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gd T cells are unconventional T cells, distinguished from ab T cells in a number of functional
properties. Being small in number compared to ab T cells, gd T cells have surprised us
with their pleiotropic roles in various diseases. gd T cells are ambiguous in nature as they
can produce a number of cytokines depending on the (micro) environmental cues and
engage different immune response mechanisms, mainly due to their epigenetic plasticity.
Depending on the disease condition, gd T cells contribute to beneficial or detrimental
response. In this review, we thus discuss the dichotomous nature of gd T cells in cancer,
neuroimmunology and infectious diseases. We shed light on the importance of equal
consideration for systems immunology and personalized approaches, as exemplified by
changes in metabolic requirements. While providing the status of immunotherapy, we will
assess the metabolic (and other) considerations for better outcome of gd T cell-
based treatments.

Keywords: gamma delta T cells, immunotherapy, cancers, infection, neuroimmunology, metabolism, multi-omics
INTRODUCTION

T cells and B cells have emerged as primary lymphocytes lineages throughout 500 million years of
evolutionary conservation, mainly generating antigen receptor diversity through somatic
recombination (1, 2). The broad range of diversity is achieved by the recombination events
occurring on human chromosome 7 for TCR g and b chain genes, and on human chromosome
14 for TCR a and d chain genes. TCR g and d genes in mice are located on chromosomes 13 and 14,
respectively (3, 4). The variable regions of TCR chains comprising of variable (V), diversity (D), and
joining (J) elements give rise to the broad range of diversity which enables recognition of foreign
molecular patterns (3). Conventionally, TCR a and b chains are rearranged and expressed on the
surface to become ab T cells (~95% of CD3+ T cells in human peripheral blood), while TCR g and d
chain-expressing cells become gd T cells (~5% of CD3+ T cells in human peripheral blood). TCR g
and d chain genes are further classified into subfamilies, consequently, the multiple combinations of
these TCR family genes generate many functional gd T-cell subsets such as Vg9+Vd2, Vg9-Vd2, Vd1
and Vd3 which can be paired with various Vg chains. Depending on the ontogeny of the subset, the
phenotypic distribution and ligand recognition change dramatically (5). The Vd1 subset is abundant
in the intestine and gut, but it is a minor population in the peripheral blood. This is in contrast to
the Vd2 subset which is a major population in circulation and a minor subset in the mucosa.
org May 2022 | Volume 13 | Article 8945801

https://www.frontiersin.org/articles/10.3389/fimmu.2022.894580/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.894580/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.894580/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jaydeep.bhat@rub.de
https://doi.org/10.3389/fimmu.2022.894580
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.894580
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.894580&domain=pdf&date_stamp=2022-05-20


Bhat et al. Dichotomy of gd T Cells
The features and functions of both ab and gd T cells differ
remarkably well depending on the thymic and extrathymic
origin, as extrathymic T cells are more functionally “innate”
immune cells (6, 7). Mouse gd T-cell subsets develop through
successive but coordinated waves and reside in most of the
peripheral tissues. These murine gd T cells, classified based on
TCR g chains, are mainly found in two functional states
depending on interferon-g (IFN-g) or interleukin-17 (IL-17)
production (8).

gd T cells possess a unique potential of functional plasticity.
Within the tumor milieu, gd T cells produce cytokines (e.g. IFN-g
or IL-17), which are associated with the prognosis of different
kinds of cancers. This dual roles of human gd T cells in cancer
has been recently reviewed (9). Since gd T cells possess a
dichotomous nature in cancer, autoimmunity and infections,
this review will focus on mechanisms of gd T cells in those areas;
however, being aware about the fact there are important
advances in other fields such as modes of antigen recognition
(5, 10), fetal ontology (11, 12), and involvement in hepatic or
gastro-intestinal diseases (13–16), which is out of the scope of
this review. Apart from the basic understanding of gd T-cell
subsets and their function in health and diseases, the use of gd T
cells for immunotherapeutic applications is of great interest.
Additionally, other recent technological advances such as single-
cell omics, 3D organoid models or humanized mice will facilitate
the progress in harnessing the therapeutic potential of human gd
T cells. In this review, we discuss the pivotal features of gd T cells
and their potential for therapeutic approaches.
DICHOTOMY OF gd T CELLS

