

deviation, and P < 0.05 was considered significant. Continuous

parametric variables in the three groups were tested by the

analysis of variance, while continuous nonparametric variables

were tested using the Kruskal test. Qualitative data analysis was
TABLE 1 The baseline clinical information of both groups.

Characteristic Mild
COVID-19

Severe
COVID-19

Healthy controls Community-acquired
pneumonia

p-value
(Mild vs Severe COVID-19)

n 31 13 42 42

Sex, n (%) 1.000

Female 15 (48.4%) 6 (46.2%) 20 (47.6%) 20 (47.6%)

Male 16 (51.6%) 7 (53.8%) 22 (52.4%) 22 (52.4%)

Age, median
(IQR)

41 (35.5, 49) 52 (35, 55) 50 (35, 57) 46 (37.75, 55) 0.086
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performed using the chi-square test. The above analyses were

performed in R version 4.1.1 (R Foundation for Statistical

Computing, Vienna, Austria).
Results

Identification of differentially
expressed metabolites

More than 600 metabolites from 128 samples were identified

using a widely targeted metabolomics approach based on the

UPLC-MS/MS platform and the MetWare database. They

belonged to various classes of organic molecules, including

amino acids and their metabolites, bile acids, nucleotides

and their metabolites, glycerophospholipids, fatty acyls, oxidized

lipids, and organic acids and their derivatives. The unsupervised

PCAwas used to analyze the correlations between healthy controls

and COVID-19 patients. The score of three-dimension PCA (3D-

PCA) indicated that the metabolites could distinguish between

COVID-19 patients and the healthy controls (Figure 1A),

suggesting high data quality. In addition, the OPLS-DA analysis

confirmed a clear tendency towards separating healthy controls
Frontiers in Immunology 04
from COVID-19 patients (Figure 1B). The OPLS-DA model was

evaluated using 200 randomized permutations (Q2 = 0.894,

p<0.005, R2Y=0.962, p<0.005) and the results showed that

OPLS-DA exhibited the optimal discriminatory ability

(Supplementary Figure 2A). Unlike healthy controls, COVID-

19 patients had 125 differentially expressed metabolites (56

upregulated and 69 downregulated) in the plasma (Figure 1C).

Among the top 20 differentially expressed metabolites between the

COVID-19 group and the control group (Figures 1D, E), N6-

methyladenosine, 3-methylsalicylic acid, 2′-O-methyladenosine,

2-(a-D-mannosyl)-3-phosphate glyceride, dGMP, AMP, and 3′-
Adenylic acid were most notable.

In agreement, the scores of 3D-PCA and OPLS-DA also

suggested a clear separation between COVID-19 patients and

CAP patients (Figures 2A, B). The permutation test (Q2 = 0.945,

p<0.005; R2Y=0.977, p<0.005) also indicated that the OPLS-DA

model had the best discrimination effect (Supplementary Figure

2B). The COVID-19 patients had 134 differentially expressed

metabolites (99 downregulated and 35 upregulated) in the

plasma (Figure 2C). Of these, N6-methyladenosine, 2′-
deoxyinosine, and cis-11,14,17-eicosatrienoic acid (C20:3) were

most significantly differentially expressed between the two

groups (Figures 2D, E).
B C

D E

A

FIGURE 1

Identification of differentially expressed metabolites between COVID-19 patients and healthy controls. (A) Score plots of three-dimension
principal component analysis (3D-PCA) discriminating between the metabolic profiles of healthy controls (HC) and COVID-19 patients (CP).
(B) Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plot of HC and CP. (C) Volcanic map of differentially expressed
metabolites between HC and CP. Red dots represent upregulated metabolites, gray dots represent unchanged metabolites, and green dots
represent downregulated metabolites. (D) The top 20 differentially expressed metabolites ranked by the value importance plot (VIP). (E) The top
20 differentially expressed metabolites ranked by the log2 fold change (Log2 FC).
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Metabolic pathway enrichment analysis
of differential metabolites

Pathway enrichment analysis was performed using the

KEGG database to elucidate the role of the differentially

expressed metabolites in the progression of COVID-19. The

KEGG annotation results for the COVID-19 group and the

control groups were classified according to the pathway type and

divided into 4 categories: organismal systems, metabolism,

human diseases, and environmental information processing

(Figure 3A and Table S1). The metabolites expressed only in

COVID-19 patients were mainly involved in biliary secretion,

ferroptosis, purine, glycerophospholipid, and arachidonic acid

metabolism pathways (Figure 3B and Table S2). To further

explore the pathway differences between the COVID-19 group

and the control group, MSEA was carried out. It revealed several

significantly different pathways such as, taurine and hypotaurine

metabolism, primary bile acid biosynthesis, drug metabolism-

other enzymes, and phenylalanine metabolism (Figure 3C and

Table S3).

