
Frontiers in Immunology | www.frontiersin.

Edited by:
Margarida Castell,

University of Barcelona, Spain

Reviewed by:
Huarong Zhou,

Sherman College of Chiropractic,
United States

Aditi Arun Narsale,
San Diego Biomedical Research

Institute, United States

*Correspondence:
Jonathan D. Turner

jonathan.turner@lih.lu

†ORCID:
Jonathan D. Turner

orcid.org/0000-0002-2760-1071
Snehaa V. Seal

orcid.org/0000-0002-9297-4616
Muriel Darnaudéry
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Type-2 diabetes is a complex disorder that is now considered to have an immune
component, with functional impairments in many immune cell types. Type-2 diabetes is
often accompanied by comorbid obesity, which is associated with low grade
inflammation. However,the immune status in Type-2 diabetes independent of obesity
remains unclear. Goto-Kakizaki rats are a non-obese Type-2 diabetes model. The limited
evidence available suggests that Goto-Kakizaki rats have a pro-inflammatory immune
profile in pancreatic islets. Here we present a detailed overview of the adult Goto-Kakizaki
rat immune system. Three converging lines of evidence: fewer pro-inflammatory cells,
lower levels of circulating pro-inflammatory cytokines, and a clear downregulation of pro-
inflammatory signalling in liver, muscle and adipose tissues indicate a limited pro-
inflammatory baseline immune profile outside the pancreas. As Type-2 diabetes is
frequently associated with obesity and adipocyte-released inflammatory mediators, the
pro-inflammatory milieu seems not due to Type-2 diabetes per se; although this overall
reduction of immune markers suggests marked immune dysfunction in Goto-
Kakizaki rats.

Keywords: diabetes, obesity, cytokines, inflammation, microarrays, Goto-Kakizaki rats
INTRODUCTION

Type-2 diabetes (T2D) is a complex disorder characterised by hyperglycaemia, insulin resistance
(IR) and chronic inflammation of insulin target tissues. T2D is now also considered an
inflammatory disease, affecting both innate and acquired immune systems, skewing them
towards a pro-inflammatory phenotype [reviewed in (1)]. There is also growing evidence for
autoimmune involvement in T2D overlapping with the pathophysiology of T1D (2). Inclusion of
cellular autoimmunity with traditional diabetic parameters is now reflected by a number of diabetes
org May 2022 | Volume 13 | Article 8961791
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sub-types that do not fit into T2D or T1D including type 1.5
diabetes mellitus or latent autoimmune diabetes of the adult
(LADA) or the young (LADY) and double diabetes (mixed
symptoms of T1D and T2D) (3, 4). This recalibration of
diabetic phenotypes led us to re-examine the use of obese pre-
clinical diabetic models, as these no longer adequately reflect the
human clinical context (5). Most of the studies conducted on
inflammation in T2D involved overweight or obese subjects and
obesity is clearly associated with a low-grade chronic
inflammation (6, 7). Since T2D is not always associated with
obesity, it is essential to dissect the exact contributions of obesity
and diabetes in the immune phenotype.

Although there are many well-known obese models of T2D,
there are few non-obese models (8). Goto-Kakizaki (GK) rats are a
non-obese model that present a pre-diabetic phase before
becoming spontaneously diabetic, similar to the human T2D
pathophysiology (9). However, despite the growing immune
literature in human T2D, there is little data available on the GK
rat immune system. Circulating white blood cell (WBC) levels
have been reported to be unchanged in GK rats, although they are
known to be biased towards a Th2 phenotype (10), have fewer B-
cells, a higher IgM production and reduced monocyte-phagocytic
activity (5, 11). Surprisingly, this phenotype is somewhat contrary
to that observed in the Type 1 model “Diabetes-prone Biobreeding
(DP-BB) rats” (5) and high-fat diet induced obesity in mice (12).
In contrast, previous works have demonstrated a marked
proinflammatory profile in pancreatic islets in GK animals, with
macrophage infiltrations and upregulation of mRNA expression of
several proinflammatory cytokines in this tissue (13, 14).
Subsequently fibrosis develops within the islets which further
alter their normal secretory function (14).