gd T cells in Cancers – a Double-
Edged Sword
Due to their potential of immunoserveillance and anti-tumor
response, gd T cells are found to be involved in several types of
cancer including hematological malignancies (17), glioblastoma
(18), gastric (19), colorectal (20) and breast cancer (21).
Dysregulated mevalonate metabolism in cancer cells often leads
to the accumulation of phosphoantigens (pAg) such as
Isopentenyl Pyrophosphate (IPP), which potentiates Vg9Vd2 T-
cell cytotoxicity (22). IPP can be released to the extracellular space
where it is recognized by Vd2 T cells via ATP-binding cassette
transporter A1 (ABCA1) and apoliprotein A-I (apoA-1) (23).
Recent studies have shown that phosphoantigens are bound by
butyrophilins (BTN), specifically BTN3A1 and BTN2A1, which
then interact with the TCR of Vd2 T cells. Formation of such a
signaling complex results in Vd2 T-cell activation and in the anti-
tumor activity (24, 25). Though the molecular details of
butyrophilins- gd TCR signaling complex is largely unknown, a
landmark study showed that BTN3A1 (an isoform of CD277) and
its intracellular B30.2 domain are absolutely essential for inside-
out signaling to activate Vd2 T cells (26), which is further
modulated by Rho-GTPase (27). Dissecting this molecular
complexity further, it was revealed that Vg9Vd2 TCR is required
initially for T-cell activation and formation of immune synapse
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(IS) with CD277 (recruiting BTN3A1 and BTN2A1, independent
of pAg), upon which latter provides mandatory coactivation signal
and stabilizes IS in a pAg-dependent manner (28).

In addition to the butyrophilins (as mentioned above) and
B7 superfamily-like proteins, major histocompatibility class
(MHC) - like antigens and immunoglobulin (Ig) -like
antigens have also been identified as antigens for gd T-cell
subsets [extensively reviewed in (5)]. For example, Vd1 T cells
recognize self-derived or foreign lipids bound by the CD1d
molecule on the surface of target cells (29, 30). Other
interesting examples of MHC-like antigens are MHC-related
protein 1 (MR1), ephrin type-A receptor 2 (EphA2) and
endothelial protein C receptor (EPCR) (31–33). MR1 is a
Vitamin B precursor and known antigen for mucosal
associated invariant T cells, but recently shown to be
recognized by Vd1 T cells from healthy individuals and in
some diseases (31). EphA2 and EPCR are well known stress-
ligands. EPCR serves as a ligand for human Vg4Vd5 subset-
specific recognition of endothelial cells infected by
cytomegalovirus and epithelial tumors (33). Not only EPCR,
annexin A2 (an Ig-like antigen) is also recognized by Vg8Vd3
subset during cellular stress surveillance (34). Interestingly,
non-physiological molecules l ike red algal protein
phycoerythrin have also been reported as antigens for human
and murine IL-17-producing gd T cells (35). Furthermore, the
functional plasticity of gd T cells includes a response mediated
by CD16 and thus participates in the antibody-dependent
cellular cytotoxicity (ADCC). It has been shown to enhance
Vd2 T cell function towards lymphoma cells with the use of
anti-CD20 (36, 37). Vg9Vd2 T-cell cytotoxicity can also be
mediated by the production of cytokines (e.g. IFN-g and TNF-
a), cytotoxic (e.g. granzymes) and apoptotic molecules (e.g.
TRAIL), and/or via NKG2D receptor-ligand axis (22).

