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m6A-related metabolism
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with distinct prognosis and
immunotherapy response
in soft tissue sarcoma
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N6-methyladenosine (m6A) methylation, one of the most crucial RNA

modifications, has been proven to play a key role that affect prognosis of soft

tissue sarcoma (STS). However, m6A methylation potential role in STS

metabolic processes remains unknown. We comprehensively estimated the

m6A metabolic molecular subtypes and corresponding survival, immunity,

genomic and stemness characteristics based on 568 STS samples and m6A

related metabolic pathways. Then, to quantify the m6A metabolic subtypes,

machine learning algorithms were used to develop the m6A-metabolic Scores

of individual patients. Finally, two distinct m6A metabolic subtypes (Cluster A

and Cluster B) among the STS patients were identified. Compared to Cluster B

subtype, the Cluster A subtype was mainly characterized by better survival

advantages, activated anti-tumor immune microenvironment, lower gene

mutation frequency and higher anti-PD-1 immunotherapy response

rates. We also found that the m6A-metabolic Scores could accurately predict

the molecular subtype of STS, prognosis, the abundance of immune cell

infiltration, tumor metastasis status, sensitivity to chemotherapeutics and

immunotherapy response. In general, this study revealed that m6A-regulated

tumor metabolism processes played a key role in terms of prognosis of STS,

tumor progression, and immune microenvironment. The identification of

metabolic molecular subtypes and the construction of m6A-metabolic Score

will help to more effectively guide immunotherapy, metabolic therapy and

chemotherapy in STS.
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Introduction

Soft tissue sarcoma (STS) constitutes more than 50 subtypes of

malignant tumors that originate from the interstitial connective

tissues (1). The main treatment options for patients with STS

include surgical resection, radiotherapy, and chemotherapy.

However, metastasis or recurrence is reported in approximately

50% of STS patients after treatment (2). Furthermore, the median

survival time of patients with metastatic STS is only 8-12 months

(3). Immunotherapy is a promising treatment for several solid

tumors. The survival benefits of immune checkpoint inhibitors are

higher in several cancers compared to chemotherapy and targeted

therapy (4). Moreover, immunotherapies such as IL-15 cytokine

therapy in combination with TIGIT blockade therapy (5) as well as

PD-1 and CTLA-4 inhibitors (6) have made progress in treating

patients with STS. However, the complexity and heterogeneity of

tumor microenvironment (TME) affects the efficacy of

immunotherapies in STS patients. Currently, the immunotherapy

response rate in patients with STS is significantly low (7). Therefore,

more precise molecular classification is urgently needed to unravel

the TME heterogeneity of STS to select patients more suitable for

immunotherapy and improve the response rate of immunotherapy.

N6-methyladenosine (m6A) is the most abundant and

common epigenetic modification in the eukaryotic mRNAs.

The protein machinery involved in m6A recognition, addition,

or removal, including m6A methyltransferases (writers), m6A

demethylases (erasers), and m6A readers, has been well

characterized. Several reports have shown that alterations in

m6A mRNA methylation disrupt gene expression and the

downstream cellular processes, and play a significant role in

the initiation and progression of tumors (8). Dysregulation of

m6A mRNAmethylation in the cancer cells alters the expression

of metabolic genes and the activities of the related metabolic

pathways, thereby significantly affecting proliferation,

differentiation, invasion, and metastasis of cancer cells (9, 10).

Metabolic pathways play a crucial role in tumorigenesis, cancer

cell survival, and regulation of the tumor immune

microenvironment (TIME) (11). Therefore, characterization of

the m6A-related metabolic signatures in the STS tissues can

unravel the status of the tumor microenvironment (TME) and

help the clinicians to strategize immunotherapy options for

individual patients. Recent study has shown that molecular

typing of STS tumors is more accurate than the traditional

classification of STS tumors based on pathological staging and

TNM staging (10). Therefore, in this study, we integrated 568

STS samples from the TCGA-SARC and GSE21050 cohorts, and

comprehensively evaluated the association between m6A-related

metabolic pathways and immune characteristics of STS using

multi-omics data. We also analyzed the different molecular

subtypes of STS based on m6A-related metabolism.

Furthermore, we established a scoring system based on m6A-

related metabolism and evaluated its accuracy in predicting the

prognosis and immunotherapy response of STS patients.
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Materials and methods

STS dataset acquisition
and processing

RNA-sequencing data were downloaded for the STS samples

in the TCGA-SARC cohort (https://gdc.xenahubs.net) in the

form of normalized Fragments Per Kilobase of transcript per

Million mapped reads (FPKM). Then, the FPKM values were

then transformed into transcripts per kilobase million (TPM)

values. The microarray data for the STS samples from the

GSE21050 cohort were downloaded from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).

The TCGA and GEO datasets (n=568) were merged and the

batch effect biases were corrected using the “ComBat” algorithm

based on R package “sva”. All statistical analyses were conducted

using R software 4.1.2 (https://www.r-project.org/).
Pre-processing clinicopathological and
genomic data

Clinicopathological data, including overall survival rates of

the STS patients in the TCGA-SARC and GSE21050 cohorts,

were extracted. The baseline clinicopathological characteristics

of the STS samples and immune microenvironment tissue

classification (12) are shown in Supplementary Table S1.