Given the potential for the GK rat model to represent non-
obese and emerging diabetes subtypes, we used a wide-ranging
rat immune system profiling panel (15) and multiplex cytokine
panel to characterise adult, diabetic GK rats. By investigating
levels of principal circulating immune cell subsets and plasma
cytokines, we aim to provide a baseline immune profile to further
study the role of immune system in the aetiology of T2D.
Furthermore, we reanalysed previous transcriptional datasets
(16) for the consequences of exposure to this cytokine milieu
in the liver, adipose tissue and muscles.
MATERIALS AND METHODS

Animals
GK rats (from B2PE, unit BFA, Diderot and CNRS, Paris colony)
and control Wistar rats were bred in the conventional facility of
Nutrineuro lab (INRA UMR1286, Bordeaux). Bodyweight and
adiposity in animals from the colony have recently been described
(17), and are a common finding in GK rats (9, 13, 16) although may
depend on colony (18). Six months old male offspring were used
(n=6 Wistar, n=7 GK). All experimental procedures were carried
out in accordance with the EuropeanUnion guidelines for the use of
animals for experimental purposes (Council Directive 2010/63/EU)
Frontiers in Immunology | www.frontiersin.org 2
and the French guidelines (Directive 87/148, Ministère de
l’Agriculture et de la Pêche – Apafis #16924). Animals were
grouped-housed (n=3 per cage) in a 12 h/12 h light:dark cycle
(lights on at 06:00 a.m.) at 22 ± 2°Cwith access to food (SAFED113,
Augy, France) and water ad libitum.

Blood Sampling
Blood samples were collected by tail nick into EDTA-coated
tubes. Samples were centrifuged (1800g, 4°C) for 10 minutes.
Plasma was collected and stored at −80°C for cytokine or insulin
assays. For flow cytometry, blood was mixed with Streck cell
preservative (1:1 volume) (Biomedical Diagnostics, Antwerp,
Belgium), stored and transported at 4°C.

Flow Cytometry
Staining was performed on Streck-preserved samples as
described in Supplementary Materials. Briefly, 200,000 events
were recorded on an LSRFortessa (BD BioSciences, NJ, USA) and
analysed using FlowJo (version 10.6.1, BD BioSciences, NJ,
USA). A Streck-preservative optimised gating strategy
(Supplementary Figure 1) was adapted from Fernandes et al.
(15) and populations represented as a percentage of parent
population frequency. Data was not available for 1 GK rat due
to Streck preservative associated coagulation and failure of
the staining.

Plasma Cytokines, Glycaemia and
Insulin Levels
Glucose, Insulin, and a panel of 27 plasma cytokines (Milliplex
27-plex kits; Eve Technologies, Calgary, Canada), were measured
as described in Supplementary Materials.

Microarray Re-Analysis
Wistar and GK rat microarray data were downloaded from NCBI
(GSE13271) for adipose tissue, gastrocnemius muscle, and liver
from 20-week-old normal-diet fed animals (16). Raw data were
normalised, a linear model fitted, and differential gene expression
calculated using limma (version 3.46.0) for genes expressed
above a threshold (100) in all 10 samples per comparison
using genefilter (version1.54.2).
Statistical Analysis
All statistical analyses were performed using Graphpad Prism
(version 8.2.0). Unless otherwise stated the unpaired Student’s t-
tests were used to compare normally distributed data from GK
andWistar rats when the variance was equal between the groups.
Welch’s t-test was used for normally distributed data with
unequal variance between the groups, and the non-parametric
unpaired Mann-Whitney test was used for non-normally
distributed data. All data are the result of two biologically
independent experiments. Pearson correlations were performed
on the complete dataset and were used to determine the
associations between immune cells profile and plasma cytokine
levels. Microarray and pathway reanalysis was performed in R
(version 4.0.2). Venn Diagrams were generated with
May 2022 | Volume 13 | Article 896179
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“VennDiagram” (version 1.6.20). Statistical significance was set
at p < 0.05. Data are expressed as means ± SEM.
RESULTS

GK Rats Show a Limited Pro-Inflammatory
Immune-Cell Profile
The numbers of circulating CD11b/c+ and CD45RA+ (B cells)
cells in GK rats was ~2.5-fold (p=0.0022, Mann-Whitney test)
and ~4-fold (p=0.0022, Mann-Whitney test) lower respectively,
compared to Wistar rats (Figures 1A, B) as previously reported
(10, 11). This suggests a decrease in the frequency of phagocytes
such as macrophages, monocytes, dendritic cells, granulocytes
and B-cells respectively.