gd T cells are highly pleiotropic in function as they possess
both anti-tumor and pro-tumor activities in the tumor
microenvironment (TME). gd T cells are the early producers of
IFN-g during tumorigenesis (38), while IL-2 and IL-15 are the
potent inducers of cytotoxic potential (39, 40), which provide an
important cancer immunomodulating factor to promote other
cytotoxic T lymphocyte responses. Tumor-infiltrating gd T cells
preferentially produce IFN-g and are positively associated with
better patient outcome in case of colon cancer (20). Also,
intracellular IFN-g expression only after phorbol ester and
ionomycin (PMA/Iono) stimulation was remarkable in gd T
cells from TME of ovarian cancer (41). IFN-g producing gd T
cells exert their anti-tumor functions by upregulating MHC class
I molecules and CD54, thus further enhancing CD8 T-cell-
mediated killing (42). Conversely, gd T cells producing IL-17
have been suggested to negatively impact the progression of
colon (43), gallbladder (44), and breast cancer (45), either by
suppressing immune cell functions, promoting immune cell pro-
tumor activity, or by inducing angiogenesis. Hypoxia, which is
commonly found in solid tumors, was attributed to reduce
cytotoxic activity of gd T cells in oral cancer patients (46) and
enhance IL-17 production. Furthermore, gd T cells provide pro-
tumor inflammatory conditions and thus favor tumor
May 2022 | Volume 13 | Article 894580
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progression, participating in most of the hallmarks of cancer
(47, 48).

gd T Cells in Autoimmune Disease of the
Central Nervous System
Classically, gd T cells are known to possess the properties of
innate immune cells such as rapid expression of IFN-g or IL-17
in response to cytokine supplementation without TCR
engagement. TME drives IL-17 production in gd T cells and
hence provide evidence for the gd T-cell function as a
consequence of (micro) environmental signals. The capacity to
produce IL-17 is attributed to epigenetic regulation (49). IL-17
producing gd T cells are implicated in autoimmunity and
inflammatory conditions. Results from experimental
autoimmune encephalomyelitis (EAE), a mouse model of
multiple sclerosis (MS), provide evidence that gd T cells serve
as important source of cytokines IL-17 and IL-23 and
consequently amplify IL-17 production by Th17 cells (50).
Vice versa, IL-17A is also important for the recruitment of IL-
1b secreting myeloid cells that prime pathogenic gdT17 and
Th17 cells in EAE (51), suggesting a regulatory loop. One effect
of IL-17 producing gd T cells is to interfere with regulatory T cells
(Treg) development by preventing the conversion of
conventional T cells into Foxp3+ Treg cells as elicited using
IL23R reporter mice (52). This observation was additionally
supported by enhanced antigen-specific T cell responses by gd
T cells. In EAE, Vg4+IL-17 producing gd T cells differentiate in
the draining lymph nodes, mediated by IL23R and through
activation of Il17 locus, but not via IL-1R1 (53).

Those alterations hold also true for MS. Using single-cell
RNA-seq and spatial transcriptomics Th17/Tfh cells have been
identified as cellular marker of MS disease progression (54).
Though EAE is skewed towards IL-17 producing gd T cells,
studies in human have shown a more remarkable association of
MS with IFN-g producing gd T cells. Vd1 T cells were shown to
produce a high amount of IFN-g in newly diagnosed, untreated
MS patients, which was decreased by treatment with natalizumab
(55). Contrarily, single or dual expression of IFN-g and IL-17 by
Vd2 T cells is lower in MS patients compared to healthy controls
(56). There is also evidence of direct cytotoxicity towards
oligodendrocytes by gd T cells (57). gd T cells could therefore
serve as marker of disease activity. Circulating CCR5+ gd T cells
are decreased during MS relapse in line with higher frequency of
IFN-g+ gd T cells, assuming a Th1 profile (58). Hence, beside
other nonconventional immune cells, single-cell resolution
identified specific gd T cell subsets as contributor of MS
disease activity with potential as therapeutic target.