For the differential metabolites between the COVID-19

group and the CAP group, the KEGG pathways belonged to

the same categories identified in the COVID-19 group and the

control group (Figure 4A and Table S4). The enriched pathways
Frontiers in Immunology 05
were mainly associated with ferroptosis, purine, caffeine, and

arachidonic acid metabolism (Figure 4B and Table S5).

Moreover, MSEA uncovered differences in KEGG pathways

between the two patient groups: primary bile acid biosynthesis,

lysine degradation beta-alanine, histidine, taurine, and

hypotaurine metabolism (Figure 4C and Table S6).
K-means analysis of differentially
expressed metabolites

K-means analysis was performed to determine the variation

trend of differential metabolites across the different groups. It

revealed significant changing trends divided into six subclasses

(Figure 5A). Among them, subclass 2, 5, and 6 were in line with

expectations, which exhibited increasing or decreasing trends

from the HC group to the CAP group to the COVID-19 group.

Subsequently, KEGG analysis was performed and showed that

the 24 metabolites from subclass 2 were significantly enriched in

the phospholipase D and cAMP signaling pathways and

porphyrin and chlorophyll metabolism (Figure 5B and Table

S7). The 15 metabolites from subclass 5 were involved in

metabolic pathways and fatty acid biosynthesis (Figure 5C

and Table S8). Finally, the 65 metabolites from subclass 6
B C

D E

A

FIGURE 2

Identification of differentially expressed metabolites between COVID-19 patients and community-acquired pneumonia. (A) Score plots of three-
dimension principal component analysis (3D-PCA) discriminating between the metabolic profiles of community-acquired pneumonia (CAP) and
COVID-19 patients (CP). (B) Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plot of CAP and CP. (C) Volcanic map of
differentially expressed metabolites between CAP and CP. Red dots represent upregulated metabolites, gray dots represent unchanged
metabolites, and green dots represent downregulated metabolites. (D) The top 20 differentially expressed metabolites ranked by the value
importance plot (VIP). (E) The top 20 differentially expressed metabolites ranked by the log2 fold change (Log2 FC).
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were associated with arachidonic acid and purine metabolism,

taurine and hypotaurine metabolism, serotonergic synapse, and

primary bile acid biosynthesis (Figure 5D and Table S9).
Biomarker panel for identifying COVID-
19 and its model evaluation

Venn diagrams of mild and severe COVID-19 groups were

plotted to characterize the metabolic profile of COVID-19

patients. They showed that the two groups had 92 shared

differentially expressed metabolites (Figure 6A). These

metabolites were enriched with ferroptosis, arachidonic

acid metabolism, bile secretion, purine metabolism, and

platelet activation KEGG pathways (Figure 6B and Table

S10). Furthermore, MESA indicated that the purine

metabolism, primary bile acid biosynthesis, taurine and

hypotaurine metabolism, and cysteine and methionine

metabolism pathways were significantly differentially expressed

between the two groups (Figure 6C and Table S11). Pearson

correlation analysis also revealed a weak correlation between the

metabolites (Figure 6D). Detailed metabolic information and

classification are listed in Table S12.
Frontiers in Immunology 06
A rigorous machine-learning method was used to explore the

predictive value of the differentially expressed metabolites in

identifying COVID-19. First, we applied LASSO regression to

screen for biomarker metabolites of COVID-19. Seven and

fifteen metabolites were identified to discriminate the COVID-19

patients from CAP patients and HC, respectively (Supplementary

Figures 3A, B). Next, random forest and logistic regression

algorithms were used to assess their performance via fivefold

cross-validation. The ROC analysis showed that the diagnostic

model combining seven metabolites performed outstandingly in

distinguishing COVID-19 from CAP patients, with an area under

the curve (AUC) equaling 1 (Figure 6E). In addition, they also

performed well in discriminating the COVID-19 group from the

control group, with an AUC close to 1 (Figure 6F).
Metabolic profile of severe
COVID-19 patients

