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A growing number of studies have shown that gd T cells play a pivotal role in mediating the
clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and
unique immune-modulating functions. Unlike the more abundant ab T cells, gd T cells can
recognize a broad range of tumors and infected cells without the requirement of antigen
presentation via major histocompatibility complex (MHC) molecules. Our group has
recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent
activation of Vg9Vd2+ T cells by tumors following the presentation of phosphoantigens,
intermediates of the mevalonate pathway. This process is mediated through the B7
immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such
recognition results in activation, a robust immunosurveillance process, and elicits rapid gd
T-cell immune responses. These include targeted cell killing, and the ability to produce
copious quantities of cytokines and chemokines to exert immune-modulating properties
and to interact with other immune cells. This immune cell network includes ab T cells, B
cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence
heavily influencing the outcome of immune responses. This key role in orchestrating
immune cells and their natural tropism for tumor microenvironment makes gd T cells an
attractive target for cancer immunotherapy. Here, we review the current understanding of
these important interactions and highlight the implications of the crosstalk between gd T
cells and other immune cells in the context of anti-tumor immunity.
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INTRODUCTION

For the past 37 years, since the first isolation of the TCR g gene segment (1, 2), the knowledge
accumulated about the gd T-cell lineage has grown exponentially and received strong clinical
interest, especially for cancer immunotherapy development (3–15). Similar to the other two lineages
of lymphocytes in the jawed vertebrates that utilize somatically recombined receptors for
immunosurveillance (B cells and ab T cells) (16), TCR heterodimers of gd T cells are generated
through somatic rearrangements of genes encoding for TCR d chain variable (V), diversity (D),
joining (J), and constant (C) gene segments, and TCR g chain V, J, and C gene segments at the
thymus (17, 18). Hypothetically, such diverse gene rearrangements can result in a total of 1017
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possible distinct gd TCRs (19). Despite the diverse theoretical gd
TCR repertoire, human gd T cells can be classified into two major
subsets according to their TCR Vd chain usage: Vd2+

populations that are usually paired with Vg9 chain, and Vd2−

populations with diversified Vg chain usage (6, 20). Among all 8
TCR Vd gene segments, Vd1, Vd2, and Vd3 are three commonly
used segments for d chain rearrangement (21, 22).

Vg9Vd2+ T cells are the most abundant Vd cell population
found in peripheral blood and are activated by phosphorylated
non-protein metabolites called phosphoantigens via the
BTN2A1/BTN3A1 complexes in a TCR-dependent manner (3,
11, 23, 24). Phosphoantigens are derived from the mevalonate
pathway as an intermediate metabolite known as isopentenyl
pyrophosphate (IPP) (25), or are generated in the microbial non-
mevalonate isoprenoid synthesis pathway as (E)-4-hydroxy-3-
methyl-but-2-enyl-pyrophosphate (HMBPP) (26). Following
phosphoantigen binding to the intracellular B30.2 domains of
BTN3A1 in tumor or pathogen-infected cells (27), BTN3A1
undergoes a conformational change (28–30) and promotes the
interaction between BTN2A1 and BTN3A1 intracellular
Frontiers in Immunology | www.frontiersin.org 2
domains (31). Subsequently, the germline-encoded regions of
the TCR Vg9 chain directly bind to BTN2A1 on tumor cells (3,
32, 33), as described by us and confirmed later by others (34–36).
An additional but yet to be identified ligand is likely to bind to a
separate region within the complementarity-determining region
2d (CDR2d ) and CDR3g of the Vg9Vd2 TCR for
phosphoantigen-mediated Vg9Vd2+ T-cell activation (3, 33). In
concert with BTN2A1, the phosphoantigen-induced
conformational change of BTN3A1 then leads to Vg9Vd2+ T-
cell activation (31, 33–36) (Figure 1). Accordingly, dysregulation
of the mevalonate pathway in tumors was shown to cause
activation of Vg9Vd2+ T cells via IPP accumulation (37) and
induced gd T-cell chemotaxis toward tumor cells (38, 39).
Activated Vg9Vd2+ T cells are capable of inducing cytotoxicity
via secretion of Th1 cytokines such as tumor necrosis factor-a
(TNF-a) and interferon-g (IFN-g), pro-apoptotic protease
granzyme B, and cytolytic granules containing pore-forming
perforin molecules (40–44). Therefore, many clinical studies
used aminobisphosphonates (e .g . , zoledronate and
pamidronate) to inhibit farnesyl pyrophosphate synthase in the
FIGURE 1 | Schematic representation of TCR-dependent and phosphoantigen-mediated recognition of tumor cells by Vg9Vd2+ T cells and the acquisition of
professional APC function by activated Vg9Vd2+ T cells to cross-present TAAs to antigen-specific CD4+ and CD8+ ab T cells. During the Vg9Vd2+ T-cell activation
process, accumulated phosphoantigens in tumor cells bind to the intracellular B30.2 domain of BTN3A1. Following phosphoantigen binding, BTN3A1 undergoes
conformational changes and induces the interaction between the intracellular domains of BTN2A1 and BTN3A1. BTN2A1 directly binds the TCR Vg9 chain and leads
to T-cell activation in concert with at least one additional ligand. Activated Vg9Vd2+ T cells can recognize antibody-opsonized tumor cell via CD16 (FcgRIII) and are
licensed to acquire professional APC function via trogocytosis, phagocytosis, and pinocytosis and cross-present antigens from tumor cells to antigen-specific CD4+

and CD8+ ab T cells.
July 2022 | Volume 13 | Article 894315

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chan et al. Crosstalk Between gd T Cells and Other Immune Cells
mevalonate pathway to promote accumulation of IPP in cells, or
synthetic phosphoantigen analogues such as bromohydrin
pyrophosphate (BrHPP) and 2-methyl-3-butenyl-1-
pyrophosphate (2M3B1PP), to activate Vg9Vd2+ T cells in
cancer patients (19, 45–47). In recent years, however, agonist
antibodies against BTN3A such as clone 20.1 (48–51), CTX-2026
(52), and ICT-01 (53) have been explored as a phosphoantigen-
independent approach to activate Vg9Vd2+ T cells for targeted
cell killing. Moreover, Vg9Vd2+ T cells can be activated by other
ligands including human MutS homolog 2, stress-induced MHC
class I chain-related antigens A and B (MICA/MICB), UL16-
binding proteins (ULBPs), nectin-like-5, staphylococcal
enterotoxins (SEs), toxic shock syndrome toxin 1 (TSST-1),
and F1-ATPase-apolipoprotein-AI through surface receptors,
natural killer group 2D (NKG2D), and DNAX accessory
molecule-1 (DNAM-1) (12, 13, 17, 19, 54, 55). Other than
Frontiers in Immunology | www.frontiersin.org 3
direct targeted cell killing, activated Vg9Vd2+ T cells have been
implicated to directly or indirectly interact with a range of
immune cells: ab T cells (56–63), B cells (64–72), natural killer
(NK) cells (73–75), monocytes (76–78), macrophages (79–82),
neutrophils (78, 83–86), monocyte-derived dendritic cells
(moDCs) (87–93), and DCs (72, 76, 94–96), and influence the
outcome of the immune responses. The underlying mechanisms
of such gd T-cell crosstalk with other immune cells are
summarized in Table 1 and will be thoroughly discussed in the
following sections.