gd T Cells in Infection
IL-17 production by Th17 cells is usually associated with
protection against bacterial and fungal infection through their
effector function (59). In 2009, the pivotal role of CCR6+ gd T
cells characterized by IL-17 production, innate receptor
expression and recruitment of neutrophils was identified for
the first time as first line response to mycobacteria and Candida
albicans (60). Unlike ab T cells, IL-17 producing gd T cells are
not associated with the engagement of TCR (50, 60, 61). These
Frontiers in Immunology | www.frontiersin.org 3
observations are highly intriguing, since transcriptionally distinct
ab-gd co-expressing T cells have been discovered, which produce
IL-17 upon stimulation by IL-1b and IL-23 and play a
pathogenic role in the CNS autoimmunity in EAE. The
characterization of TCR revealed that these hybrid ab-gd T
cells are mainly Vg4+ and TCRb+ and importantly, provide
protection against Staphylococcus aureus infection (62). This is
consistent with findings showing that Vg6+Vd4+ T cells are
clonally expanded in skin-draining lymph nodes after S. aureus
infection in mice. RNA-seq analysis of TRG and TRD sequences
revealed the clonal expansion of TRGV5, TRGV6, and TRDV4
(63). In contrast to murine gd T cells, human gd T cells play a
diverse role in infection immunity. Human Vd2 T cells have been
known to respond strongly to phosphoantigens such as (E)-4-
hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) which is
a metabolite produced by microbes via the 2-c-methyl-D-
erythritol 4-phosphate (MEP) pathway (64). Vd2 cells are
protective in Plasmodium falciparum infection (65). Recently,
it was shown that gd T cells kill infected red blood cells by
phagocytosis and opsonization via CD16, in addition to the
BTN3A1-TCR mediated degranulation process (66). This host
defense mechanism adds a new aspect to the gd T-cell function
and engagement during immune response. Whether the
phagocytotic machinery of gd T cells is also involved during a
response to other pathogens remains to be determined.

For a long time, the role of gd T cells in mycobacterial
infection has been studied in human and animal models.
Mycobacterium tuberculosis (Mtb) was one of the first bacteria
described to induce gd T cell immune responses (67) by
recognizing Mtb antigens. Bacillus Calmette-Guérin (BCG)
vaccine, the only vaccine protecting against tuberculosis, has
been broadly administered worldwide and it has been shown to
generate a protective Vd2 T cell memory response against Mtb
infection (68). BCG has been also suggested to provide
heterologous protection against infections that are not related
to Mtb (69–72). In fact, in the early 90s, it was shown that in vitro
pre-expanded gd T cells with M. tuberculosis were able to
proliferate in response to re-challenge with unrelated
pathogens such as Listeria monocytogenes , group A
streptococci or S. aureus (73). These results indicate that
human gd T cell responses are not pathogen-specific therefore
raising the question, whether BCG-induced gd T cells contribute
to their cross-protective effect and whether they can develop
innate immune cell memory referred to as “trained immunity”.
Trained immunity was first described in monocytes and
macrophages (which have a shorter half-life) (74, 75).
Therefore, those might be less suitable vaccination targets to
provide long-term protection. The characterization of trained
immunity in long-lived gd T cells could potentially open new
avenues in designing effective vaccines with cross-protective
effects. Whether immune memory responses of gd T cells
contribute to the protection induced by other vaccines still
needs to be explored.

Altogether, it is crucial to broaden the mechanistic knowledge
about the role of gd T cells in infections using systems
immunology approaches such as single-cell multi-omics to
provide better therapeutic interventions. This is especially vital
May 2022 | Volume 13 | Article 894580
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for the development of new generation vaccines, which would
not only trigger ab T cell memory responses but also harness the
therapeutic potential of gd T cells.
gd T CELLS IN SYSTEMS IMMUNOLOGY –

