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Sepsis is a series of clinical syndromes caused by immunological response to severe
infection. As the most important and common complication of sepsis, acute respiratory
distress syndrome (ARDS) is associated with poor outcomes and high medical expenses.
However, well-described studies of analysis-based researches, especially related
bioinformatics analysis on revealing specific targets and underlying molecular
mechanisms of sepsis and sepsis-induced ARDS (sepsis/se-ARDS), still remain limited
and delayed despite the era of data-driven medicine. In this report, weight gene co-
expression network based on data from a public database was constructed to identify the
key modules and screen the hub genes. Functional annotation by enrichment analysis of
the modular genes also demonstrated the key biological processes and signaling
pathway; among which, extensive immune-involved enrichment was remarkably
associated with sepsis/se-ARDS. Based on the differential expression analysis, least
absolute shrink and selection operator, and multivariable logistic regression analysis of the
screened hub genes, SIGLEC9, TSPO, CKS1B and PTTG3P were identified as the
candidate biomarkers for the further analysis. Accordingly, a four-gene-based model for
diagnostic prediction assessment was established and then developed by sepsis/se-
ARDS risk nomogram, whose efficiency was verified by calibration curves and decision
curve analyses. In addition, various machine learning algorithms were also applied to
develop extra models based on the four genes. Receiver operating characteristic curve
analysis proved the great diagnostic and predictive performance of these models, and the
multivariable logistic regression of the model was still found to be the best as further
verified again by the internal test, training, and external validation cohorts. During the
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development of sepsis/se-ARDS, the expressions of the identified biomarkers including
SIGLEC9, TSPO, CKS1B and PTTG3P were all regulated remarkably and generally
exhibited notable correlations with the stages of sepsis/se-ARDS. Moreover, the
expression levels of these four genes were substantially correlated during sepsis/se-
ARDS. Analysis of immune infiltration showed that multiple immune cells, neutrophils and
monocytes in particular, might be closely involved in the process of sepsis/se-ARDS.
Besides, SIGLEC9, TSPO, CKS1B and PTTG3P were considerably correlated with the
infiltration of various immune cells including neutrophils and monocytes during sepsis/se-
ARDS. The discovery of relevant gene co-expression network and immune signatures
might provide novel insights into the pathophysiology of sepsis/se-ARDS.
Keywords: gene co-expression network analysis, sepsis, ARDS, diagnostic biomarker, prediction model, immune
cell infiltration
INTRODUCTION

Sepsis has become a medical emergency worldwide with high
mortality rates and is usually a result of severe bacterial infection,
as well as viral, fungal, or parasitic infection sporadically (1).
Most of the severe respiratory conditions were caused by
pneumonia, including the currently widespread and life-
threatening coronavirus disease-2019 (COVID-19) caused by
the severe acute respiratory syndrome coronavirus 2 (2). Acute
respiratory distress syndrome (ARDS) is an acute diffuse lung
injury developed from multiple clinical conditions including
pneumonia, lung contusion, drowning, toxic inhalation, severe
systemic infection, severe multiple injuries, shock, high-risk
surgery, and pancreatitis (3). Besides, sepsis-induced ARDS
(se-ARDS) is often correlated with the high mortality or long-
term disability of sepsis (4). However, its complicated clinical
features and non-specific molecular characteristics remain an
intractable medical problem in achieving the personalized risk
evaluation, early prediction, molecular diagnosis, disease
recognition, effective prevention, therapy, and prognoses of
sepsis and sepsis-induced ARDS (sepsis/se-ARDS) (5).

It has been widely accepted that sepsis is characterized by a
severe inflammatory response to infection (6). Increasing evidence
has proven that infection-driven systemic inflammatory
immunological response and dysfunction play an important part
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in the development and progression of sepsis/se-ARDS (7–9).
Accordingly, the identification of diagnostic biomarkers, the
construction of a prediction model, and the illustration of the
immunoregulatory pathogenesis could be of major clinical
significance for improving the strategies for sepsis/se-ARDS.

In the era of data-driven medicine, large numbers of analysis-
based researches, especially bioinformatics analysis, have erupted
and penetrated into the field of infection-related diseases,
including sepsis/se-ARDS (10, 11). However, most of these
studies focused on the primary stages of simple differential
expression and functional analysis (12–15). Well-described
studies on the regulation of gene expression network, the
immune landscape, and the molecular mechanisms and
underlying pathogenesis of sepsis/se-ARDS are limited and
delayed (15). More in-depth studies, especially analysis with
satisfactory and applicable results, are essential and urgently
needed in clinical practice.

In the present study, we aimed to explore early genetic
regulations based on gene co-expression network, identify
novel diagnostic targets, and establish potential risk prediction
model for sepsis/se-ARDS by bioinformatics approach. More
significantly, this study might help develop potential biological
mechanisms and provide more innovative insights into the
pathophysiology of sepsis/se-ARDS, which could contribute to
clinical prevention, therapy, and prognosis.
MATERIALS AND METHODS

Data Sources and Preprocessing
The RNA-sequencing datasets used in this study were
downloaded from the Gene Expression Omnibus (GEO)
database of the National Center for Biotechnology Information
(16). The GSE32707 dataset included array-based gene
expression profiles of whole blood from critically ill patients on
the day of admission (day 0) and 7 days later under the platform,
GPL10558. Patients from three different groups (34 control
patients, 58 sepsis patients and 31 se-ARDS patients) with the
uniformly distributed demographic and clinical characteristics of
June 2022 | Volume 13 | Article 897390
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the primary data demonstrated in the original microarray study
(17) in GSE32707 were chosen for weighted gene co-expression
network analysis (WGCNA), differential expression analysis,
model construction and validation, immune infiltration
analysis, and the final correlation analysis in this study. In
addition, GSE28570 and GSE57065 datasets were also collected
for the following independent external validation to verify the
diagnostic performance of the sepsis/se-ARDS prediction model.
All the criteria of patients identified with sepsis and ARDS were
strictly keep to the original researches from the GEO database,
and R language was used for raw data preprocessing and the
subsequent statistical analysis in this study (18).