GK rats have also been reported to have an increased
frequency of total CD3+ T cells (5, 10, 11), although we did
not observe this in our study (data not shown). The CD4+ Th

cells had a decreasing trend in the GK rats (~2.5-fold), compared
to Wistar rats (p=0.0649, Mann-Whitney test, Figure 1C). This
was in line with Huda et al., who reported a decreasing naive
CD4+ Th cell trend in diabetics (19).

We observed a significant ~5-fold decrease in the number of
CD8+ cytotoxic T-lymphocytes (T-cytotoxic cells; Tc cells)
(p=0.0022, Mann-Whitney test, Figure 1D) in GK rats
compared to control Wistar rats.

GK rats exhibit a ~2-fold increase in CD161a+ cells
(p<0.0001, Mann-Whitney test, Figure 1E), a “target specific
receptor”, which enables NK cells to activate and efficiently carry
out their cytotoxic functions.

We also observed that despite the low percentage of Tc cells,
majority of them were RORgT+ (p=0.0022, Mann-Whitney
test, ~1.5-fold increase in GK rats, Figure 1F) and GATA3+
(p=0.039, Mann-Whitney test, ~1.5-fold increase in GK rats,
Figure 1G) compared to Wistar rats. Furthermore, cell
population frequencies of CD45RA+ RT1B+ peripheral B cells,
Tregs (CD4+ CD25+ FoxP3+), Th1 cells (CD4+ Tbet+), Th2
cells (CD4+ GATA3+), Th17 cells (CD4+ RORgT+) and Tc1
cells (CD8+ Tbet+) were comparable between Wistar and GK
rats (Supplementary Figure 2). The cell populations that were
most highly increased in the GK rats were unidentified CD11b/c-
CD45RA- cells (Supplementary Figure 2; p=0.0022; Mann-
Whitney test). Thus, overall, GK rats show a very distinct
immune profile that may be a direct consequence of the
diabetic phenotype.

Plasma Cytokine Profile of GK Rats
Reflects the Low Percentage of the
Respective Secretory Immune Cells
Overall, our results revealed a strong impact of T2D on plasma
cytokine levels. Surprisingly, most of the cytokines, regardless of its
inflammatory role (pro- or anti- inflammatory) were significantly
decreased in GK rats (Figure 2). Only 8 cytokines: EGF,
Fractalkine IL-1b, IL-10, RANTES, VEGF, MIP-2 and GM-CSF
levels were comparable in GK and Wistar rats (Supplementary
Figure 3). Of the 16 pro-inflammatory cytokines investigated,
Frontiers in Immunology | www.frontiersin.org 3
levels of 13 were significantly lower (Figures 2A–M), in GK rats
compared to Wistar rats (p-values between 0.0022 and 0.0115) as
shown in Figure 2. The majority of these cytokines are secreted by
myeloid-derived cells such as monocytes/macrophages including
eotaxin, GRO/KC, IL-1a, IL-12(p70), LIX, MCP-1, TNF-a, and
IL-18 (20–29). Furthermore, levels of cytokines secreted by
lymphoid derived cells such as B-cells and Tc cells including IL-
1b (30), MIP-1a (31) and IFN-g (32), IL-2 (33) respectively were
lower in GK rats. Similarly, levels of IL-17A was also found to be
lower in the GKs. Unfortunately, this was not consistent with the
increased number of circulating Tc17 cells we observed. However,
this can most probably be explained by reduced numbers of other
primary sources of IL-17A such as Th17, NK cells, or natural killer
T cells (34). Unlike other pro-inflammatory cytokines, IP-10 levels
were significantly increased in GK rats (p=0.0103, Figure 2M).

IL-6 bridges anti- and pro-inflammatory actions and is
primarily secreted by macrophages and monocytes. IL-6 levels
were lower in GK rats Figure 2N; p<0.05). This was most likely
due to the low percentage of macrophages/monocytes.