Genomic data, including somatic mutations and copy number

alterations (CNA) of the TCGA-SARC cohort, were obtained

from the Firehose project (https://gdac.broadinstitute.org/). The

mutational landscape of the STS samples was visualized using

the “maftools” R package (13). The arm-level and focal-level

genome amplifications and deletions were analyzed using the

GISTIC 2.0 package based on GenePattern tool (https://cloud.

genepattern.org) (14).
Metabolic pathway acquisition and
unsupervised clustering

We acquired 114 gene sets related to tumor metabolism

from previously published study (15). The single sample Gene

Set Enrichment Analysis (ssGSEA) algorithm was used to

estimate the enrichment scores of various metabolic pathways

based on gene expression profiles. Each sample was assigned a

score corresponding to the status of each metabolic pathways.

Next, we identified 21 m6A regulators from previous studies

(16), including 11 m6A readers (ELAVL1, FMR1, HNRNPA2B1,

HNRNPC, IGF2BP1, LRPPRC, YTHDC1, YTHDC2, YTHDF1,

YTHDF2, and YTHDF3), 8 m6A writers (CBLL1, KIAA1429,

METTL14, METTL3, RBM15, RBM15B, WTAP, and ZC3H13),

and 2 m6A erasers (ALKBH5 and FTO). Pearson’s correlation

analysis was used to identify m6A-related metabolic pathways
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using |Pearson’s r| >0.4 and p <0.001 as the criteria. Univariate

Cox regression analysis was used to identify the m6A-related

metabolic pathways closely related to the prognosis of STS

patients. The m6A-related metabolic pathways were ranked

according to their degree of importance to STS patient

prognosis (nrep = 100 iterations in the Monte Carlo

simulation; nstep = 5) using the random survival forest (RSF)

algorithm. Then, a network to demonstrate the interactions

between the m6A-related metabolic pathways was constructed

based on Spearman and distance correlation analyses.

The unsupervised clustering analysis was performed using the

Consensus Clustering algorithm to identify clusters based on

distinct statuses of the m6A-related metabolic pathways

associated with prognosis. The STS samples were classified by k-

means, with k from 2 to 10 using the ”ConsensusClusterPlus” R

package (17) and 1000 repetitions were performed to ensure

clustering stability. The consensus clustering matrix and

cumulative distribution function (CDF) curve analysis was used

to determine the optimal number of clusters.
Tumor immune microenvironment
analysis

The abundance of immune cell types in the TIME was

determined using the “immunedeconv” and “gsva” R packages

(18, 19), which estimated immune cell infiltration based on

seven different algorithms, namely, ssGSEA, TIMER, xCell,

MCP-counter, EPIC, quanTIseq, and IPS. “ESTIMATE” R

package (20) was then used to determine the immune scores

and tumor purity of different molecular subtypes of STS patients.
Gene set variation analysis and
functional enrichment analysis

The pathway enrichment profiles of different clusters were

evaluated using the “gsva” R package. The enrichment scores of

twelve well-defined tumor-related gene sets or pathways

(Supplementary Table S2) were calculated for all samples

using the GSVA algorithm. Gene ontology (GO) enrichment

analysis was performed with the “clusterProfiler” R package (21)

using q-value <0.05 as the cutoff.
Calculation of stemness index

The one-class logistic regression (OCLR) machine learning

algorithm (22) was used to calculate the mRNA expression-

based stemness index (mRNAsi) of the tumor samples. The

mRNAsi value indicated the stem cell-like features of the cancer

cells in the samples. We then compared the differences in

stemness levels (mRNAsi) between the clusters using
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Wilcoxon test. P values of less than 0.05 were considered

statistically significant.
Evaluation of the
m6A-metabolic score

Next, we evaluated the m6A-metabolic Score for STS

patients. First, we identified the differentially expressed genes

(DEGs) using log2 fold change (FC) >1.5 and adjusted P-value

<0.05 as the criteria between the between clusters based on the

status of the m6A-related metabolic pathways using “limma” R

package (23). Then, the unsupervised clustering algorithm

consensus clustering was used to assign STS patients into

different gene clusters based on the DEGs. The m6A-related

metabolism scoring system was developed using the least

absolute shrinkage and selection operator (LASSO) algorithm

based on the “glmnet” R package with 10-fold cross validation to

estimate the penalty parameters (24). The m6A-metabolic Score

was calculated using the following formula: m6A-metabolic

Score =on
i=1Coefficient ∗Exp, where Exp is the expression

value of each selected hub gene from LASSO algorithm. Then,

we identified hub genes as independent prognostic factors using

multivariate Cox regression analysis. We then developed a

clinical nomogram to predict the survival of STS patients by

integrating the clinicopathological features and m6A-metabolic

scores using the “rms” R package.

The cutoff value was determined based on the correlation

between the m6A-metabolic score and prognosis using the

“surv-cutpoint” function of the “survminer” R package. The

STS patients were classified into groups with high- and low-

m6A-metabolic Scores based on the cut-off value.
Immunotherapy response prediction

The expression levels of 14 immune checkpoint-related

genes were used to predict the immunotherapy response of

each STS patient. Next, the Tumor Immune Dysfunction

and Exclusion (TIDE) algorithm was used to predict responses

to immune checkpoint blockade therapy (25). The tumor

immune evasion characteristics of the pre-treatment tumor

profiles were derived by integrating the expression signatures

of T cell dysfunction and T cell exclusion in the tumor tissues.

Furthermore, the “tumor inflammation signature” (TIS) score

consisted of 18 key gene signatures that were estimated to

quantify immune response activation in the TIME (26). TIS

score was then used to predict response to anti-PD-1

immunotherapy. In general, a lower TIDE score or a higher

TIS score correlated with better response to immunotherapy.