We also performed a differential metabolic analysis of the

severe and mild COVID-19 groups to determine the metabolic

profile of severe COVID-19. The plotted Venn diagrams of the

three groups showed that 21 metabolites were expressed only in
B

C

A

FIGURE 3

Pathway enrichment analysis of differentially expressed metabolites between COVID-19 patients and healthy controls. (A) Kyoto Encyclopedia of
Genes and Genomes (KEGG) classification of differentially expressed metabolites between healthy controls (HC) and COVID-19 patients (CP).
(B) KEGG pathway enrichment analysis of differentially expressed metabolites. (C) Metabolite Set Enrichment Analysis (MSEA) between HC and CP.
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severe COVID-19 patients (Figure 7A). KEGG pathways were

mainly classified into organismal systems, metabolism, human

diseases, and environmental information processing (Figure 7B

and Table S13). The enrichment analysis of the differential

metabolites revealed they were enriched with purine

metabolism, PI3K–Akt signaling, mTOR signaling, and renin

secretion pathways (Figure 7C and Table S14). MSEA also

indicated differentially expressed pathways between the groups

(Figure 7D and Table S15): taurine and hypotaurine

metabolism, primary bile acid biosynthesis, beta-alanine

metabolism, histidine metabolism, and retinol metabolism.

Subsequently, the differential analysis showed that AMP, dGMP,

and sn-glycero-3-phosphocholine were remarkably upregulated in

severe COVID-19 patients. By contrast, several carnitine family

members were considerably downregulated versus HC subjects,

CAP patients, and mild COVID-19 patients (Figure 8A). Pearson

correlation analysis also uncovered a clear clustering trend among the

differentially expressed metabolites. Since a strong correlation existed

among the carnitine family members (Figure 8B), we applied a

random forest algorithm to screen for severe COVID-19 biomarkers

(Figure 8C). Next, the relative importance of each metabolite was

ranked, and the top 10 metabolites (Carnitine C11: DC, Carnitine

C6:0 Isomer 1, Carnitine C16:3, Carnitine C14:2, Carnitine C14:2-

OH, Carnitine C8-OH, Carnitine C14:1, Carnitine C12-OH,

Carnitine C12:1, and Carnitine C14-OH) were selected to construct
Frontiers in Immunology 07
a diagnostic model for distinguishing between severe COVID-19

patients and mild COVID-19 patients. ROC plots demonstrated that

the AUC was 0.921 (0.841–1.000), indicating a relatively high

specificity (Figure 8D).
Discussion

In 2020, the COVID-19 pandemic swept the globe with

grave effects on human health and the social economy. Since

then, governments worldwide have invested in a vast workforce

and material resources to improve epidemic prevention

measures and prevent the disease (9). Along with the extensive

application of vaccines, its spread has been controlled to some

extent (10). However, the daily number of new COVID-19

infections remains high, with more than 1 million new

infections. Dr. Gregory Poland, head of the Vaccine Research

Group at Mayo Clinic, predicted that the disease will continue

spreading well into the next century. In addition, efficient,

targeted treatments for COVID-19 infection are still lacking

(11). Thus, identifying the changes of metabolic molecules and

pathways during the viral infection is crucial for improving

disease management and accelerating drug development.

Currently, untargeted and targeted metabolomics have been

used to reveal the variation of acylcarnitines, fatty acid,
B

C

A

FIGURE 4

Pathway enrichment analysis of differentially expressed metabolites between COVID-19 patients and community-acquired pneumonia.
(A) Kyoto Encyclopedia of Genes and Genomes (KEGG) classification of differentially expressed metabolites between community-acquired
pneumonia (CAP) and COVID-19 patients (CP). (B) KEGG pathway enrichment analysis of differentially expressed metabolites. (C) Metabolite Set
Enrichment Analysis (MSEA) between CAP and CP.
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triglycerides, and sphingomyelins in COVID-19 patients (12–

15). In this study, we also found aberrant expression of amino

acid, oxidized lipids, fatty acid, and carnitine in COVID-19

patients. Furthermore, arachidonic acid was identified to be

significantly increased in COVID-19 patients, compared to

HC. The imbalance of arachidonic acid has been confirmed to

be associated with multiple inflammatory pathways (16–18).

Multiple studies have indicated that arachidonic acid was related

to the infection of the COVID-19 and inflammatory cytokine

storm (19, 20). Thus, arachidonic acid deserves further

investigation and may be a promising target for COVID-19

therapy. Metabolites exhibited great potential as biomarkers for

diagnosing COVID-19. Yamilé López-Hernández et al.

identified 3 metabolites combinations that can discriminate

between COVID-19 patients and HC, with an AUC of 0.947

(21). Song JW et al. proposed ten metabolites that could

distinguish between COVID-19 patients and HC (AUC=0.975)

(22). Similarly, Barberis E et al. also revealed the diagnostic value

of multiple metabolites with an AUC>0.900 for each model (12).