Three out of the four anti-inflammatory cytokines
investigated (G-CSF, IL-13 and IL-4) were significantly
decreased in GK rats (Figures 2O–Q, 0.0001<p<0.02). G-CSF
is produced by monocytes and macrophages and their low levels
in the GK plasma is consistent with our flow cytometry data (low
percentage of CD11b/c+ cells). IL-13 is secreted by macrophages,
B-cells and Tc cells, all of which show low frequency resulting in
low secretion of these cytokines. IL-4 and IL-5 (Figures 2Q, R,
Mann-Whitney test for IL-5) has been reported to be secreted by
Th2 cells, basophils and eosinophils. Finally, leptin (Figure 2S)
was the unique plasma marker that was significantly upregulated
in GK rats compared to Wistar animals (p<0.001). Elevated
levels of leptin could correlate with increased adipose depots in
the GK rats, as we previously described (17).

Additionally, we also tested plasma glucose readings, which
were ~2-fold (p<0.0001, Welch’s t-test) higher in GK rats
compared to the controls (Supplementary Figure 4), while the
insulin levels were comparable for the two groups. We then
investigated correlations between the circulating cytokines and
immune cells along with plasma readouts such as glycaemia and
insulin levels. Bravais Pearson correlations revealed several
significant associations between the metabolic markers and
cytokine levels. Glycaemia was negatively correlated with the
majority of cytokines levels (Figure 3A); whereas plasma insulin
levels were positively correlated with cytokines levels
(Figure 3A). Most of the cytokines were positively correlated
each other; in contrast IP-10 and leptin were strongly negatively
correlated with majority of the cytokines (Figure 3A). IL-1b
levels were positively correlated with IL-10 levels but showed no
association with any of the other cytokines (p<0.001). IP-10
correlations with cell numbers and cytokine levels are shown in
Supplementary Figures 5, 6 respectively.

The correlation pattern for the immune cells was heterogeneous
(Figure 3B). B-cells, CD11b/c+ cells, Tc cells and Th cells, all
positively correlated with one another (p<0.001). CD161a+ cells
were positively correlated with Tc17 and Tc2 cells (0.01<p<0.05).
CD161a+ cells and Tc17 cells were negatively correlated with B-cells
May 2022 | Volume 13 | Article 896179
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A B

C D

E F

G

FIGURE 1 | The diabetic milieu majorly alters the GK immune system. Significantly affected immune cells (p<0.05), expressed as percentage of parent population
frequency are, (A) CD11b/c+ phagocytes (macrophages, monocytes, dendritic cells, granulocytes), (B) CD45RA+ B cells, (C) CD4+ T-helper cells, (D) CD8+ T-
cytotoxic cells (E) CD161a+ NK cells, T-cell subsets, activated monocytes, and dendritic cells (F) CD8+ RORgT+ Tc17 cells (G) GATA3+ Tc2 cells. However, the T-
helper cells narrowly missed the significance threshold (p = 0.0649). Data are mean +/- SEM; individual animals shown as dots. Grey bars: GK rats (n = 6); white
bars, Wistar rats. (n = 6).
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and CD11b/c+ cells (0.01<p<0.05). The associations between the
immune cells and the cytokines also revealed some specific patterns
(Figure 3C). Glycaemia showed a strong positive association with
CD161a+ cells and Tc17 cells; and negative correlation with B cells,
CD11bc+ cells, cytotoxic T-cells and Th cells. Interestingly, MIP-1a
showed the exact opposite trend to glycaemia in terms of
association. CD161a+ was negatively correlated with numerous
cytokines. Thus, it is clear that the secretion pattern of most
cytokines in our panel is dependent on the immune cell
frequencies. Overall, the low levels of cytokines are consistent
with the observed lower percentages of CD11b/c+ monocytes and
macrophages, Tc cells and B-cells.