A HOLISTIC APPROACH

The systems approach is defined by the use of a broad strategy
for understanding the outcome of a complex set of components
(76). Multi-omics methods and systems immunology measures
help to investigate changes in the proteome, phenome,
transcriptome, epigenome, metabolome, microbiome as well as
cell-to-cell communication, all of which shape immune cell
responses. A decade ago, these measurements were performed
on a bulk cell population. Nowadays, it is possible to use these
methods at a single-cell resolution. Such datasets are made
publicly available by international consortia such as ImmGen
(https://www.immgen.org) for mouse immune cells and the cell
atlas for humans (https://www.humancel lat las .org) .
Additionally, due to increasing efforts to combine
interdisciplinary approaches such as computational biology
together with data science and machine learning (77), a
comprehensive study of immune cells and their responses is
feasible in defining disease severity/progression, therapeutic
response, or even vaccine effects. Indeed, a new field of
“systems vaccinology” has emerged with the aim to
comprehensively analyze the immune response to vaccination
and understand potential new mechanisms of protection (78).
This will allow immunologists to consider the individual human
variation, possibly identifying the reasons driving differential
immune responses. This holds specifically true for gd T cell
responses, which are largely shaped by environmental factors
and not genetic control (79). A milestone study for chimeric
antigen receptor (CAR) T cells by Melenhorst et al. (2022) shows
an impeccable use of single-cell multi-omics and systems
immunology methods (80). In this longitudinal study, authors
analyzed CD19 chimeric antigen receptor (CAR) T cells in two
chronic lymphocytic leukemia patients over 10 years after
successful CAR T cell transfer. In the earlier time-points, CD4-

CD8-Helioshi CAR T cells in one of these patients were found
using cytometry-by-flight (CyTOF) method. Further
characterization using 5’cellular indexing of transcriptomes
and epitopes by sequencing (CITE-seq) with TCR-seq found
that these cells were gd CAR T cells with specific TRDV1 and
TRGV4 gene expression. However, long-term surviving CAR T
cells were predominated by the CD4+ T cell population with
cytotoxic properties especially at later time points. Yet, the
origins and contribution of these cells to the remission remains
to be determined. Despite a limited number of patients analyzed,
this study is the first to show the potential of systems biology and
single cell omics to understand the efficacy of CAR T-
cell immunotherapy.

Another good example emphasizing the importance of the
systems immunology approach is to evaluate the prognostic
significance of immune cells in various cancers using
CIBERSORT (a machine learning-based algorithm), where gd T
Frontiers in Immunology | www.frontiersin.org 4
cells have emerged as the most favorable leukocyte with global
prognostic association across 25 human cancers (81). Optimizing
this computational identification approach further, tumor-
infiltrating Vg9Vd2 T cells were variably associated with disease
outcome due to considerable high inter-individual variation in its
abundance (82). A combination offlow cytometry and sequencing
results with the help of single sample gene set enrichment analysis
(ssGSEA) method has inferred abundance of 24 immune cell types
in cancer including gd T cells. This algorithm called “Immune Cell
Abundance Identifier (ImmuneCellAI)” could accurately predict
response to anti-PD1 immunotherapy (83). To a limited extent,
we have previously used a comprehensive approach to assess the
disease progression and therapeutic response in patients with gd T
cells malignancies (84, 85). Though the transcriptome and
epigenome of gd T cells are already available, the focus is now
shifted to single-cell studies (Table 1) as it allows to create a
compendium of cell types as exemplified in mice (104) and
humans (105, 106).