The non-Vd2 gd T cells are mostly identified with Vd1+ or
Vd3+ TCR chain usage and are localized in the skin, large intestine,
spleen, and liver (6, 12, 54). Several studies have shown that Vd1+

gd T cells recognize CD1c-phosphomycoketide (110), CD1d-a-
GalCer (111), CD1d-sulfatide (112, 113), R-phycoerythrin (PE)
(114), ephrin receptor A2 (EphA2) (115), and MHC-related
TABLE 1 | Summary of distinct gd T-cell subset interactions with other immune cells.

gd T-
cell
subset

Crosstalk target Comments References

Pan-gd CD4+ and CD8+

ab T cells
Activated gd T cells were capable of professional phagocytosis to mediate presentation of antigens to CD4+ and CD8+ ab
T cells

(62, 97, 98)

CD4+ and CD8+

ab T cells; CD4+

CD25+ Treg cells

Tumor-activated gd T cells induced proliferation and differentiation of CD4+ and CD8+ ab T cells, mediated cytotoxic
function of CD8+ ab T cells and inhibited immunosuppression effect by CD4+ CD25+ Treg cells on CD4+ CD25- ab T cells

(99)

B cells Phosphoantigen-activated gd T cells provided B-cell help for the downstream production of IgA, IgG, and IgM antibodies (68)
NK cells IPP-activated gd T cells upregulated CD137L expression and co-stimulated CD25hi, CD54hi, CD69hi, CD137hi NK cells via

CD137/CD137L (4-1BB/4-1BBL) interactions to promote NK cell-mediated cytotoxicity against tumors
(73, 75)

NK cells IPP-activated gd T cells expressed ICOS and co-stimulated NK cell activation through ICOS/ICOS-L interactions, leading to
increased CD137/CD137L signaling and acquisition of NK cell-mediated DC editing function

(100, 101)

Vd1+ CD4+ and CD8+

ab T cells; DCs
Activated Vd1+ gd T cells suppressed proliferation and IL-2 production by both CD4+ and CD8+ ab T cells and impaired the
maturation and function of DCs. The suppressive activity of activated Vd1+ gd T cells was mediated by TLR8 signaling
pathway

(102)

DCs Tumor-derived CXCL10 increased the expansion of Vd1+ gd Treg cells that infiltrated solid tumors and either induced
immune-senescence in DCs or killed DCs

(102–107)

Vd2+ CD4+ ab T cells IPP-activated Vg9Vd2+ T cells acquired professional APC functions by upregulating expression of co-stimulatory (CD40,
CD80, and CD86), MHC class II and lymph node-homing CCR7 receptors, presented exogenous antigen and induced
naïve autologous CD4+ ab T cells to proliferate and differentiate into T helper, Th1 subset

(56)

CD8+ ab T cells IPP-activated HLA-A2+ Vg9Vd2+ T cells could uptake soluble antigens, processed and cross-presented immunodominant
or subdominant HLA-A2-restricted peptides and primed naïve CD8+ ab T cells for proliferation and effector cell function

(57–61)

CD8+ ab T cells IPP-activated Vg9Vd2+ T cells upregulated CD36 expression to mediate apoptotic and live tumor cells uptake, cross-
presentation, and induction of TAA-specific CD8+ ab T-cell response

(108)

B cells Vg9Vd2+ T cells promoted the development of antibody-producing B cells via immunoglobulin class switching (65–67, 69)
B cells Activated Vg9Vd2+ T cells with functional CCR7 expression induced transient lymph node-homing and clustering within B-

cell zones of germinal centers in lymphoid tissues
(64, 68)

NK cells IPP-activated Vd2+ gd T cells induced cytotoxicity against CD56+ DC-like cells and prematurely terminated NK cell
response

(74)

Monocytes IPP- or HMBPP-activated Vd2+ gd T cells induced downregulation of CD14, and upregulation of CD40, CD86, and HLA-DR
on monocytes

(76, 77)

Macrophages Macrophages recruited Vd2+ gd T cells to the site of infection via IP-10 and CXCR3; once there they were able to drive the
local cytotoxic response via granzyme and perforin release or Fas ligand binding

(79–82)

Neutrophils IPP- or HMBPP-activated Vg9Vd2+ T cells can induce neutrophil recruitment, migration, adhesion, activation, phagocytosis,
and degranulation

(78, 83, 86)

Neutrophils TNF-a secretion by gd T cells induces reactive oxygen species, arginase-1, and serine protease production from
neutrophils, which subsequently inhibits CD25 and CD69 expression, IFN-g production, and cell proliferation of Vd2+ gd T
cells

(84–86)

DCs Activated Vg9Vd2+ T cells secreted IFN-g and TNF-a and promoted maturation of antigen-expressing immature moDCs in
circulation

(87–91, 93)

Vd3+ DCs Activated Vd3+ gd T cells induced immature moDCs to upregulate APC markers CD40, CD83, CD86, and HLA-DR and
secreted IL-10 and IL-12. Vd3+ gd T cell-mediated moDC maturation involved CD1d recognition but not CD40/CD40L
interaction. Vd3+ gd T cell-matured moDCs induced activation of naïve allogeneic T cells.

(109)
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protein 1 (MR1) (116) ligands, and play a crucial role for anti-
tumor responses (117–124). Similar to Vd2+ gd T cells, the
NKG2D-expressing Vd1+ gd T cells can be activated by stress-
inducible MICA/MICB and ULBP1–6 family proteins, which are
frequently upregulated in tumor cells (8, 11). Ligand-bound
NKG2D induces cytolytic functions of gd T cells via granzyme B
and perforin secretion to mediate tumor cell killing (125). Several
studies have utilized Vd1+ gd T-cell populations for adoptive
cancer immunotherapy (8, 10, 126), but the clinical outcome so
far was limited. The less frequent Vd3+ gd T cells were shown to
recognize and kill CD1d+ target cells (109) and are activated by
annexin A2 ligands on tumor cells that are upregulated under
oxidative stress conditions (127). Interestingly, the binding affinity
of the Vd1+ and Vd3+ gd TCR ligands identified thus far falls
within the range of 3 to 150 µM (55, 128), comparable to the well-
studied ab TCR binding affinities for the peptide–MHC complex
(129, 130), suggesting a possible shared TCR docking footprint on
the bound ligand (131). With the increasing numbers of non-Vd2
gd T-cell ligands uncovered so far (8, 55, 116, 132), different
strategies have been developed to utilize activated non-Vd2 gd T
cells for cancer immunotherapy (10, 19, 128). Of note, activated
non-Vd2 gd T cells have also been implicated to modulate other
immune cells (Table 1) including ab T cells (102), B cells (133–
135), DCs (89, 102–107, 109, 136, 137), macrophages (70, 138),
and neutrophils (139).