GK Rats Show a Distinct Transcriptomic
Profile in Key Diabetic Tissues, Which
Also Affects Immune and Diabetic
Biological Pathways
We re-analysed publicly available GK rat datasets and we
observed 884, 665, and 1819 differentially expressed genes
(DEGs; BH-adjusted p<0.05; log2 fold-change>2) in liver,
Frontiers in Immunology | www.frontiersin.org 5
muscle and adipose tissues respectively. Biological pathways
were extracted from DEG profiles. Overall, we found 137
biological pathways common to all 3 tissues (Figure 4A). Of
these, 14 were specific to downstream signalling from cytokines,
and 6 were common diabetes-related pathways as shown in
Figures 4B, C for muscles and Supplementary Figure 7 for liver
and adipose tissue. Cytokine dependent pathways such as T-cell
receptor signalling, Jak-STAT signalling, TGF-b signalling, and
PDL1 signalling (Figures 4D–G) were all significantly increased
in Wistar compared to GK rats, consistent with the reduced
circulating cytokine levels and numbers of cytokine
secreting cells.
DISCUSSION

T2D has been commonly associated with low grade
inflammation, but it is not clear whether this inflammatory
profile is related to diabetes or to obesity. The aim of the
present study was to examine peripheral inflammatory status
A B C D E

F G H I J

K L M N O

P Q R S

FIGURE 2 | Overall cytokine profile shows limited peripheral inflammation in GK rats. All panels display the mean levels of plasma cytokines (mean +/- SEM) in pg/
mL, that were significantly different (p<0.05) in the GK rats compared to the controls. Cytokines shown in panels (A–M) are proinflammatory, (N) is both pro- and
anti-inflammatory, (O–Q) are anti-inflammatory while (R, S) show no inflammatory role. Grey bars: GK rats (n = 7); white bars: Wistar rats (n = 6). p < 0.001, p < 0.01
and p < 0.05 are reflected by ***, ** and * respectively. Student’s t-test was used except for panels E (IL-2), L (LIX), and R (IL5), which were analysed using a Mann-
Whitney test.
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in an animal model of T2D without obesity. Surprisingly, our
results suggest that GK rats do not show a low-grade
inflammatory profile as reported in obese models, but instead
exhibit a marked decrease of the examined immune markers.
Beta cell dysfunction in the GK rats is the primary defect that
leads to overt hyperglycaemia and marked islet inflammation
(13, 14, 35). Although, systemic inflammation is often associated
with IR, it is not the sole contributor to the development of IR.
Ycaza et al. reported that adipose insulin resistance did not
correlate with markers of subcutaneous adipose inflammation
(36). GK rats develop hepatic insulin resistance at a young age
(37), while whole-body insulin resistance (which is not
associated with liver, adipose or muscle inflammation) appears
later in life (14). Pitasi et al. recently showed increased levels of
GSK3B protein in the GK pancreas (14), which has been reported
to be elevated in insulin target tissues in humans with T2D, and
(38) is correlated with decreased insulin sensitivity (39). Thus, we
Frontiers in Immunology | www.frontiersin.org 6
postulate that a possible over expression of GSK3 in insulin
target tissues in the GK rat, could participate to the development
of insulin resistance in this model.

Here, we provide a detailed description of the GK rat immune
system, which shows limited peripheral inflammation, in
addition to a lower percentage of phagocytes (macrophages,
monocytes, dendritic cells, granulocytes and B-cells). This
partially confirms impaired phagocytosis and antigen
presentation as previously described in GK rats (5, 10, 11),
however Zhai et al. reported a higher percentage of activated B
cells in obese diabetics, which does not fit our observation (40),
suggesting a major role of obesity in the inflammatory profile.
The observed low percentage of Th cells in the GK rats may also
have an effect on the activation status of B- and cytotoxic T-cells,
and may further explain their lower numbers in GK rats.
Diabetes has also been known to disrupt monocyte recruitment
to sites of injury, thereby impairing phagocytosis and impeding
A

C

B

FIGURE 3 | Integrative correlation analysis of the different immune parameters, (A) Cytokine-cytokine (B) Immune cell-immune cell (C) Cytokine-immune cells. The sizes of
the circles indicate the strength of association (Pearson’s r2), while the colours show negative (red) or positive (blue) correlation. p < 0.001, p < 0.01 and p < 0.05 are reflected
by ***, ** and * respectively.
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the switch from pro- to an anti-inflammatory state (41).
Interestingly, wound healing in diabetics is also known to be
hindered as diabetes prompts neutrophils to cause tissue damage
by NETosis (42), which further contributes to the inflammation
causing a vicious pathological cycle (43).