The correlation between m6A-related metabolism score, TIDE

score, and TIS score was analyzed and the differences in the
frontiersin.org
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TIDE scores and TIS scores between the high and low m6A-

metabolic score groups was compared.

The Subclass Mapping (SubMap) algorithm (27) was used to

compare the similarities in the expression profiles of the high-

and low-m6A-metabolic Score groups among the STS cohorts

and a clinical cohort with 47 melanoma patients treated with

immunotherapy (28). The lower the p values, the higher the

similarity. Recommended default parameters, 1000 random

permutations for Fisher ’s statistics, were used. The

“complexHeatmap” R package (29) was used to visualize the

SubMap results.
Chemotherapy response prediction

The chemotherapy response was predicted for each STS

sample using the predictive model for the cell line data from the

publicly available Genomics of Drug Sensitivity in Cancer

(GDSC) database (https://www.cancerrxgene.org/). A lower

half-maximal inhibitory concentration (IC50), estimated by

ridge regression, indicates a better sensitivity to a given drug.

IC50 of a drug was estimated by ridge regression to determine

the degree of sensitivity. The chemotherapeutic response

prediction was performed using the “pRRophetic” R

package (30).
Results

Eleven prognostic m6A-related
metabolic pathways are identified in the
STS cohort

The study design and strategy are shown in Figure 1A. To

reduce the likelihood of batch effects from non-biological

technical biases, the “ComBat” algorithm was used between

TCGA-SARC and GSE21050 datasets (Supplementary Figure

S1). The ssGSEA algorithm was used to analyze the status of 114

metabolic pathways in the STS samples. The metabolic pathways

were assigned scores for every STS sample enrolled in this study.

Then, 35 m6A-related metabolic pathways were identified by

evaluating 21 m6A regulators (8 writers, 2 erasers, and 11

readers) and the 114 metabolic pathways using Pearson

correlation analysis (Supplementary Table S3). Univariate Cox

regression analysis showed that 11 m6A-related metabolic

pathways were significantly associated with the prognosis of

STS patients. These 11 metabolic pathways were used for

subsequent analysis. Figure 1B shows the prognostic values of

the 11 m6A-related metabolic pathways in the STS patients. A

total of 8 m6A regulators (VIRMA, METTL3, LRPPRC, ELAVL1,

YTHDC1, ALKBH5, YTHDF2, METTL14) associated with 11

metabolic pathways that play a key role in the prognosis of STS
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were screened, and their co-expression networks were showed in

Figure 1C. These 11 m6A-related metabolic pathways were

ranked using the RSF algorithm. Pyrimidine metabolism,

fructose and mannose metabolism, and linoleic acid

metabolism were the top 3 m6A-related metabolic

pathways (Figure 1D).
Identification and validation of two
distinct molecular subtypes of STS based
on m6A-related metabolic pathways

Consensus clustering was performed to identify the

molecular subtypes of STS patients based on the prognostic

m6A-related metabolic pathways. K=2 was selected as the

optimal number of clusters based on consensus matrix and the

cumulative distribution function (CDF) plots (Figures 2A,

Supplementary Figure S2). STS patients were classified into

two subtypes, Cluster A (n=262) and Cluster B (n=306). The

graph learning-based dimensionality reduction technique was

used to distribute individual STS patients into specific branches

based on the expression profiles of the prognostic m6A-related

metabolic pathways. This analysis also classified STS patients

into two groups that were consistent with the defined molecular

subtypes (Figure 2B). Furthermore, clustering analysis was

performed separately on the TCGA-SARC and GSE21050

cohorts as the validation datasets. The results again confirmed

the stability of the K=2 clusters (Supplementary Figure

S3A). Kaplan–Meier survival analysis demonstrated that the

overall survival (OS) rates of STS patients in Cluster A was

significantly higher than those in Cluster B (Figure 2C). The

heatmap in Supplementary Figure S3B shows the differences in

the scores of the m6A-related metabolic pathways in the STS

patients belonging to clusters A and B. The interaction network

between the 11 prognostic m6A-related metabolic pathways and

their prognostic value were shown in Figure 2D. These results

demonstrated significant differences in the survival rates and the

metabolic characteristics of the STS patients belonging to these

two molecular subtypes.
STS samples in Cluster A subtype
demonstrate higher anti-tumor immunity
than those in Cluster B subtype

Next, we investigated the differences in the biological

characteristics of the two subtypes to determine the

mechanisms underlying the differences in prognosis. The

evaluation of 11 cancer-related pathways (CD8+ T effector,

Antigen processing machinery, Epithelial-Mesenchymal

Transition [EMT], Angiogenesis, Cell cycle, DNA replication,

Nucleotide excision repair, DNA damage repair, Homologous

recombination, Mismatch repair, Hypoxia) using the GSVA
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algorithm showed that pathways related to immune activation

were significantly up-regulated in the STS samples from Cluster

A, whereas, pathways related to EMT, cell cycle, and DNA

replication were significantly up-regulated in the STS samples

from Cluster B (Figure 2E). Next, the differences in the TIME

and the status of immune cell infiltration were analyzed in the

STS tissues from the two clusters using seven algorithms,

namely, ssGSEA, MCPcounter, xCell, EPIC, TIMER,

quanTIseq, and IPS. STS samples in Cluster A showed

significantly higher infiltration of antitumor immune cell types

such as dendritic cells, CD8+ T cells, and cytotoxic T cells

compared to the STS samples in Cluster B (Supplementary

Figure S3C). The immune scores were higher for the STS

samples in Cluster A compared to the samples in Cluster B,

whereas, tumor purity was higher for the STS samples in Cluster

B compared to the STS samples in Cluster A (Figure 2F). Cluster

B samples also showed higher degree of tumor metastases

(Figure 2G) and stemness levels (mRNAsi) compared to the

Cluster A samples (Figure 2H). Furthermore, the m6A

regulators were up-regulated in the Cluster B samples

compared to the Cluster A samples (Figure 2I). Overall, these
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results showed that STS samples in Cluster A exhibited higher

anti-tumor TIME than the STS samples in Cluster B.