Human Vd2+ gd T cells represent ~0.5% to 10% of all
circulating T lymphocytes in healthy adults and can undergo
rapid expansion of up to 60% in the periphery during infections,
and form between 20% to 30% of total infiltrating CD3+ T cells in
the early stage of disease onset (11, 17). Activated Vd1+ and Vd2+

gd T cells upregulate various C-C chemokine receptor (CCR)
such as CCR1 and CCR8 (140), CCR2 (141), CCR5 (142), and C-
X-C chemokine receptor 3 (CXCR3) (107) to mediate infiltration
into the tumor microenvironment (TME). Additionally, tumor
cells and tumor-derived fibroblasts express chemokine ligand 2
(CCL2) (141), IFN-g-inducible protein 10 (IP-10) (107),
monocyte chemoattractant protein 1 (MCP-1), macrophage
inflammatory protein 1a (MIP-1a), MIP-1b, and regulated on
activation, normal T cell expressed and secreted (RANTES) to
promote recruitment of activated Vd1+ and Vd2+ gd T cells to the
TME (140). Once recruited into the TME, tumor-infiltrating
Vd1+ and Vd2+ gd T cells can eliminate tumor cells via TNF-
related apoptosis-inducing ligand (TRAIL) (143), Fas/Fas ligand
pathway (144), induction of antibody-dependent cellular
cytotoxicity (ADCC) on antibody-opsonized tumor cells
through CD16 (FcgRIII) (60, 145, 146), perforin/granzymes,
IFN-g/TNF-a secretion, and NKG2D-mediated cytotoxicity
(13, 147). As a result of the complex interplay between TME
and tumor-infiltrating gd T cells, activated gd T cells can be
functionally polarized to become the anti-tumor Th1 and
follicular Th (Tfh) cells or the pro-tumor Th17 and T
regulatory (Treg) cells (12, 132). For example, IPP-activated
Vg9Vd2+ T cells can be polarized into three distinct subsets
based on the presence of different cytokines in the
microenvironment: Th1 [interleukin-12 (IL-12) and anti-IL-4
antibody] (148), Th2 (IL-4 and anti-IL-12 antibody) (148), and
Frontiers in Immunology | www.frontiersin.org 4
Th17 [IL-1b, transforming growth factor b (TGF-b), IL-6 and
IL-23] (149). Recent reviews on the topic of gd T-cell polarization
has provided comprehensive insight into the different role of gd
Th1, Th2, Th17, Tfh, and Treg cells, and we refer readers to these
excellent publications (7, 8, 11, 54, 150–153).

Importantly, the presence of tumor-infiltrating gd T cells was
shown to be the most favorable prognostic marker for overall
cancer patients survival in 25 different cancer types and solid
tumors (non-brain tumor) (4). Their role in cancer
immunosurveillance was clearly evidenced and validated in
many tumor models and clinical studies including cutaneous
carcinoma (154), melanoma (119, 155, 156), lymphoma (157–
159), leukemia (44, 117, 160, 161), gastric (162), colorectal (43,
163, 164), kidney (41), prostate (165, 166), and pancreatic (143)
cancers. The ability of gd T cells to produce large quantities of
cytokines and chemokines rapidly and their tendency to reside in
blood circulation or in non-lymphoid tissues (e.g., skin,
intestines, and lungs) (8, 16, 17), helps to provide the first line
of immunosurveillance against aberrant cell growth and
infectious diseases, and bridges the innate and adaptive
immune responses. Thus, it is important to understand the
crosstalk between gd T cells and other immune cells in the
TME and to harness this knowledge for effective cancer
immunotherapy development.
CROSSTALK BETWEEN gd T CELLS AND
ab T CELLS

The role of antigen processing and presentation to ab T cells is
mostly associated with the classical professional antigen-
presenting cells (APCs) like DCs, macrophages, and B cells
(167, 168). However, with the unexpected discovery by
Brandes et al., it was shown that activated but not resting
human Vg9Vd2+ T cells were also capable of acquiring
professional APC functions (56). Indeed, activated Vg9Vd2+ T
cells isolated from both healthy individuals and cancer patients’
peripheral blood mononuclear cell (PBMC) exhibited potent
APC functions to stimulate robust antigen-specific ab T-cell
responses (169).

During the activation process, human Vg9Vd2+ T cells can
rapidly gain APC functions by upregulating co-stimulatory
(CD40, CD80, and CD86), MHC class I and II molecules (56,
57, 61, 62, 97, 108, 169), and transiently expressed lymph
node-homing markers, chemokine receptor CCR4 and CCR7
(62, 68, 97). This allows recruitment of activated gd T cells
from the peripheral sites to secondary lymphoid tissues for
antigen presentation and bridges the early phase of rapid
innate-like gd T-cell response to microbial or tumor antigens
with the later phase of adaptive immune response involving
the antigen-specific CD4+ and CD8+ ab T cells (14, 15, 17,
168, 170). In a study by Himoudi et al., it was shown that
activated human Vg9Vd2+ T cells were “licensed” to acquire
their APC functions through recognition of antibody-
opsonized tumor cells, mediated targeted cell killing by their
innate cytotoxicity, and subsequently helped to release tumor-
July 2022 | Volume 13 | Article 894315
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assoc ia ted ant igens (TAAs) into the surrounding
microenvironment (60). These TAAs can be taken up by
activated gd T cells via phagocytosis (62, 97, 98, 108),
trogocytosis (171), or pinocytosis (57, 58), processed and
presented on the cell surface for priming and induction of
naïve ab T cells (59, 60) (Figure 1). Furthermore, it
was shown that Vg9Vd2+ gd T cells can uptake microbes
and soluble antigens via CD16-mediated phagocytosis, a
process that can lead to functional antigen processing and
presentation on MHC class II (98), and cross-presentation of
immunodominant MHC class I peptides to antigen-specific
CD8+ ab T cells (58, 60, 61). This notion was further
Frontiers in Immunology | www.frontiersin.org 5
supported by the identification of Vg9Vd2+ T cells in
malaria patients that readily acquired APC functions upon
infection and induced CD4+ and CD8+ ab T-cell activation
(61). Interestingly, it was also demonstrated that activated
Vg9Vd2+ T cells can uptake CD1d-containing membrane
fragments from phosphoantigen expressing Cd1d+ target
cells via trogocytosis, leading to the presentation of CD1d-
restricted antigen and the activation of Va24Vb11+ invariant
natural killer T cells (iNKT) (172).