We have seen a decrease in CD8+ Tc cells in our GK rats,
which are normally responsible for eliminating viral-infected
host cells and thus is also in line with the predisposition of T2D
patients towards severe infections (44). This agrees with the
reported decrease in naive Tc cells, and accumulation of EMRA
immunosenescent cells in man (45).

A higher CD4/CD8 ratio conventionally corresponds to a
healthier immune system and estimates the likelihood of
development of infections. In rats, this ratio is strain specific
(46). GK rats show a significantly higher CD4/CD8 ratio
(Supplementary Figure 8), which can be attributed to the low
number of Tc cells and may not necessarily represent a healthier
immune system compared to Wistar rats. Interestingly, a recent
study also reported a higher CD4/CD8 ratio after a glucose bolus
in both diabetics and non-diabetics (47), indicating a lymphocyte
Frontiers in Immunology | www.frontiersin.org 7
redistribution, which may be the case for our GK rats as well. We
also examined Th1/Th2, Tc1/Tc2 and Th17/Treg ratio, which
have been reported/reviewed to be impaired in T2D with
comorbid obesity (48), inflammatory diseases such as Behcet’s
disease (49) and metabolic disorders (50) respectively. We did
not see significant differences for any of these ratios in our GK
rats (p>0.05, Mann-Whiney test, data not shown).

We interpret the overexpression of CD161a in GK rats as
most likely to be an already activated defence system as a
compensatory mechanism for their compromised immune
system to combat an invading or existing pathogen/infection.
It is logical to conclude that this is achieved by the activation of
monocytes and NK cells to target infected cells and by secretion
of cytokines to further activate these cells or this can be indicative
of healthy cell/tissue destruction. Altered immune functionality
in both human B- and NK-cells has been reported to be mediated
by global hypermethylation in obese (BMI>30) T2D patients
(51). The data on human NK cells is somewhat unclear. Meta-
analysis of 13 NK cell studies identified 3 with decreased levels/
activity, 2 reported elevated levels and 8 of them reported no
A

C

B

D F GE

FIGURE 4 | Transcriptomic re-analysis of 3 principal diabetic tissues (liver, muscle and adipose tissue) in Wistar rats compared to GK rats. (A) Venn diagram showing the
number of common biological pathways. (B) Biological pathways that are regulated by downstream signalling from circulating cytokines analysed in the muscle. (C) Biological
pathways associated with diabetes and its complications analysed in the muscle. For (B, C), the intensity of the colour is proportional to the -log10 of P-value, sizes of the
circles represent the number of genes involved, while placement of the circles on the x axis indicates the fold enrichment. (D–G) Are T-cell receptor signalling, Jak-STAT
signalling, TGF-b signalling and PDL1 signalling respectively in liver, muscle and adipose tissue. Data from GSE13271 (16).
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differences between circulating NK cells in T2D patients and
healthy controls (52).

RORgT+CD8+ lymphocytes are a somewhat underexplored
population, but they are very pro-inflammatory (53). GK rats
show pancreatic islet inflammation (35) and in our data,
peripheral inflammation appears to be limited to the observed
increase in Tc17 cell population. Tc17 cells are produced under
inflammatory conditions in a manner similar to their CD4+
counterparts, Th17 cells (54), skewing the immune system
towards a pro-inflammatory phenotype, although, as outlined
above IL-17 levels are lower in GK rats. Interestingly, CD8+Tc17
cells have been reported to show a strong repression of SOCS3
expression (55), a pivotal gene regulating insulin sensitivity (56)
in addition to driving inflammation [as reviewed (57)]. Tc17 cells
have been shown to degrade pancreatic beta islet cells and induce
hyperglycaemia in mice (57). Thus, it is quite likely that this cell
population contributes to the vicious diabetic and (peripheral)
inflammatory aetiopathology of the GK rats.

Similarly to the Tc17 cells, Tc2 cells have not been highly
investigated in the light of diabetes but have been reported to be
more diabetogenic compared to naive Tc cells (58). However, in
T2D with comorbid tuberculosis, there appear to be a clear role
for both Tc17 and Tc2 cells (59). Although, there is a
preponderance of literature on immune changes in
complicated diabetes and unfortunately, the immune status in
uncomplicated human T2D is still ambiguous.