Cluster B subtype shows higher genomic
mutations and alterations than Cluster A
subtype

Next, we investigated the differences in somatic mutations

and CNA between the two molecular subtypes of STS. Among

the somatic mutations, missense mutations and single

nucleotide polymorphisms (C>T) were the most common

mutation types in the STS samples. The five most frequently

mutated genes were TP53, TTN, ATRX, MUC16, and MUC4

(Figure 3A). The mutation landscape for the two clusters was

displayed using the oncoPrint plot. The mutation frequency was

significantly higher for the Cluster B samples (72.52%)

compared to the Cluster A samples (59.62%) (Figures 3B, C).

Among the commonly mutated genes, the mutation frequency

of TP53 was highest in both groups. STS patients from both

clusters exhibited significant differences in the frequency of

deletions at the arm level. Overall, the amplification and
frontiersin.or
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FIGURE 1

Flow diagram and prognostic m6A-related metabolic pathways are identified (A) Flow diagram shows this study’s systematic analysis process. (B)
Univariate Cox regression analysis reveals 11 m6A related metabolic pathways significantly correlated with STS prognosis (C) The alluvial diagram displays
8 m6A regulators and 11 m6A-related metabolic pathways. (D) 11 m6A related metabolic pathways were ranked by Random Survival Forests algorithm.
g
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deletion frequencies were significantly higher in the Cluster B

samples at both the arm-level and the focal-level compared to

the Cluster A samples (Figure 3D, E).
Cluster A patients show better response
to immunotherapy than the Cluster B
patients

Since STS samples in clusters A and B show significant

differences in TIME, we postulated differential responses to

immunotherapy. Therefore, we analyzed the treatment

responses of both molecular subtypes to immunotherapy by

estimating the gene signatures related to immune checkpoint
Frontiers in Immunology 06
genes. Cluster A samples showed higher activation levels

compared to the Cluster B samples for the immune

checkpoint gene set (Figure 4A). This suggested that STS

patients in Cluster A group would benefit more from the

treatment with immune checkpoint inhibitors compared to the

STS patients in Cluster B. Then, we verified these results using

the TIS and TIDE scores. TIS score was higher and TIDE score

was lower for the STS patients in Cluster A compared to the

patients in Cluster B (Figures 4B, C). Finally, we predicted the

responses of the two molecular subtypes to PD-1 and CTLA4

immune checkpoint inhibitors by Submap analysis. The results

demonstrated that patients in Cluster A were more sensitive to

anti-PD-1 therapy compared to the patients in Cluster

B (Figure 4D).
A B

D
E F

G I
H

C

FIGURE 2

The molecular subtypes based on prognostic m6A-related metabolic pathways (A) The consensus matrix heatmap corresponding to k=2
obtained by consensus clustering. (B) STS patients could be stratified into two subtypes based on m6A-related metabolic pathways; each
point represents a patient with colors corresponding to two subtypes. (C) Kaplan–Meier curves for overall survival of 568 STS patients from
TCGA-SARC and GSE21050 cohorts. Log-rank test revealed P-value <0.001. (D) The interactions of 11 m6A-related metabolic pathways in
STS. The size of the circles indicated the effect of each m6A-related metabolic pathway on prognosis, respectively. Prognostic risk factors
were shown in purple and prognostic favorable factors were shown in green. The lines connecting m6A-related metabolic pathways
represented the interactions between m6A-related metabolic pathways, and the thickness of the lines represented the correlation strength
estimated by Spearman correlation analysis. Red was a positive correlation, and blue was a negative correlation. (E) Differences in immune-
related and cancer-related signatures between Cluster A and B. The asterisks represented the statistical p value (*P < 0.05; ***P < 0.001).
(F) Violin plot shows the difference of ImmuneScore and tumor purity from ESTIMATE algorithms in Cluster A and B. (G) The proportion of
STS patients with metastatic status in TCGA-SARC and GSE21050 cohorts. (H) The box plot shows differences in stemness index (mRNAsi)
between Cluster A and B. The statistical difference of clusters was compared through the Wilcoxon test. (I) The difference of expression for
eight m6A regulators associated with metabolic pathways between Cluster A and B. Wilcoxon test was used to test statistical difference
(***P < 0.001).
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Analysis of DEGs shows two
geneClusters of STS patients

Next, we analyzed the DEGs between the two molecular

subtypes by identifying the key genes and determine the

potential biological effects. We identified 150 DEGs between

the two molecular subtypes by analyzing gene expression profiles

using the “limma” package (Supplementary Table S4). The result

of the GO enrichment analysis was observed in the genes related

to humoral immune response, complement activation,

regulation of immune effect process, and some immune

diseases (Figure 5A). Subsequently, unsupervised clustering

analysis based on the expression patterns of the DEGs

identified two molecular subtypes because K=2 was the

optimal setting to distinguish the STS samples accurately

(Figures 5B, Supplementary Figure S3D). The 568 STS samples

were divided into geneCluster A (n=261) and geneCluster B

(n=307). The 11 prognostic m6A-related metabolic pathways

were significantly different between the two geneClusters

(Figure 5C). Furthermore, 150 DEGs were between

geneCluster A and geneCluster B were shown in Figure 5D.