In the present study, seven metabolites were identified based on

multiple established machine learning, which can distinguish

between COVID-19 patients and CAP patients with an AUC

of 1.
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In this study, 92 metabolites were specific to COVID-19

patients and included amino acids and their metabolites, fatty

acyls, nucleotides and their metabolites, organic acids and their

derivatives, and oxidized lipids. Atila, Alptug et al. first described

the serum amino acid profile and reported dysregulation of

amino acid metabolism in COVID-19 patients (23). Amino

acids are precursors of many vital molecules and play a key

role in immune cell function (24). Abnormal amino acid

metabolism causes neurological symptoms and multiorgan

failure. For instance, we know that even mild COVID-19

patients have a certain degree of neurological sequelae after

recovering from the infection. Conversely, severe patients with

COVID-19 may develop severe multiple organ failure during

hospitalization and eventually die. Philips, Paez-Franco, and

Rees et al. also studied the role of amino acid metabolism in

the progression of COVID-19 infection (25–27). They

discovered that the differentially expressed metabolites

between the patients and HC were enriched with taurine and

hypotaurine metabolic pathways. Taurine has a relatively high

abundance in leucocytes and is associated with the inflammatory

response (28). Therefore, we speculated that an overactive

taurine pathway can drive the excessive immune response in

COVID-19 patients. Because amino acids are required for viral
B

C D

A

FIGURE 5

K-mean clustering analysis and pathway enrichment analysis. (A) K-means clustering analysis of differentially expressed metabolites across different
groups. (B) KEGG enrichment analysis of metabolites in subcluster 2. (C) KEGG enrichment analysis of metabolites in subcluster 5.
(D) KEGG enrichment analysis of metabolites in subcluster 6. HC, healthy control; CAP, community-acquired pneumonia; CP, COVID-19 patients.
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replication and virulence, we also proposed amino acid pathways

as promising targets for drug development.

The pathway enrichment analysis revealed significantly

enriched ferroptosis and energy metabolism pathways in

patients with COVID-19. Indeed, the serum of patients with

COVID-19 showed an iron imbalance (29). Studies have shown

that COVID-19 infection will attack hemoglobin, which is also

an important pathogenesis step of COVID-19 (30). This will

result in dissociation of the porphyrins from iron and releasing

iron from stores into the circulation, causing iron overload and

ferritin elevation (31). Bellmann-Weiler R et al. also reported

that 88.2% of 259 hospitalized COVID-19 patients had an

abnormal iron homeostasis, and 68.8% of anemic patients
Frontiers in Immunology 09
developed anemia of inflammation (32). Anemia and iron

metabolism disorder were significantly associated with

increased ICU admission and hospital mortality. Phua, Jason

et al. found that serum ferritin levels were significantly elevated

in patients with severe COVID-19 compared with mild COVID-

19 (33). Furthermore, cellular assays indicated that COVID-19

can decrease the mRNA levels of glutathione peroxidase 4 (34).

Most patients with severe COVID-19 disease present with

multiorgan damage and failure, and lungs, liver, and kidneys

are most affected (35). Ferroptosis is an iron-dependent type of

programmed cell death involved in the pathogenesis of various

body systems, including the heart, liver, kidney, lung, and

intestine (36). Severe organ failure in COVID-19 patients
B C

D E

F

A

FIGURE 6

Predictive value of differentially expressed metabolites in predicting COVID-19 patients. (A) Venn diagram showing differentially expressed
metabolites between two groups: healthy controls (HC) vs. COVID-19 patients (CP) and community-acquired pneumonia (CAP) vs. CP.
(B) KEGG enrichment analysis of common differentially expressed metabolites. (C) Metabolite Set Enrichment Analysis (MSEA) of common
differentially expressed metabolites. (D) Pearson correlation of 92 differentially metabolites between the two groups. Only the index of
metabolites in the database is shown, and detailed metabolic information and classification are listed in Table S12. (E) Receiver operating
characteristic (ROC) curves of the two classifiers based on cross-validation in distinguishing COVID-19 patients (CP) from community-acquired
pneumonia (CAP). (F) The ROC of the two classifiers based on the cross-validation in distinguishing CP from healthy controls (HC). LR, logistic
regression; RF, random forest.
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typically starts approximately 14 days post-infection (32). Thus,

it coincides with the onset of ferroptosis (37). Metabolomics

exhibits robust performance in early diagnosing diseases and

monitoring progression. In the present study, we employed

multiple well-established machine learning to validate the

performance of differential metabolites in diagnosing COVID-

19 infection, with an AUC of 1. Therefore, our results suggested

that research efforts should focus more on metabolic signatures

of the disease.