When compared to activated ab T cells and monocytes,
activated Vg9Vd2+ T cells were shown to be more efficient in
presenting antigens and induced 100-fold higher proliferative
FIGURE 2 | An overview of the intricate network of immune interactions between gd T cell and other immune cells in the tumor microenvironment. Activated gd T
cells express different surface receptors and molecules (gd TCR, ICOS, MHC class I and II), ligands (CD40L, CD137L, FasL, and PD-L1), cytokines (IFN-g and TNF-
a), and GM-CSF for contact-dependent and independent crosstalk with tumor cells, CD4+ and CD8+ ab T cells, NK cells, DCs, macrophages, and neutrophils.
Activated gd T cells cross-present antigens to CD4+ and CD8+ ab T cells; induce B-cell immunoglobulin class switching; co-stimulate NK cells via CD137/CD137L
and ICOS/ICOS-L interactions; induce upregulation of CD40, CD86, and HLA-DR expression on monocyte; promote DC maturation via CD40/CD40L and Fas/FasL
interactions; and inhibit the immunosuppression function of CD4+ CD25+ FoxP3+ Treg cells on CD4+ ab T-cell activity. In contrast, activated gd T cells can also
suppress DC function (downregulation of CD80, CD83, CD86, HLA-DR, IL-1b, IL-6, and IL-12) and mediate DC killing via perforin release. Butyrophilin 2A1 and 3A1
(BTN2A1 and BTN3A1); cyclooxygenase-2 (COX2); granulocyte-macrophage colony stimulating factor (GM-CSF); granzyme B (GzmB); human leukocyte antigen-DR
(HLA-DR); immunoglobulin A, E, or G (IgA, IgE, or IgG); inducible T-cell co-stimulator (ICOS); ICOS ligand (ICOS-L); interferon-g (IFN-g); major histocompatibility
complex class I and II (MHC-I and -II); MHC class I chain-related antigens A and B (MICA and MICB); natural killer group 2D (NKG2D); programmed cell death 1 (PD-
1); PD-1 ligand 1 (PD-L1); prostaglandin E2 (PGE2); reactive oxygen species (ROS); T-cell receptor (TCR); tumor necrosis factor-a (TNF-a); UL16-binding protein
(ULBP).
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responses in naïve CD4+ ab T cells (56). Activated Vg9Vd2+ T
cells were also able to cross-present antigens to CD8+ ab T cells
with a higher efficiency and reproducibility (57), and induced
less CD4+ CD25hi FoxP3+ Treg cell expansion than moDCs (59).
Similar results were seen under pathological condition, when it
was shown that gd T cells isolated from gastric cancer patients
can acquire APC functions upon activation with cells
derived from autologous tumor tissues (99). These clinically
relevant tumor-activated gd T cells induced strong antigen-
specific CD4+ and CD8+ ab T-cell responses and prevented
immunosuppression mediated by CD4+ CD25+ Treg cells (99)
(Figure 2). Of note, Muto et al. showed that resting Vg9Vd2+ T
cells can significantly upregulate the expression of scavenger
receptor CD36 during activation and that this was mediated by a
key transcription factor, CCAAT/enhancer-binding protein a
(C/EBPa), that supports acquisition of APC functions in
activated Vg9Vd2+ T cells (108). In contrast, resting ab T cells
expressed a low level of CD36 and did not upregulate it upon
activation (108). In DCs and macrophages, the CD36 receptor
was shown to facilitate the uptake of apoptotic cells and cross-
presentation (173, 174), potentially explaining the induction of a
stronger antigen-specific ab T-cell response by activated
Vg9Vd2+ T-cell APC.

The ability to migrate to the tumor site and cross-present
TAAs to ab T cells was also retained when Vd1+ and Vd2+ gd T
cells were engineered to express tumor-specific chimeric antigen
receptors (CARs) and resulted in an increased cytotoxic level
against tumor cells (175). Hence, activated Vg9Vd2+ T cells can
process and present antigens and provide critical co-stimulatory
signals to prime and induce naïve CD4+ (56) and CD8+ (57) ab
T cells for proliferation, differentiation, and cytokine production
and to mediate cytotoxic responses against tumors and
pathogen-infected cells (176–179). This remarkable ability of
gd T cells to uptake and present antigens and prime ab T cells
has been highlighted by Vantourout et al. (168), and the
accumulated data so far have illustrated the potential of
harnessing the APC functions of gd T cells to crosstalk with
ab T cells for immunotherapy development.

Given their natural tropism for TME (14, 119, 175, 180–182),
activated gd T cells could hence be utilized to prolong the
intratumoral immune response by cross-presenting TAAs to
other tumor-infiltrating lymphocytes and provide an early
source of IFN-g to expand and increase immunogenicity of
TAA-specific ab T cells within the TME (155, 183, 184), and
to upregulate expression of MHC class I and II on tumor cells
(185, 186) for ab T cell-mediated killing (Figure 2). The
presence of tumor-infiltrating gd T cells within the TME as
revealed by genomic data analysis in over 18,000 human tumors
has uncovered a strong correlation to good prognosis (4). In the
context of cancer immunotherapy, the capability of activated gd
T cells to cross-present TAAs to ab T cells could be further
boosted through the “licensing” pathway (60, 187) by using
therapeutic monoclonal antibodies against tumor cells, e.g.,
rituximab (anti-CD20) and trastuzumab (anti-HER2/neu) (145,
188, 189). Such combination treatment could greatly improve the
outcome of gd T-cell cancer immunotherapy.
Frontiers in Immunology | www.frontiersin.org 6
Activated Vg9Vd2+ T cells can also modulate ab T-cell
activity indirectly by co-stimulating NK cells via inducible T-
cell co-stimulator (ICOS)/ICOS-L and CD137/CD137L
engagements to enhance IFN-g and TNF-a production (100,
101), which, in turn, helps to support ab T-cell activation (190).
Another study has shown that activated Vg9Vd2+ T cells can
induce B-cell and DC maturation and subsequently leads to
alloreactive stimulation of ab T-cell proliferation and IFN-g
production by mature B cells and DCs (72). The interactions
between gd T cells and other immune cells (B cells, DCs, and NK
cells) will be discussed later in this review.

Despite their ability to exert positive immune modulation
functions on ab T cells, activated gd T cells can also negatively
regulate ab T-cell response by upregulating an immune
checkpoint inhibitory ligand, programmed cell death 1 ligand 1
(PD-L1) (11, 151, 191). The suppressive phenotype of activated
Vd2+ gd T cells on autologous ab T cells was shown to be
mediated by the PD-1/PD-L1 interactions and correlated well
with the strength of Vd2+ gd TCR signaling during the activation
process but was independent of TGF-b and FoxP3 expression
(192) (Figure 2). Daley et al. showed that tumor-infiltrating gd T
cells with high expression levels of checkpoint inhibitory ligands
PD-L1 and Galectin-9 could inhibit ab T-cell activation through
checkpoint receptor ligation (193). The immunosuppressive
effect can also be mediated by the interaction between CD86
on activated Vd2+ gd T cell and cytotoxic T lymphocyte-
associated antigen 4 (CTLA-4) on activated ab T cells (191).
Such gd T cell-mediated immunosuppression of ab T cells,
however, can be significantly reduced by disrupting PD-1/PD-
L1 and CTLA-4/CD86 interactions with blocking antibodies
(191, 192). Furthermore, Peng et al. identified tumor-
infiltrating Vd1+ gd T cells that could suppress naïve/effector
ab T-cell proliferation and IL-2 production through the Toll-like
receptor (TLR) 8 signaling pathway and may lead to tumor
immune escape (102). The immunosuppressive activity of Vd1+

gd T cells can be reversed using TLR8 ligands, and this signaling
involved the myeloid differentiation primary response 88
(MyD88), TNFR-associated factor 6 (TRAF6), IKB kinase a
(IKKa), IKKb, and mitogen-activated protein kinase 14
(MAPK14), but not transforming growth factor-b-activated
kinase 1 (TAK1), Jun N-terminal kinase (JNK), and
extracellular signal-regulated kinase (ERK) molecules in Vd1+

gd T cells (102). It was also reported that gd+ NKG2A+

intraepithelial lymphocytes (IELs) can mediate suppression of
CD8+ ab+ IEL cytotoxic responses (IFN-g and granzyme B) in
patients with celiac disease through TGF-b secretion (194). The
immunosuppressive effect on CD8+ ab+ IELs can be further
enhanced upon gd+ IELs NKG2A receptor ligation with the
cognate ligand, human leukocyte antigen-E (HLA-E) (194).
This immunosuppressive effect can be reduced by blocking
NKG2A/HLA-E interaction and TGF-b with blocking
antibodies (194). Therefore, it is important to consider these
negative immunomodulatory roles of gd T cells when designing
novel immunotherapeutics.