Kaplan-Meier survival curve analysis showed that the OS rates

were higher for patients in geneCluster A compared to the

patients in geneCluster B (Figure 5E). Thus, geneCluster A
Frontiers in Immunology 07
corresponds to the Cluster A phenotype, and geneCluster B

corresponds to the Cluster B phenotype.
The m6A-related metabolic scoring
system was established for estimating
prognosis of STS patients based on 12
hub genes

We established a scoring system based on m6A-related

metabolism (m6A-metabolic Score) to assess the prognosis of

all STS patients (Supplementary Table S5). Firstly, we performed

univariate Cox regression analysis for the 150 DEGs to identify

the prognostic genes. Then, we identified 104 DEGs that were

significantly associated with the OS rates of STS patients

(Supplementary Table S6). Finally, a machine learning model,

LASSO-penalized Cox analysis was used to identify 12 hub genes

(ACTN1, ITGA10, MYLK, CNN1, LYVE1, IGF1, CPVL, C1S,

PODN, ALDH1A1, MFAP5, and IGHM) for estimating the

m6A-metabolic Score of each STS patients (Figure 6A).

Among these hub genes, ITGA10, MYLK, LYVE1, IGF1,

CPVL, C1S, ALDH1A1 and MFAP5 were identified as

independent prognostic factors for the STS patients using

multivariate Cox regression analysis (Figure 6B).
A B

D E

C

FIGURE 3

Comparison of somatic mutation and CNA analysis between Clusters. (A) The summary of the overall distribution of mutation in STS. (B, C) The
oncoPrint plots show tumor somatic mutation landscape between Cluster A subtype (B) and Cluster B subtype (C). (D, E) Comparisons of arm-
level amplification and deletion frequencies and focal-level amplification and deletion levels between Cluster A and Cluster B *P < 0.05.
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Low m6A-metabolic scores group show
better prognosis than high m6A-
metabolic scores

Next, we analyzed the correlation between the m6A-

metabolic score and TIME-related biological processes. The

m6A-metabolic score showed negative correlation with CD8+ T

effectors, antigen processing machinery, immune checkpoints,

and other immune-related biological processes (Figure 6C).

Then, based on the optimal cutoff m6A-metabolic score of

-1.86, the STS samples were divided into two groups with high

(n=193) and low (n=375) m6A-metabolic Scores. Kaplan-Meier

survival curve analysis showed that the OS rates of STS patients

with low m6A-metabolic Scores were significantly higher than

those with high m6A-metabolic Scores (Figure 6D). The survival

analysis was performed separately with the TCGA-SARC and
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GSE21050 cohorts to validate the accuracy of the results and the

same trend was observed (Supplementary Figures S3E, F). These

results demonstrated that the m6A-metabolic Score could be

used to predict the survival of STS patients.

The distribution of m6A-metabolic Scores, survival status,

survival time, and expression of the 12 hub genes are shown in

Figure 6E. We then verified the accuracy in predicting prognosis of

STS patients with m6A-metabolic Scores and obtained an AUC

value of 0.798 in ROC curve (Figure 6F), thereby demonstrating the

accuracy of the m6A-metabolic Score in predicting the survival

outcomes of STS patients compared to the other clinicopathological

indicators (Age, Histological type, Gender and Race, etc.). We then

evaluated the differences in the immune cell proportions in the

TME of the two groups using ssGSEA, MCPcounter, xCell, EPIC,

TIMER, quanTIseq, and IPS algorithms. The results showed

significantly higher infiltration of the anti-tumor immune cells
A B

D

C

FIGURE 4

Immune checkpoint inhibitor therapy responses between Clusters (A) The differences in the scores of immune checkpoint gene set between
Cluster A and Cluster B were compared. Statistical differences between the two subtypes were compared by Wilcoxon test (***P < 0.001).
(B, C) The violin plots demonstrate the difference between TIDE score (B) and TIS score (C) in the Cluster A and Cluster B groups. Wilcoxon test
was used to compare the differences between groups (***P < 0.001). (D) Submap analysis shows that Cluster A subtype could be more sensitive
to anti-PD-1 treatment (Bonferroni corrected P-value = 0.00).
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such as CD8+ T cells, NK cells and dendritic cells in the low m6A-

metabolic Score group compared to the high-m6A-metabolic Score

group; the infiltration of pro-tumorigenic immune cells such as Th2

cells was higher in the high m6A-metabolic Score group compared

to the low m6A-metabolic Score group (Figure 6G). ESTIMATE

analysis also showed higher infiltration of the immune cells in the

low m6A-metabolic Score group compared to the high m6A-

metabolic Score group (Figure 6H).