An emerging area in system immunology and single-cell
methodology is to decipher the metabolic changes in gd T cells
during the development and differentiation process. Mechanistic
target of rapamycin complex 1 (mTORC1) regulates a distinct
metabolic requirement for thymic development of ab and gd T
cells. Interestingly, mTORC1 signaling further coordinates
developmental signals with TCR and NOTCH pathways (107).
Diving into the details of metabolic requirements at a single-cell
level, Single Cell ENergetIc metabolism (SCENITH) has been
recently developed and used to assess gd T cell energy
metabolism (108, 109). Consequently, this study found that the
metabolic requirements of IL-17+ gd T cells are imprinted during
early thymic development and are maintained in the periphery
and tumor of obese mice (109). A distinct metabolic usage by IFN-
g+ versus IL-17+ gd T cells shows a need for glycolysis versus
oxidative metabolism, respectively. Interestingly, glucose
supplementation elevated the anti-tumor function of IFN-g+ gd
T cells (109). Similarly, altered tumor metabolism also needs to be
studied as it is sensed by gd T cells (32), which may ultimately
implicates gd T cell responses in TME causing hypoxia (46, 110) or
tumor resistance (111). Moreover, recent reports highlight a
crucial role of gd T cells in thermogenesis and sympathetic
innervation (112, 113). Furthermore, the ketogenic diet has been
shown to expand protective gd T cells during an infection with
influenza virus in the lungs (114) and which restrain inflammation
in adipose tissues (97). However, prolonged intake of the ketogenic
diet causes obesity and significantly reduces the adipose tissue-
resident gd T cells (97). Thus, targeting metabolic changes together
with transcriptional changes will help to understand the gd T-cell
differentiation process and its implications in diseases.
gd T CELL-BASED IMMUNOTHERAPY:
MISSING LINKS AND UNEXPLORED
AVENUES

Due to their unique characteristics distinct from conventional ab
T cells, gd T cells are an attractive cellular target for allogeneic
transfer as exemplified by the recent phase I clinical trial in 132
May 2022 | Volume 13 | Article 894580
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late-stage cancer patients (115) and ongoing clinical trial on
patients with solid tumors (https://clinicaltrials.gov/ct2/show/
NCT04765462 ) . The concep t o f gd T ce l l - ba s ed
immunotherapy has been under development for more than a
decade. Earlier, the immunotherapy with gd T cells for cancer
was mainly based on two approaches: in vivo activation of gd T
cells using aminobisphonates (e.g. zoledronate) and adoptive
transfer of in vitro expanded gd T cells (116). The approach of in
vivo activation of gd T cells has extended its toolbox. Because of
the basic research on gd T-cell activation (26), the molecular
mediators of activation (e.g. butyrophilins) can be targeted to
improve immunotherapy outcome. In an ongoing clinical trial,
monoclonal anti-BTN3A1 antibodies (ICT01) are administered
alone or in combination with the checkpoint-inhibitor
pembrolizumab for hematological cancers (https://www.
clinicaltrials.gov/ct2/show/NCT04243499). Besides checkpoint
inhibitors (117), other immunomodulatory agents that could
be used in combination with gd T cell-based immunotherapy
include epigenetic drugs (118, 119), toll-like receptor ligands
Frontiers in Immunology | www.frontiersin.org 5
(120), or even bispecific antibodies targeting Vg9 chains of
Vg9Vd2 T cells (121). Since most of these modulators have
been proposed or shown clinical relevance in vitro, many are
being tested in a clinical trial. Likewise, the approach of using
adoptive transfer of in vitro expanded gd T cells is now suggested
to be supplemented with biomaterials such as cytokines [e.g.
TGF-b (122)] or nutrients [e.g. Vitamin C (123)]. Furthermore,
engineered cytokines have emerged as an attractive tool to
improve T cell immunotherapy by modulating cell expansion,
persistence, tumor homing and adaptation to TME (124). As
engineered IL-2 and IL-15 are already in clinical trials, their use
in gd T cell-based therapies might also be beneficial. The use of
naturally occurring nutrient supplementation such as Vitamin C
could potentially be beneficial too. However, the metabolic
requirement and effect of these nutrients need to be considered
given the inter-individual variation in gd T cell frequency and
their subset distribution due to age, gender, and race (125). These
needs can be complemented for a more personalized approach to
immunotherapy to provide benefit to patients.
TABLE 1 | Summary of single-cell multi-omics datasets from healthy individuals or diseases.