Apart from the PD-1/PD-L1 and CTLA-4/CD86 immune
checkpoint axes, other non-conventional checkpoint
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receptors [killer Ig-like inhibitory receptors (KIRs), Ig-like
transcript 2 (ILT-2), and NKG2A] can be expressed on
Vg9Vd2+ T cells, inhibit their cytotoxic function, and
prevent tumor cell lysis upon recognition of specific HLA
class I ligands on tumor cells (195–203). In this context, the
presentation of HLA class I molecules on tumor cells can be a
double-edged sword. On one hand, it facilitates the
presentation of antigenic peptides to activate CD8+ ab T
cells, but at the same time, it can also inhibit the activation
of Vg9Vd2+ T cells. Such inhibitory signals on immune cells
mediated by KIRs, ILT-2, or NKG2A can be blocked using
monoclonal antibodies targeting KIRs (lirilumab and
IPH4102), ILT-2 (anti-ILT-2, anti-HLA-G1, anti-FasL), or
NKG2A (monalizumab) (204, 205). In a study by André
et al., treatment with monalizumab indeed led to enhanced
anti-tumor immune responses elicited by T and NK cells
(206). As a type 2 inhibitory membrane receptor, NKG2A
carries cytoplasmic immunoreceptor tyrosine-based
inhibitory motifs (ITIMs) and forms heterodimers with
CD94 to recognize non-classical HLA-E molecule (207).
Many human tumors have been shown to express HLA-E
including in the colon, cervical, endometrial, head and neck,
liver, lung, pancreas, ovarian, and stomach (206). Moreover, a
majority of Vg9Vd2+ T cells in healthy individuals express
NKG2A/CD94 (197, 198, 200, 208), and the expression levels
can be induced by IL-15 and TGF-b (209, 210). Therefore,
treatments targeting these non-conventional checkpoint
receptors on Vg9Vd2+ T cells (KIRs, ILT-2, and NKG2A) to
disrupt the interactions with their respective HLA class I
ligands on tumor cells (HLA-C, HLA-G, and HLA-E) may
help to enhance the effectiveness of Vg9Vd2+ T cell-based
tumor immunotherapy.

Recent work by Payne et al. suggests that BTN3A, itself part of
the molecular complex required for phosphoantigen-mediated
activation of Vg9Vd2+ T cells, can also inhibit tumor-reactive
CD8+ ab T cells when bound to N-mannosylated residues of
CD45 by preventing its segregation from the immunological
synapse (52). In this study, the suppression of ab T-cell
activation was shown to involve BTN3A1 but not BTN2A1, and
the immunosuppressive effect could be blocked by BTN3A1-
specific monoclonal antibodies such as clone 20.1, 103.2, and
CTX-2026 (52). Targeting BTN3A1 with the agonistic antibody
CTX-2026 induced BTN3A1 switching from immunosuppressive
to immunostimulatory conformations and promoted coordinated
Vg9Vd2+ and CD8+ ab T-cell anti-tumor responses against
BTN3A1+ tumors (52). Hence, BTN3A1 may be an attractive
immune target for intervention to orchestrate effective and
coordinated gd and ab T-cell anti-tumor responses.
CROSSTALK BETWEEN gd T CELLS AND
B CELLS

gd T cells have been previously reported to interact with B cells
and modulate their immune functions (5, 8, 168, 211, 212).
Frontiers in Immunology | www.frontiersin.org 7
Vg9Vd2+ T cells can adopt a role similar to T follicular helper
(Tfh) cells and provide B-cell help, thereby regulating B-cell
maturation. Specifically, a subset of CXCR5+ Vg9Vd2+ T cells
present in circulation and in tonsil tissue expresses co-
stimulatory molecules (ICOS and CD40L) upon antigen
stimulation and secrete cytokines (IL-2, IL-4, and IL-10),
which can promote the development of antibody-producing B
cells via immunoglobulin class switching [including
immunoglobulin A (IgA), IgE, IgG1, IgG2, IgG3, and IgG4] (8,
213, 214) in the extra-follicular or within germinal centers (65–
67, 69) (Figure 2). Furthermore, upon stimulation with IL-21
and HMBPP, activated tonsillar Vg9Vd2+ T cells can express
CXCL13 receptor, CXCR5, induce lymphoid-homing phenotype
and clustering in germinal centers, and sustain the production of
germinal centers (70, 71). Similarly, IPP-stimulated Vd2+ gd T
cells with functional CCR7 expression can also induce transient
lymph node-homing, migration, and clustering of Vd2+ gd T
cells within B-cell zones of germinal centers in lymphoid tissues
(64, 68).

Phosphoantigen-activated Vd2+ gd T cells can additionally
induce the expression of B-cell co-stimulatory molecules
(CD40L, OX40, CD70, and ICOS) and affect the downstream
production of circulating IgA, IgG, and IgM antibodies by B cells
(68). In patients with specific mutations (RAG1 and CD3D) that
impair ab T-cell function, gd T cells are responsible for hyper-
IgE syndromes or the elevated production of circulating IgA,
IgG, and IgM (215, 216). gd T cells can also suppress antibody
responses via the induction of CD4+ Foxp3+ Treg cells (217).
Conversely, some B cells can express BTN2A1 and BTN3A1,
required for Vg9Vd2+ T-cell activation (33–35), thereby directly
influencing Vd2+ gd T-cell activation (218, 219) as shown by
early studies using Daudi cells, a B-cell malignancy cell line
(Burkitt’s lymphoma) (220–226). Vg9Vd2+ T cells can directly
engage BTN2A1 expressed on B cells via the TCR Vg9 chain (3,
32–36, 227), and in concert with BTN3A1, this results in
Vg9Vd2+ T-cell activation and expansion (101, 212). Hebbeler
et al. showed that the Vg9Vd2+ T cells activated and expanded by
phosphoantigen or Daudi B lymphoma cells use public TCR Vg9
clonotypes, and elicit comparable cytotoxic responses against
tumor cells (228). Further investigations revealed that the
germline-encoded region between TCR Vg9 CDR2 and CDR3
is responsible for contacting BTN2A1 on target cells (33, 34).
Such findings indicate the inherent property of TCR Vg9 to
recognize diverse range of cell types that express BTN2A1
including B cells (212, 227–229). In addition to BTN2A1 and
BTN3A1, B cells also express other closely related BTN
molecules such as BTN3A2 (in naïve or germinal center B
cells), BTN3A3 (in memory B cells), BTN1A1, and BTN2A2
(3, 50). The contribution of these other BTN molecules in B cells
for gd T-cell activation remains elusive. Similarly, circulating
activated B7+ CD39+ B cells can stimulate Vd1+ gd T-cell
proliferation (133, 134). The Vd1+ gd T-cell stimulatory ligand
is upregulated in B cells upon activation and can induce
polyclonal Vd1+ gd T-cell responses (133). This B cell-
mediated immunostimulatory effect on Vd1+ gd T cells can be
blocked with antibodies against B7 and CD39 (133, 212).
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In summary, Vg9Vd2+ T cells can regulate B-cell maturation
during development or initiation of an immune response, sustain
the production of germinal centers within secondary and
possibly tertiary lymphoid structures, and affect the production
of circulating (auto)antibodies for humoral immunity (168, 211,
212), while B cells can activate Vd1+ and Vg9Vd2+ T cells (230).
CROSSTALK BETWEEN gd T CELLS AND
NK CELLS