The Cluster A and geneCluster A groups were associated

with low m6A-metabolic Scores and better prognosis compared

to the Cluster B and geneCluster B groups (Figures 6I, J and

Supplementary Figure S3G). Furthermore, the mutation profiles

and landscape were visualized using OncoPrint plot between the

high- and low-m6A-metabolic Score groups. The high m6A-

metabolic Scores group (Figure 6K) exhibited higher overall gene

mutation rates than low m6A-metabolic Scores group

(Figure 6L). As shown in Figure 6M, top 13 significant

differences were observed in the high- and low-m6A-metabolic

Score groups. The number of mutations were significantly

higher in the high m6A-metabolic Score group compared to

the low m6A-metabolic Score group. Furthermore, STS patients

in the high m6A-metabolic Score group showed higher

proportion of metastases compared to those in the low m6A-

metabolic Score group (Figure 6N). Patients with complete

clinical data were used to construct the prognostic nomogram

to predict the 1-, 3-, and 5-year survival rates (Figure 6O).
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We calculated m6A-metabolic Scores for different immune

microenvironment tissue subtypes and found that the

Inflammatory subtype had the lowest m6A-metabolic Score

(Supplementary Figure S4A). We also found that patients in

high ImmuneScore group had lower m6A-metabolic Scores than

low ImmuneScore group (Supplementary Figure S4B). Next,

according to the median survival time of STS patients, patients

greater than the median were classified as longer survival time

group, and those less than the median were classified as shorter

survival time group. We found that the longer survival time

group had lower m6A-metabolic Scores than the shorter survival

time group (Supplementary Figure S4C). For patient survival

status information, we also found that patients from alive group

had lower m6A-metabolic Scores than dead group

(Supplementary Figure S4D). Besides, STS patients with

metastases had higher m6A-metabolic Scores than primary

STS patients (Supplementary Figure S4E).
STS patients with low m6A-metabolic
scores are more sensitive to
immunotherapy and chemotherapeutic
drug sensitivity

The expression levels of 14 immune checkpoint-associated

genes including PDCD1 and CD274 were significantly higher in
A B

D

E

C

FIGURE 5

Construction of geneClusters. (A) Metascape enrichment network displayed the enriched terms for DEGs. Cluster annotations were shown in
the color code. (B) The consensus clustering matrix for geneCluste (K=2). (C) The difference of 11 m6A related metabolic pathways between
geneClusters (**P < 0.01; ***P < 0.001). (D) The volcano plot shows DEGs of between geneCluster-A and geneCluster-B. (E) Kaplan-Meier
curves for overall survival of STS patients between geneCluster A and geneCluster B groups.
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FIGURE 6

Biological characteristics andmutations between high and lowm6A-metabolic Scores. (A) LASSO Cox regressionmodel construction. l selection by 10-
fold cross-validation. The partial likelihood deviance with changing of log (l) was plotted. (B) Forest plot shows 12 hub genes usingmultivariate cox
regression analysis. (C) Correlations betweenm6A-metabolic Score and immune related biological processes, metabolic pathways, tumor-associated
pathways. (D) Kaplan-Meier curves of overall survival in high and lowm6A-metabolic Score groups for the TCGA-SARC and GSE21050 cohorts. (E)
Comparison of differences in m6Ametabolic Score, overall survival, and gene expression of 12 selected hub genes between high and lowm6A-metabolic
Score groups. (F) The ROC curve was used to calculate the area under the curve (AUC) of m6A-metabolic Score (AUC=0.798). (G) The heatmap
demonstrates immune cell infiltration of high and lowm6A-metabolic Score groups by ssGSEA, MCPcounter, xCell, EPIC, TIMER, quanTlseq and IPS
algorithms. (H) The violin plot shows differences in immuneScore between the high and lowm6A-metabolic Score groups. Statistical differences between
the high and lowm6A-metabolic Score groups were compared by theWilcoxon test (***, P < 0.001). (I) Alluvial diagram displays changes in Clusters,
geneClusters, m6A-metabolic Score and survival outcomes. (J) The violin plot reveals the differences of m6A-metabolic Scores between Cluster A and
Cluster B TheWilcoxon test was used to compare the statistical difference between two groups. (K, L) The OncoPrint plots were drawn to reflect the
landscape of mutations in high and lowm6A-metabolic Score groups. (M) The forest plot revealed differences in 13mutated genes between high and low
m6A-metabolic Score groups (*, P < 0.05). (N) The proportion of tumor metastasis status in the high and lowm6A-metabolic Score groups. Metastasis,
red; Nometastasis, blue. (O) A prognostic nomogram predicting 1-, 3-, and 5-year overall survival of STS.
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the low m6A-metabolic Score group compared to the high m6A-

metabolic Score group (Figure 7A). Furthermore, TIDE scores

were lower and TIS scores were higher for the low m6A-

metabolic Score group (Figures 7B, C). SubMap analysis

showed that STS patients in the low m6A-metabolic Score

group were more responsive to treatment with the PD-1

inhibitors (Figure 7D). The m6A-metabolic score also showed

positive correlation with the TIDE score and negative correlation

with the TIS score (Figure 7E). These suggested that STS patients

with lower m6A-metabolic Scores were more sensitive

to immunotherapy.

Chemotherapy is a standard treatment for the STS patients.