Circulating baseline cytokine levels have been studied in T2D for
many decades (60). In this study, we present the first account of
multiplexing a panel of 27 cytokines simultaneously from the same
samples to get a clearer, detailed overall picture of the GK immune
system (Figure 2). The reduced levels of the cytokines in GK rats is
most likely due to low number of circulating CD11b/c+ cells,
principally monocytes/macrophages in addition to low
percentages of CD45RA+ (B-cells) and CD8+ (Tc cells) cell
populations. Interestingly, despite an overall decrease of both anti-
and pro-inflammatory cytokines plasma levels, our results reveal a
significant increase of interferon gamma-induced protein 10 (IP-
10), a pro-inflammatory chemokine which plays an important role
in the aetiology of inflammatory diseases. Previous studies suggest
that IP-10 is associated withmetabolic disorders. Accordingly, IP-10
levels were increased in the early stage of type 1 diabetes (61) and
were also predictive of insulin resistance and diabetes in patients
suffering from nonalcoholic fatty liver disease (62). Previous studies
suggest a positive association between leptin levels and IP-10 in type
2 diabetic patients (63), which also fits our GK rat data
(Supplementary Figure 5V).

We also saw an increase in leptin levels in our GK rats.
However, this does not necessarily indicate an increased
secretion of proinflammatory cytokines from GK adipocytes
due to tissue specific gene expression. Previously, we have
shown that the expression of cytokines such as IL-6, IL-1b and
TNF-a were increased in the GK islets, but not in the adipose
tissues (14). Thus, while we observe elevated levels of adipokines
associated with the increased adiposity in GK rats, we do not see
an increased pattern secreted proinflammatory cytokines.
Frontiers in Immunology | www.frontiersin.org 8
Thus, it is clear from our study that the GK cytokine profile
alone can be quite misleading, unless amalgamated with cognate
immune date. However, there is no clear pro-inflammatory
cytokine profile as previously thought. Our data suggests that
the inflammatory milieu in GK rats is most likely due to Tc17
cells and activated monocytes, NK cells as represented by
elevated CD161a+ cells. In the human context, T2D patients
have been shown to have higher IL-17 levels compared to healthy
controls, which contribute to the pro-inflammatory phenotype
commonly observed in T2D (64, 65), thereby justifying
our hypothesis.

This disproof of the proinflammatory profile in GK rats led us
to investigate the gene expression pattern in liver, muscle and
adipose tissues: all key tissues that not only play important roles
in glucose homeostasis affecting glycaemic status but are also
exposed to the circulating immune cells and cytokines.
Therefore, we re-analysed previously published GK rat micro-
array expression data for these three key diabetes related tissues.
The extracted biological pathways from the gene expression
profiles confirmed a downregulated pattern of most involved
genes in the GK rats. The most prominent gene pathway was
diabetic cardiomyopathy, fitting previous reports of ventricular
hypertrophy, impaired diastolic function, and cardiomyopathy
in GK rats (66, 67) that may be mediated by CRP (68). This
peripheral gene expression profile contrasts sharply with the
inflammatory profile of the GK rat pancreatic islets, where
similar to diabetic human islets (69), we consistently show
increased pro-inflammatory cytokine levels, associated with
increased pro-inflammatory immune cell numbers around and
within the pancreatic islets (13, 14, 35). This profound islet
inflammation is a contributor to the impairment of beta cell
growth and function, which constitutes the main characteristics
of T2D in this model. GK rats serve as an excellent model to
study the development of T2D, and the transition from
prediabetic to a fully diabetic phenotype may yield insight into
the development of T2D.

In conclusion, our study reports 3 lines of evidence proving
that, outside the pancreatic islets, GK rats present a limited pro-
inflammatory profile unlike previously thought. Additionally,
non-obese GK rats exhibit a marked immune dysfunction as
indicated by the overall blunted levels of cytokines and changes
in the distribution of immune cells. Thus, it is also clear that
there is a knowledge gap between uncomplicated human non-
obese T2D, and the immune system that needs to be addressed in
detail and that GK rats can serve as a good model for this.
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