Human NK cells are important innate immune subset for
controlling early tumor growth and metastasis through cell-
mediated cytotoxicity and show broad reactivity to tumors that
escaped immunosurveillance by loss or aberrant MHC class I
expression (14, 231, 232). Being a specialized group of innate
lymphoid cells (ILCs), NK cell functions are closely regulated by
a range of cytokines such as IFN-g, TNF-a, IL-2, IL-12, IL-15, IL-
18, and IL-21 (233, 234). These effector molecules are important
for the initiation of anti-viral and anti-tumor immune responses
(235–238). However, more established tumors can evade NK cell
surveillance by developing resistance to NK cell-mediated
cytotoxicity, leading to tumor immune escape (239).

In order to overcome NK-resistant tumors, Maniar et al. showed
that activated human NK cells (CD25hi, CD54hi, CD69hi, and
CD137hi) increased surface expression of natural NKG2D
receptors to promote tumor cytolysis and death (73). NKG2D is a
lectin-like type 2 transmembrane receptor mostly expressed by
human NK cells and binds to MHC-related ligands such as
ULBPs, MICA, and MICB, which are highly expressed in tumor
cells but rarely in healthy cells (231, 240). IPP-activated Vd2+ gd T
cells upregulate CD137L (4-1BBL), engage with CD137+ NK cells,
and can in turn lead to enhanced NKG2D expression and NK cell-
mediated cytotoxicity against tumors (73) (Figure 2), highlighting a
potential key role for gd T cells in this process. CD137 or 4-1BB is a
member of the tumor necrosis factor receptor superfamily
(TNFRSF) and is expressed by a range of immune cells (190).
Expression of CD137 on NK cells is induced by IL-2 and IL-15, and
following CD137 signaling, it promotes NK cell proliferation and
production of IFN-g, which, in turn, can support NK tumor effector
functions (101, 190). This finding was further corroborated by Liu
et al., and they demonstrated that in the context of liver fibrosis, gdT
cells engaged with conventional and liver-resident NK cells through
CD137/CD137L interactions to promote NK cell-mediated
cytotoxicity against activated hepatic stellate cells and conferred
immune protection (75).

Similar to NK and CD8+ ab T cells, human gd T cells also
express NKG2D to detect stress-inducible ligands on tumors and
pathogen-infected cells (125, 241–245). Several studies have
shown that NKG2D ligation to its cognate ligand can co-
stimulate Vg9Vd2+ T-cell activation (CD25 and CD69
upregulation) and promotes the release of IFN-g, TNF-a, and
cytolytic granules to mediate killing of NKG2D ligand-
Frontiers in Immunology | www.frontiersin.org 8
expressing tumors (163, 246–251). In the context of leukemia
and lymphoma cell recognition by Vg9Vd2+ T cells, it was
reported that tumor-expressed ULBP1 was a strong marker for
tumors susceptible to Vg9Vd2+ T cell-mediated cytotoxicity
(252). Similarly, it was shown that ULBP1 overexpression in
tumor cells can lead to enhanced killing by Vg9Vd2+ T cells
(253). Hence, blocking NKG2D-mediated Vg9Vd2+ T-cell
recognition of tumor cells with anti-NKG2D and anti-MICA/B
monoclonal antibodies inhibits tumor cell killing to varying
degrees (247, 249, 253). Vd1+ gd T cells can also recognize and
kill NKG2D ligand-expressing tumors via NKG2D receptor (8,
11, 245, 254). The number of Vd1+ gd T cells and ULBP3
expression level are negatively correlated with disease
progression in chronic lymphocytic leukemia patients (254). A
study reported by Kamei et al. demonstrated a longer overall
survival in gastric cancer patients with high expression levels of
NKG2D and ULBP1 (255). Hence, upregulation of stress-
inducible NKG2D ligand in tumor cells and NKG2D receptor
in tumor-infiltrating immune cells can help to orchestrate
concerted NKG2D-mediated NK, CD8+ ab, and gd T-cell anti-
tumor responses within the TME. Of note, several anti-cancer
drugs have been found to induce expression of NKG2D ligand in
tumor cells, including the proteasome inhibitor bortezomib and
the alkylating agent temozolomide, and these can help to
promote tumor cell lysis by NK and gd T cells (256, 257).
Therefore, it is feasible to target NKG2D and its ligands for gd
T cell-based immunotherapy development.

It was later shown that IPP-activated Vg9Vd2+ T cells can
upregulate ICOS and signal NK cells via ICOS/ICOS-L
engagement to promote CD69 and CD137 expression, which
then leads to enhanced production of IFN-g, TNF-a, MIP-1b, I-
309, RANTES, and soluble Fas ligand by activated NK cells (100).
Such ICOS/ICOS-L-mediated crosstalk enables NK cells to
acquire the “license” to kill mature DCs that may play a role in
inflammation and tumor growth (100). These studies have
uncovered the immunomodulatory role of IPP-activated
Vg9Vd2+ T cells to circumvent NK-resistant tumors and to
promote NK-mediated DC editing function by modulating NK
cell cytotoxicity through CD137/CD137L and ICOS/ICOS-L
engagements (73, 101) (Figure 2). Such findings will provide
an alternative strategy for gd T cell-based immunotherapy
development against difficult-to-treat solid tumors or to
prevent metastasis (239, 258, 259).

However, NK cell activity can also be negatively regulated
by gd T cells. Zoledronate-activated Vd2+ gd T cells not only
can co-stimulate early NK cell activation for IFN-g production
but also lead to premature ending of the response by inducing
cytotoxicity against CD56+ DC-like cells (74). In the absence
of activated Vd2+ gd T cells, CD56+ DC-like cells survived (74)
and maintained NK cell activity through secretion of NK cell-
activating cytokines such as IL-1b and IL-18 (260, 261).
Therefore, further studies will help to provide a better
understanding of the immunosuppressive role of Vd2+ gd T
cells on NK cells.
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CROSSTALK BETWEEN gd T CELLS AND
MONOCYTES/MACROPHAGES

gd T cells share many of their innate functions with other
immune cell subsets, including NK cells, monocytes, and
macrophages (56, 98, 262, 263). These are integral to the
innate inflammatory response against infectious pathogens
and tumors, which, in turn, activates a strong and targeted
adaptive immune response (170). While the hallmark of
Vg9Vd2+ T cell is recognition of phosphoantigens produced
by bacteria-infected or tumor cells (25, 264), monocytes are
adept at potentiating this process by taking up and
accumulating phosphoantigen for subsequent presentation
to gd T cells (262, 263). Conversely, the prototypical roles of
myeloid cells, such as phagocytosis and MHC class II
presentation, are also shared by Vg9Vd2+ T cells, which can
act as professional APCs (56, 98). The close interconnection
between these cell types and partial redundancy in functional
properties denotes multiple implications for tumor immunity.