Therefore, we analyzed the response of the two groups to

chemotherapy. IC50 values indicate the potency of

chemotherapeutic drugs to induce tumor cell apoptosis. STS
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samples in the low m6A-metabolic Score group were associated

with lower IC50 values for 44 chemotherapeutic drugs compared

with high m6A-metabolic Score group (Figure 7F). This

suggested that chemotherapeutic response was significantly

higher in the STS patients from the low m6A-metabolic Score

group compared to the high m6A-metabolic Score group.
Discussion

RNA methylation has been proven to play a significant role

in several key physiological processes. Therefore, alterations in

m6A RNA methylation are implicated in human pathology and

play a key role in cancers, immune system diseases, neurological

diseases, and others (31). Previous studies have demonstrated
A B

D

E

F

C

FIGURE 7

Immunotherapy response and drug sensitivity in high and low m6A-metabolic Score. (A) Differences in the gene expression of 14 immune checkpoint
related genes in high and low m6A-metabolic Score groups. The thick line exhibited the median value. Statistical differences were compared by the
Wilcoxon test (*P < 0.05; ***P < 0.001). (B, C) TIDE score (B) and TIS score (C) differences in the high and low m6A-metabolic Score groups. The upper
and lower ends of the boxes indicated an interquartile range of values, the lines in the boxes represented median value. The statistical difference of two
groups was compared through the Wilcoxon test. (D) Submap analysis shows that low m6A-metabolic Score groups could be more sensitive to anti-
PD-1/PD-L1 treatment (Bonferroni corrected P-value = 0.007). (E) Correlation analysis (Spearman correlation) of m6A-metabolic Score with TIDEscore
and TISscore. TIDE score, blue; TIS score, yellow. (F) The difference of chemotherapy response for 44 drugs between high and low m6A-metabolic
Score groups. The statistical difference of two groups was compared through the Wilcoxon test.
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that m6A mRNA methylation regulates tumor immunity,

metabolism, and stemness (10). However, the role of m6A

mRNA methylation in the regulation of the TME through

modulation of metabolic pathways and its effects on the

prognosis and immunotherapeutic responses of STS patients is

not widely reported. Therefore, in this study, we analyzed the

multi-omics data from STS patients to determine the

relationship between m6A mRNA methylation and the status

of the metabolic pathways in the STS tissues and their impact on

tumor immunity, progression, and prognosis. The multi-omics

data analysis revealed two distinct and stable subtypes in the STS

samples based on m6A-related metabolism. Furthermore, we

established a scoring system based on the m6A-related

metabolism. We demonstrated that the m6A-metabolic Scores

can accurately predict the prognosis of STS patients and their

response to immunotherapy.

We identified 11 m6A-related metabolic pathways that were

associated with the prognosis of STS, including prostaglandin

biosynthesis, glycogen biosynthesis, methionine cycle, fructose

and mannose metabolism, sulfur metabolism, arachidonic acid

metabolism, linoleic acid metabolism, alpha-linoleic acid

metabolism, pyrimidine metabolism, phenylalanine metabolism,

other glycan degradation. Among them, pyrimidine metabolic

pathway promotes tumor progression by increasing cancer cell

proliferation (32, 33). The pyrimidine metabolic pathway is also

associated with drug resistance in various cancer patients (34).

Linoleic acid metabolic pathway promotes proliferation and

migration of breast cancer cells (35). Glycogen biosynthesis is also

associated with breast cancer, bladder cancer, and others (36). The

hypoxic environment in the tumor tissue promotes proliferation of

breast cancer cells by activating the glycogen metabolism pathway.

Our results suggested that hypoxia probably altered metabolism in

the TME and contributed to the heterogeneity in the STS tissues

(37). Besides, the activation of glycogen metabolism has been

reported to promote aerobic glycolysis or the “Warburg” effect in

the cancer cells, glycogen metabolism is a common metabolic

pathway in cancer cells and is a significant marker of malignant

tumors (38). Other metabolic pathways have been previously

reported to be involved in tumorigenesis and progression. In this

study, these important metabolic pathways were observed to be

closely related to STS, which will provide new insights and evidence

for future metabolic therapies for STS (39–41).

We further analyzed significance of the 11 m6A-related

metabolic pathways in altering the tumor microenvironment

and their relationship with prognosis in STS patients. Clustering

analysis revealed two subtypes among the STS patients (Cluster

A and Cluster B) based on the status of the m6A-related

metabolic pathways. These two subtypes showed significant

differences in OS and biological characteristics. The OS rates

of the STS patients in Cluster A were significantly higher than

those in Cluster B. These two molecular subtypes of STS also

showed distinct profiles of metabolic pathways. STS tissues in

Cluster A showed higher expression of genes involved in linoleic
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acid metabolism, alpha linoleic acid metabolism, prostaglandin

biosynthesis, and arachidonic acid metabolism. These metabolic

pathways improved the prognosis of STS patients in Cluster A.

The TIME plays a crucial role in the progression and

prognosis of multiple cancers. Activation of innate and

adaptive immunity increases the survival rates of cancer

patients and their sensitivity to immunotherapy. Therefore, we

compared the characteristics of the TIME between clusters A

and B. We observed enrichment of tumor-suppressing immune

cells such as CD8+ T effector cells in the Cluster A subtype,

whereas, pro-tumorigenic pathways such as EMT were enriched

in the Cluster B subtype. Furthermore, we used GSVA to analyze

the differences in the enriched biological processes between

Cluster A and Cluster B. The results showed significant

enrichment of DNA replication in Cluster B, thereby

suggesting increased proliferation of cancer cells. In Cluster A,

we observed significant enrichment of the B cell receptor

signaling pathway and natural killer (NK) cell mediated

cytotoxicity, thereby suggesting enhanced activation of the

immune cells. STS patients in Cluster B showed increased rate

of metastasis and higher degree of malignancy compared to

those in Cluster A. The higher survival rates of STS patients in

Cluster A correlated with higher immune scores and increased

infiltration to tumor-killing immune cells. In contrast, tumor-

promoting immune cells were enriched in the Cluster B patients

with STS and were associated with poor prognosis.