Study Year Disease model
organism

Biological source sc-omics method

Watkin et al.
(86)

2020 Allergy Human PBMCs from peanut allergic (PA) patients and healthy controls scRNA-seq

Boufea et al.
(87)

2020 Breast cancer Human peripheral blood gd T cells from healthy adult donors and from fresh tumor
biopsies of breast cancer patients

scRNA-seq

Pizzolato et al.
(88)

2019 CMV Human PBMC and purified gd T cells from CMV+ and CMV- healthy donors scRNA-seq

Jaeger et al.
(89)

2021 Crohn’s
disease

Human IEL T cells sorted from two Crohn’s disease patients and two controls scRNA-seq

10xgenomics – Healthy Human 10k PBMC from a healthy donor (v3 chemistry) scRNA-seq
Park et al. (90) 2020 Healthy Human dissociated cells from human thymus during development, childhood, and

adult life
scRNA-seq

Tan et al. (91) 2021 Healthy Human gd T cells sorted from neonatal and adult blood scRNA-seq and paired TCR
sequencing

Reitermaier
et al. (92)

2021 Healthy Human CD3+ T cells FACS-sorted from single-cell suspensions of three fetal skin
donors

scRNA-seq

Tan et al. (93) 2019 Healthy Mouse FACS-sorted Vg6+ T cell, CD4+ and/or CD8+ thymocytes scRNA-seq
Sagar et al. (94) 2020 Healthy Mouse Healthy fetal and adult thymus scRNA-seq
Lee et al. (95) 2020 Healthy Mouse total iNKT, MAIT, and gd T cells from the pooled thymi of BALB/c mice scRNA-seq and paired V(D)J

sequencing
Alves de Lima
et al. (96)

2020 Healthy Mouse sorted gd T cells from the dural meninges and spleen of 7-d-old (P7) or 8-
week-old adult mice

scRNA-seq

Goldberg et al.
(97)

2020 Healthy Mouse pan-CD45 FACS-sorted tissue-resident haematopoietic cells from white
adipose tissue

scRNA-seq

Hu et al. (98) 2021 Healthy Mouse sorted hepatic and thymic gd T cells scRNA-seq
Li et al. (99) 2022 Healthy Mouse mouse gd T cells from peripheral lymph nodes, spleen, and thymus scRNA-seq and scATAC-seq
Wang et al.
(100)

2021 Leukemia Human CD45+CD3+ cell populations from B cell-acute lymphoblastic leukemia
and healthy controls

scRNA-seq and paired TCR
sequencing

Melenhorst
et al. (80)

2022 Leukemia Human sorted single CD3+ CAR+ nuclei from patient PBMC scRNA-seq, CITE-seq and paired
TCR sequencing

Gherardin et al.
(101)

2021 Merkel Cell
Carcinoma

Human sorted CD3+ and gd+ T cells from dissociated Merkel Cell Carcinomas
tumor

scRNA-seq and paired TCR
sequencing

Schafflick et al.
(102)

2020 MS Human CSF and blood from MS and healthy donors scRNA-seq

Kaufmann et al.
(54)

2021 MS Human PBMC from MS and healthy donors scRNA-seq

Cerapio et al.
(103)