Twenty-one metabolites were identified only in severe

COVID-19 patients. Among them, nucleotides and their

metabolites, including AMP and dGMP, and sn-glycero-3-

phosphocholine were upregulated. In agreement, KEGG

analysis demonstrated that purine metabolism pathways were

enriched in the severe COVID-19 group. Purine metabolism

disorders are responsible for several metabolic diseases. A

central component of ATP is AMP, which further hydrolyzes

to adenosine. Kondo, Yutaka et al. reported that AMP

stimulation can rapidly slow down mitochondrial respiration

in mouse and human neurons, thereby reducing dependence on
Frontiers in Immunology 10
oxygen under a hypo-metabolic state and protecting the brain

and other organs from further damage (38). Furthermore, in

patients with severe COVID-19, dyspnea and hypoxemia are

common symptoms (39). These findings suggested that the

AMP increase in severe COVID-19 patients is a self-protection

mechanism against hypoxia. It is also worth noting significantly

reduced carnitine levels in severe COVID-19 patients. Carnitine

is a vitamin-like compound that plays an important role in fatty

acid metabolism in granules (40). It is mainly biosynthesized in

the kidney, liver, and brain and primarily stored in the skeletal

muscle and heart (41). Maintaining carnitine balance is

extremely important for regulating and sustaining normal

physiological functions, including antioxidant, anti-apoptotic,

anti-inflammatory, biomembrane-stabilizing, and anti-fibrosis

(40). Low carnitine is associated with multiple diseases, such as

advanced liver cirrhosis and cerebral hemorrhage (42). Since

patients with severe COVID-19 usually exhibit metabolic

disorders and multiple organ dysfunctions, the decrease of

serum carnitine in the severe patients may be related to organ

dysfunction (43). Furthermore, random forest analysis showed
B

C D

A

FIGURE 7

Identification of metabolites specific to severe COVID-19 patients. (A) Venn diagram showing differentially expressed metabolites between three
groups: healthy controls (HC) vs. COVID-19 patients (CP), community-acquired pneumonia (CAP) vs. CP, and mild COVID-19 (MC) patients vs.
severe COVID-19 (SC). (B) KEGG classification of common differentially expressed metabolites. KEGG enrichment pathway analysis (C) and
Metabolite Set Enrichment Analysis (MSEA) (D) of 21 common differentially expressed metabolites.
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that AMP and carnitine have excellent performance in

distinguishing between severe COVID-19 patients and mild

COVID-19 patients. These results suggest that understanding

the metabolic changes of AMP and carnitine during COVID-19

may advance monitoring disease progression.

However, a few limitations still remain to be noticed in this

study. Due to the small number of patients with COVID-19

enrolled in the present study, the diagnostic efficacy of

metabolites needs to be further evaluated. Therefore, the

results still need further validation in larger prospective

cohorts of COVID-19.

Taken together, the present study systematically delineated

the serum metabolic profiles in HC subjects, patients with

COVID-19, and CAP patients. We demonstrated that the

serum metabolites may have a strong potential in identifying

COVID-19 patients, especially those with severe disease. This
Frontiers in Immunology 11
study may provide new insights into COVID-19 diagnosis

and treatment.
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SUPPLEMENTARY FIGURE 1

Sample quality control analysis. The overlapped total ion current (TIC)
chromatograms of the quality control sample in the positive (A) and

negative (B) modes. (C). Correlation between replicates was assessed
using a Pearson correlation test. D. Principal component analysis shows

all samples distribution. HC: healthy control, CAP: community-acquired
pneumonia, CP: COVID-19 patients, mix represents quality

control sample.

SUPPLEMENTARY FIGURE 2

The validation of OPLS-DA model. (A). The OPLS-DA model for healthy
control and COVID-19 patients was validated using permutation test (200

times). 9B). The OPLS-DA model for community-acquired pneumonia
(CAP) patients and COVID-19 patients was validated using permutation

test (200 times).

SUPPLEMENTARY FIGURE 3

LASSO regression analysis. LASSO regression analysis was applied to
screen featured metabolites between the COVID-19, community-

acquired pneumonia (A) and healthy control groups (B).
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