Previous studies have reported glucose and lipid metabolism

plays a significant role in cancer stem cells originating from

various cancers (42). Cancer stem cells rely highly on glucose

and lipid metabolism for keeping their stemness features and

satisfying their energy requirements, ultimately leading to tumor

invasion and metastasis (43). Our results demonstrated that the

tumor stemness levels was higher for STS tissues from Cluster B

and was associated with increased metastasis. In addition, we

explored the effects of alterations in tumor metabolism on EMT,

which is often related with acquisition of stemness

characteristics. Cluster B showed higher EMT scores, which

supported increased incidence of tumor metastasis (44).

Furthermore, compared with the Cluster A group, m6A

regulators that were associated with metabolism in the STS

tissues were up-regulated in Cluster B. Moreover, Cluster B

group showed increased glycogen biosynthesis, methionine

cycle, and pyrimidine metabolism. These data demonstrated

that the m6A regulators modulated immune cell infiltration as

well as tumor cell proliferation and progression by altering

tumor cell metabolism. Furthermore, Cluster B was associated

with higher rates of somatic mutations and higher degree

of malignancy.

We also investigated the differences in immunotherapeutic

responses between the STS patients in Cluster A and

Cluster B. STS patients in Cluster A were more sensitive to

immunotherapy. This suggested potential clinical application of

the classification system based on m6A-related metabolic
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pathways. Therefore, we developed a scoring system (m6A-

metabolic Score) for the STS patients based on m6A-related

metabolism. This scoring system was based on the expression of

12 hub genes including eight hub genes (ITGA10, MYLK,

LYVE1, IGF1, CPVL, C1S, ALDH1A1 and MFAP5) that were

identified as independent prognostic biomarkers of STS. The

m6A-metabolic Score was significantly lower for STS patients in

Cluster A compared to those in Cluster B. Our data suggested

that the m6A-metabolic Score was a reliable tool for

comprehensive assessment of the two molecular subtypes

based on m6A-related metabolism and could be used to

determine the status of tumor immune infiltration and patient

survival outcomes. We also demonstrated that the m6A-

metabolic Score was a robust tool for determining the efficacy

of immune checkpoint inhibitors in individual STS patients.

In conclusion, our study performed a comprehensive analysis

of the multi-omics data from STS patients and classified them

into two molecular subtypes based on m6A-related metabolism.

We also established a m6A-related metabolism scoring system

and demonstrated its accuracy in predicting the prognosis of the

STS patients and predicting their response to immunotherapy.

Therefore, the m6A-metabolic Score shows great promise in

clinical application for accurately classifying STS patients at a

molecular level and may be used as a guide for precision therapy

of individual STS patients. However, our study also has several

limitations. Firstly, we integrated two large STS cohorts for our

analysis. This may have masked the heterogeneity in different

cohorts. We corrected potential batch effects to overcome this

issue. Secondly, the m6A-metabolic Score cutoff value requires

further validation in larger cohorts of STS patients.
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SUPPLEMENTARY TABLE 2

The gene sets used in this study including 12 oncogenic pathways.

SUPPLEMENTARY TABLE 3

35 metabolic pathways correlated with m6A regulators (the absolute

value of the correlation coefficient was greater than 0.4).

SUPPLEMENTARY FIGURE 1

Sample distributions from TCGA and GEO before batch effect correction.
The “ComBat” algorithm was applied to reduce the likelihood of batch

effects from non-biological technical biases between TCGA-SARC and
GSE21050 cohorts.

SUPPLEMENTARY FIGURE 2

(A) Relative change in area under consensus cumulative distribution

functions (CDF) curve (k = 2-9) using consensus clustering based on 11
m6A related metabolic pathways for total patients of TCGA-SARC and

GSE21050 cohorts. (B) The consensus matrix heatmap corresponding to

k=2-9 obtained by consensus clustering.

SUPPLEMENTARY FIGURE 3

(A) Relative change in area under consensus CDF curve (k = 2-9) using
consensus clustering based on m6A related metabolic pathways for

TCGA-SARC (left) and GSE21050 (right) cohorts, respectively. (B) The
heatmap demonstrates differences in 11 m6A-relatedmetabolic pathways

scores between Cluster A and Cluster B. (C) The heatmap demonstrates
immune cell infiltration of two molecular subtypes from unsupervised

clustering in the TCGA-SARC and GSE21050 cohorts by ssGSEA,

MCPcounter, xCell, EPIC, TIMER, quanTlseq and IPS algorithms. (D)
Relative change in area under consensus CDF curve (k = 2-9) using

consensus clustering based on DEGs for total population of TCGA-
SARC and GSE21050 cohorts. (E, F) Survival analyses for the two

Clusters in (E) TCGA-SARC and (F) GSE21050 cohorts, respectively. (G)
The violin plot reveals the differences of m6A-metabolic Scores between

geneCluster A and geneCluster B.

SUPPLEMENTARY FIGURE 4

(A) The boxplot reveals the differences ofm6A-metabolic Scores between

between STS patients with different immune microenvironment tissue
subtype. (B-E) These boxplots reveal the differences of m6A-metabolic

Scores between between STS patients with different ImmuneScore level
(B), survival time (C), survival status (D), metastatic status (E).
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