Vg9Vd2+ T cells have been shown to activate monocytes, induce
adhesion and aggregation, and increase their survival (76, 265). This
occurs via production of inflammatory molecules including IFN-g,
TNF-a, granulocyte-macrophage colony stimulating factor (GM-
CSF), lymphocyte function-associated antigen 1 (LFA-1), and CCL2
(76, 78). In turn, this leads to changes in monocyte markers such as
downregulation of CD14, and upregulation of CD40, CD86, and
HLA-DR (76, 77) (Figure 2). Bidirectionally, zoledronate- or
HMBPP-primed monocytes can activate Vg9Vd2+ T cells through
phosphoantigen accumulation and presentation, leading to gd T-cell
proliferation and bacterial pathogen killing (76, 263). However, in
vitro, it has also been reported that in the presence of zoledronate,
monocytes and Vd2+ gd T cells can negatively regulate each other by
inducing apoptosis (266, 267). It is interesting to note that the
contact-dependent stimulation of Vg9Vd2+ T cells by monocytes
via the intercellular adhesion molecule 1 (ICAM-1)/LFA-1
engagement can be disrupted by blocking CD11a with
monoclonal antibody (78). In contrast to these in vitro results, in
vivo treatment with zoledronate or other aminobisphosphonates
has shown varying effects, with some studies reporting an increase
in circulating monocyte numbers, while others found no difference
(77, 268). This suggests that the relationship between these cells may
be more nuanced and context-dependent than first thought and will
require further investigation.

The crosstalk between gd T cells and macrophages has not yet
been thoroughly elucidated; however, the effects are again cell
subtype- and context-dependent. Macrophages have been
demonstrated to recruit Vg9Vd2+ T cells to the site of infection
via IP-10 and CXCR3 receptor–ligand interactions (80). Once
this occurs, Vd2+ gd T cells can drive the local cytotoxic response
via granzyme and perforin release or Fas ligand binding (79, 81,
82). Both Vd1+ cells and Vd2+ cells have been shown to produce
CCL3, CCL4 (MIP-1a and MIP-1b), and CXCL10, which find
their respective cognate receptors expressed by macrophages (70,
138). In vitro, the supernatant of cultured gd T cells has been
shown to induce macrophage activation via IFN-g, TNF-a, and
GM-CSF production, arguing for a tightly regulated and
Frontiers in Immunology | www.frontiersin.org 9
balanced interplay between these immune cell populations
(265). This was further demonstrated by studies showing that
IFN-g and TNF-a released by activated Vg9Vd2+ T cells can
induce cyclooxygenase-2 (COX2) expression and prostaglandin
E2 (PGE2) release by both macrophages (Figure 2) and tumor
cells, and this downregulates the cytotoxic response of gd T cells
(269, 270) and plays a major role in tumor immune escape (271,
272). Furthermore, galectin-9 on both gd T cells and pancreatic
tumor cells has been shown to bind dectin-1 on tumor-
infiltrating macrophages, leading to M2 macrophage
polarization and subsequent downregulation of IFN-g and
TNF-a production by gd T cells (273, 274).
CROSSTALK BETWEEN gd T CELLS
AND NEUTROPHILS

Neutrophils are another immune cell population with complex
interactions with gd T cells at peripheral sites of inflammation
and in the TME. Zoledronate-activated Vg9Vd2+ T cells release
cytokines and chemokines such as IFN-g, TNF-a, IL-6, and
MCP-2, and these have been demonstrated in vitro to induce
neutrophil migration, activation, phagocytosis, degranulation,
and release of a-defensins (83). In a differing context using a
bacterial phosphoantigen, HMBPP-activated Vg9Vd2+ T cells
produce CXCL8 and TNF-a, which together mediate neutrophil
recruitment, induce CD11b upregulation and prevent apoptosis,
and downregulate CD62L, allowing neutrophil adhesion (78).
This finding was further corroborated by Sabbione et al., showing
that HMBPP-activated Vd2+ gd T cells can stimulate CD11b
expression and myeloperoxidase production by neutrophils (86),
all of which imply a stimulatory role of gd T cells towards these
granulocytes. In another study, tissue-resident Vd1+ gd T cells
were shown to regulate the recruitment of neutrophils to the site
of bacterial infection via IL-17 secretion (275). In the absence of
Vd1+ gd T cells, the production of IL-17 is reduced and leads to
lower numbers of neutrophil recruitment to the site of
infection (275).

Interestingly, activated neutrophils can inhibit CD25 and
CD69 expression, IFN-g production, and cell proliferation of
Vd2+ gd T cells either spontaneously or in response to HMBPP
(86). This is dependent on initial TNF-a production by gd T
cells, which then induces reactive oxygen species (ROS) secretion
from neutrophils (86) (Figure 2). These processes can be
independent of cell–cell contact; however, the inhibition is
more potent if cells are allowed to interact and form
conjugates (86). Neutrophils can take up zoledronate, and
despite also expressing BTN2A1 and BTN3A1, they do not
have the capability of activating Vg9Vd2+ T cells, which may
be due to their extremely limited production and accumulation
of IPP (276–278). Rather, these zoledronate-activated
neutrophils inhibit TNF-a and IFN-g production and
proliferation of Vg9Vd2+ T cells via ROS, arginase-1, and
serine protease production. Some serine proteases are also able
to downregulate BTN3A1 expression on PBMCs, which has
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downstream consequences for BTN-mediated activation of Vd2+

gd T cells (84, 85). Furthermore, Vd1+ gd T cells have been shown
to exhibit reduced proliferation in the presence of hydrogen
peroxide as well as decreased glutathione production, which may
be indicative of ROS-dependent neutrophil inhibition (139). In
some instances, however, neutrophils that have phagocytosed
HMBPP-producing bacteria subsequently release HMBPP,
which is then able to activate Vg9Vd2+ T cells. This results in
CD25, CD69, LFA-1, IFN-g, and TNF-a production and is
crucial for initiating an immediate anti-inflammatory
response (78).