2021 Ovarian cancer Human gd T-cell infiltrating lymphocytes from ovarian carcinoma scRNA-seq
May 2
The listed datasets are generated either directly using gd T cells or have identified gd T cells in their computational approaches. PBMC, peripheral blood mononuclear cells; CMV,
cytomegalovirus; FACS, fluorescence activated cell sorting; iNKT, invariant natural killer T cells; MAIT, mucosal associated invariant T cells; MS, multiple sclerosis; CAR, chimeric antigen
receptor.
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gd T cell-based immunotherapy has been progressing over the
last decades along with the development of T cell-based therapies
(Figure 1). The novel first-in-class approach is being exploited to
apply genetically modified gd T cells in human (138). Previously,
the Vd1 subset of gd T cells were designed and applied as a new
cellular product called “DOT cells” for adoptive immunotherapy
of leukemia patients (17, 139). Further advancing the approach
of genetic modifications, CAR gd T cell therapy is under
investigation (114, 140, 141). The patient-derived xenograft
model showed anti-leukemic activity and IL-15-mediated long-
term persistence of CD123-CAR-DOTs in acute myeloid
leukemia (142). Following the United States Food and Drug
Administration (US FDA) approval for ADI-01 in the year 2020,
an allogenic CAR gd T cell therapy targeting CD20 protein was
manufactured at clinical scale. As observed in a preclinical study
with B-cell malignancies, CAR gd T cell therapy generated an
innate and adaptive anti-tumor immune response but no
xenogeneic graft-versus-host disease (143). This CD20 CAR gd
T cell therapy is now in a phase I clinical trial (https://www.
clinicaltrials.gov/ct2/show/NCT04735471). The interim analysis
of the ADI-01 phase I clinical trial showed that 50% patients
achieved complete response (CR) while 75% patients achieved
objective response rate (ORR) without any ADI-01-related
serious adverse events using CD20-CAR gd T cell therapy
(press release dated on December 6, 2021; https://www.
adicetbio.com). Furthermore, the ADI-01 therapy has been just
granted the Fast Track Designation by the US FDA raising hopes
Frontiers in Immunology | www.frontiersin.org 6
for even faster implementation of gd T cell-based therapies into
daily clinical practice (press release dated on April 19, 2022;
https://www.adicetbio.com). CAR T cell therapy is being
broadened towards T cells engineered with gdTCR (TEG) (138,
144). With approval by US FDA, genetically modified gd T cells
might benefit a broad spectrum of cancer patients. In the future,
targeting gd T cells with tailored immunotherapies might also be
a potential new avenue for the treatment of other diseases such as
MS and infections.
CONCLUSION

Though neglected for a long time, gd T cells have emerged as a
key immune cell type, especially in cancer biology and are
already investigated in clinical trials. Its pleiotropic role is
further being investigated in other disorders including immune
diseases such as MS, infections or transplantation. Use of “big
data” and integrative multi-omics approaches enable us to more
specifical ly unravel molecular mechanisms. This is
complemented by the implementation of new methods such as
3D organoids combined with state-of-the-art technologies such
as spatial transcriptomics. However, gd T cells still require a
clinical testing model for development of immunotherapy.
Altogether, targeting gd T cells will allow us to more precisely
address a broad range of conditions, eventually allowing a gd T
cell targeted personalized immunotherapy.
FIGURE 1 | Timeline for gd T-cell-based immunotherapy. A brief history of the breakthrough findings that led to the development of gd T cell-based immunotherapies. gd
T cells were discovered in 1986 (126, 127), after accidental cloning of the gamma chain of the T cell receptor (TCR) in 1984 (128). At the same time, Rosenberg’s group
started to treat cancer patients with their own tumor-infiltrating lymphocytes leading to the first patient to be cured from cancer using this method (129, 130). Fast forward
from 1989 to year 2017 (131–137), the FDA approved the first CAR T cells for the treatment of B-cell lymphomas, Kymriah® and Yescarta® developed by Novartis
Pharmaceuticals Corp. (https://www.hcp.novartis.com/home/) and Kite Pharma, Inc. (https://www.kitepharma.com/), respectively. The first big success came in 2020 for
CAR therapy with gd T cells, when the FDA cleared an investigational new drug (IND) application and orphan drug designation for GDX012 (an allogenic Vd1 T-cell-based
therapy) developed by Lymphact and later GammaDelta Therapeutics (https://gammadeltatx.com/). Also, at the same time, the Adicet Bio (https://www.adicetbio.com/)
received the FDA approval for an IND application ADI-01, an allogenic CAR gd T cell therapy targeting CD20 protein in non-Hodgkin lymphomas. In 2021, the first Phase I
Clinical Trials of gd T-cell-based immunotherapies were initiated. TCR, T-cell receptor; FDA, The United States Food and Drug Administration; IL-2, interleukin-2; CAR,
chimeric antigen receptor; pAg, phosphoantigen; PBMC, peripheral blood mononuclear cells; ALL, acute lymphoblastic leukemia; NK cells, natural killer cells; CIK cells,
cytokine-induced killer cells.
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