Functionally, pancreatic tumor cell killing by gd T cells within
a PBMC context is decreased in the presence of neutrophils, in
both unstimulated and zoledronate-activated conditions (279).
However, when pancreatic tumor cells are co-cultured with
purified, expanded gd T cells and neutrophils, tumor cell lysis
is increased compared to co-culture with gd T cells alone, which
can be attributed to elevated granzyme B and IFN-g production.
These conflicting observations may be explained by differences in
immune cell subpopulation crosstalk within PBMCs, or by
differing polarization of neutrophils: N1 neutrophils are tumor
suppressive while N2 neutrophils have a pro-tumoral phenotype
(280). It is worth noting that a higher neutrophil-to-lymphocyte
ratio in a cohort study of 1,714 cancer patients treated with
immune checkpoint inhibitors was recently reported to
significantly correlate with low progression-free survival, poor
response rates, and low clinical benefit (281). Considering the
immunosuppressive functions of activated neutrophils on gd T-
cell activation as discussed above, this may partly contribute to
the poor outcomes in cancer patients with higher neutrophil-to-
lymphocyte ratios.
CROSSTALK BETWEEN gd T CELLS AND
DENDRITIC CELLS

DCs are professional APCs, and consist of classical or conventional
DCs (cDCs), including cDC1 (CD11c+ and CD141+) and cDC2
(CD11c+ and CD1c+), and plasmacytoid DCs (pDCs, CD11c-,
CD123+, and CD303+) (282, 283). Their key role in anti-tumor
immunity is well described, but the interactions between DCs and
gd T cells is lacking behind. It has been shown that upon recognition
of bacteria-infected or tumor cells, activated Vg9Vd2+ T cells can aid
DCmaturation through cytokine secretion (IFN-g and TNF-a) (87,
88), and promote maturation of antigen-expressing immature DCs
(monocyte-derived) in circulation via contact-dependent
mechanisms (Fas/FasL, CD40/CD40L, and TCR/CD1)
independent from TLR signaling (89–91, 93) (Figure 2). These
Vg9Vd2+ T cell-matured DCs upregulate HLA-DR, CD25, CD40,
CD80, CD83, and CD86, and are capable of cytokine production
(TNF-a, IL-12, and IL-15, but not IL-10), antigen presentation, and
stimulation of naïve CD4+ ab T cells (76, 87, 89, 92, 284–288). In
addition, Vg9Vd2+ T cell-derived cytokines (IFN-g and TNF-a) can
also enhance TLR-dependent DC maturation, upregulate CCR7
(lymph node-homing receptor), and facilitate their migration to
lymphoid tissues for CD4+ ab T-cell priming (289, 290).
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In contrast, the tumor-derived chemokine ligand CXCL10 can
promote the expansion of Vd1+ gd Treg cells that infiltrate solid
tumors and induce immune senescence in DCs, and prevent DC
maturation (by inhibiting CD80, CD83, CD86, and HLA-DR
expression), DC function (decreased IL-6 and IL-12 production),
and DC phenotype (inability to stimulate naïve T-cell proliferation)
via the TLR8 signaling pathway or by killing of DCs through a
perforin-mediated pathway (102–107) (Figure 2).

In turn, DCs can mediate Vg9Vd2+ T-cell activation by
sensing/presenting HMBPP and induce gd T-cell proliferation
in the presence of IL-2, IL-15, and IL-21 (76, 94–96). Immature
DCs can enhance the ability of Vg9Vd2+ T cells to secrete
inflammatory cytokines necessary for gd T-cell maturation
(TNF-a) in part due to the ability of DCs to upregulate and/or
sense phosphoantigens (88). Mature cDCs and pDCs
(monocyte-derived) can secrete cytokines (IL-1b, IL-12, IL-18,
IFN-g, and TNF-a) that activate Vg9Vd2+ T cells, enhancing
their proliferation and cytotoxic function (IL-18-mediated
cytotoxicity against tumor cells) (287, 291–296). In the
presence of phosphoantigen, IL-15-producing DCs (monocyte-
derived) can also activate gd T cells in a contact-dependent
manner (CD86) and induce secretion of IFN-g (284, 297, 298).
Zoledronate-treated immature and mature DCs (monocyte-
derived) can induce phosphoantigen-mediated activation and
expansion of effector Vg9Vd2+ T cells capable of co-stimulatory
and cytotoxic functions via the expression of CD40L (299–303).

In summary, different gd T-cell subsets can either aid and
promote or inhibit DC maturation and function (7, 13, 304, 305),
while DCs can activate and expand Vg9Vd2+ T cells (7, 13, 304–
307). The crosstalk between gd T cells and DCs can thus have
downstream anti- or pro-tumoral effects with therapeutic
potential, albeit warranting further investigation using DCs
that are not monocyte-derived (8, 150, 308).
OUTLOOK AND FUTURE PERSPECTIVE

Our understanding on gd T cells continues to expand and their
contributions in bridging the innate and adaptive anti-tumor
immune responses are becoming more evident. Multiple studies
are now highlighting their role in interacting with and orchestrating
a variety of other immune cell subsets as reviewed here.
Traditionally, gd T cell-based cancer immunotherapies have been
focused on assessing the efficacy of activated gd T cells alone in
mediating tumor clearance (41–46, 145, 157, 163, 165, 309).
Although these past clinical trials have shown that gd T cell-based
immunotherapies were safe and well tolerated in patients, given the
limited success to date (8, 10, 19, 101, 310–312), more innovative
strategies aiming to overcome the chal lenges and
immunosuppression within the TME should be thoroughly
explored. Notably, with the ever-increasing numbers of studies
demonstrating the intricate network of immune interactions
within the TME, it is high time to deeply explore some of these
interactions and to gain valuable insights into the unique
immunomodulatory functions of gd T cells in the context of
cancer immunotherapy. Such acquired knowledge can be fully
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harnessed to develop a multipronged gd T cell-based
immunotherapy focusing on gd T cells’ capability to influence the
activities of other tumor-infiltrating immune cells via rapid cytokine
and chemokine secretion, expression of various co-stimulatory
molecules, and the professional APC functions in cross-priming
and presenting antigens to ab T cells.

For example, we are now armed with several potent therapeutic
agents including the agonist antibodies against BTN3A1 (clone 20.1,
CTX-2026, and ICT-01) and BTN2A1 (ICT-0302) that are capable
of activating and enhancing the immunomodulatory functions of
Vg9Vd2+ T cells (48–53, 227, 313, 314). Treatment targeting
BTN3A1 (CTX-2026) can induce coordinated Vg9Vd2+ and ab
T-cell responses for tumor cell killing and represents a promising
therapeutic approach that could be combined with other immune
checkpoint inhibitors targeting PD-1/PD-L1 (nivolumab and
pembro l i zumab) , CTLA-4/CD86 ( ip i l imumab and
tremelimumab), KIRs (lirilumab and IPH4102), ILT-2 (anti-ILT-
2, anti-HLA-G1, anti-FasL), and NKG2A (monalizumab) to
circumvent potential immunosuppression in TME (11, 204, 205).
These anti-tumor responses could potentially be further enhanced
by inducing the expression of NKG2D ligands in tumor cells using a
proteasome inhibitor (bortezomib) and an alkylating agent
(temozolomide) to promote orchestrated NKG2D-mediated
tumor cell lysis by tumor-infiltrating NK, CD8+ ab, and gd T
cells (240, 256, 257). Moreover, CD137 (4-1BB) co-stimulation with
recombinant human CD137L can boost the therapeutic effect of
Vg9Vd2+ T cell-based immunotherapy and lead to heightened NK
cell-mediated cytotoxicity (73, 75, 101, 315). Taken together, such
combined therapeutic treatment will be a powerful approach to
elicit concerted anti-tumor responses in different tumor-infiltrating
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immune cells and help to maximize the efficacy of future gd T cell-
based immunotherapy treatments in cancer patients.
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