Co-Expression Network Construction
WGCNA was performed by R to construct the co-expression
network of genes and the “quantile” function in R were applied to
screen the top 25% genes with greatest variance in the GSE32707
dataset (19). After the outlier samples were removed, the cluster
dendrogram of the samples was constructed, and then a suitable
soft-thresholding power value was determined with the value of
R2 maximum. During module construction, the similarity matrix
was transformed into an adjacency matrix, whereas different
adjacencies were calculated and transformed into a consensus
topological overlap matrix (TOM). TOM dissimilarity (dissTOM)
was computed to construct a network heatmap plot. Highly
interconnected genes were separated based on their connectivity
and covariance coefficients, and then hierarchically clustered as
gene modules, which were identified and assigned with unique
color labels. Finally, we estimated module–trait associations by
performing consensus module detection under different clinical
traits to evaluate specific modules related to sepsis/se-ARDS.

Identification of Clinically Significant
Modules and Hub Genes
Hub genes are highly interconnected with the nodes of the
module and are of functional importance for co-expression
analysis. The overall expression level of each module
represented as module eigengene (ME) was summarized. The
correlation between the clinical traits and gene expression of
samples was analyzed using R software. The Pearson correlation
coefficients between the MEs of each module and each clinical
trait were also calculated, where P<0.05 indicates a significant
correlation between a module and clinical traits in the study.
Therefore, these modules were chosen as the key modules.

Gene significance (GS) values were calculated as the Pearson
correlation coefficients between the expression levels of every
gene and every clinical trait, and module membership (MM)
values were also calculated as the Pearson correlation coefficients
between the gene expression levels and the ME (19). The genes in
the key modules with high GS (>0.3) and high MM (>0.8) were
recognized as hub genes.

Functional and Pathway Enrichment
Analyses
The genes in the key module were all subjected to Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Frontiers in Immunology | www.frontiersin.org 3
pathway enrichment analyses which were performed via the
Database for Annotation, Visualization, and Integrated
Discovery (DAVID) tools (20). Gene set enrichment analysis
(GSEA) was also performed by using GSEA software to identify
gseGO function and gseKEGG pathway (21). Biological process
(BP) terms were used to represent functional enrichment in GO,
“clusterProfiler” package in R was utilized to visualize all the
results of DAVID and GSEA, and adjusted P<0.05 was regarded
statistically significant for enrichment analysis (22).

Gene set variation analysis (GSVA), a novel method of
enrichment analysis, was carried out by using “GSVA” package in
R (23) to reveal the upregulated or downregulated functional and
pathway enrichment terms of a set of modular genes. Their
expression profile also played a part in the analysis. The scores for
the enriched GO terms and KEGG pathways were calculated based
on the expression levels of the modular genes. Afterward, the GSVA
scores to quantify functional and pathway enrichments between
sepsis/se-ARDS and healthy controls were compared, evaluated, and
visualized in the “limma” package in R with adjusted P<0.05.

Verification of the Differential Expression
of Hub Genes
The expression profiles of hub genes in the GSE32707 dataset
were extracted and constructed by TBtools software (Toolbox
for Biologist v1.09854) in the same samples as WGCNA (24).
Differential expression analysis between healthy and sepsis/se-
ARDS samples was conducted using the “limma” package in R
to verify the differential expression of these hub genes (25). All
the hub genes were detected and are shown in the differentially
expressed volcano diagram with their gene symbols presented
in the figure. In this study, log2(fold change)>0.5 and −log10
(adj. P)>1.122 (adj. P<0.05) were the screening thresholds.

LASSO Regression and Multivariable
Logistic Regression Analysis
The least absolute shrinkage and selection operator (LASSO)
algorithm was executed by the “glmnet” package in R to
reduce the high dimensions of data; the hub genes obtained
from WGCNA were used to screen the potential biomarkers;
and the variables with nonzero coefficients were selected as the
optimal genes and entered into the subsequent multivariable
logistic regression analysis in R (26). A prediction model that
incorporates the genes screened from the LASSO regression
was constructed using P-value and odds ratio (OR) with 95%
confidence interval (CI) as features to identify the diagnostic
biomarker candidates.

Nomogram Model Construction and
Decision Curve Analysis
The final variables from the multivariable logistic regression
analysis were identified as the potential predictors and diagnostic
biomarkers associated with sepsis/se-ARDS. Afterward, a risk
prediction nomogrammodel was conducted and assessed in R by
calibration curves and Harrell’s C-index calculation (27).
Decision curve analysis was also performed in R to determine
the clinical usefulness of the nomogram by quantifying the net
June 2022 | Volume 13 | Article 897390
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benefits at different threshold probabilities in the sepsis/se-
ARDS cohorts.

Receiver Operating Characteristic (ROC)
Curve Analysis
The samples in the GSE32707 dataset were separated into sepsis
and se-ARDS groups, as well as into training set (75%) and test
set (25%), in order to verify and validate the screened gene
biomarkers based on the diagnostic model. Two independent
datasets (GSE28570 and GSE57065) were employed as external
validation sets. ROC curve analyses, including the specificity,
sensitivity, likelihood ratios, positive predictive values, negative
predictive values, and area under ROC curve (AUC), were
conducted in the training, test, and validation sets (28) and
then calculated and drawn by the “pROC” package in R to
evaluate the predictive efficiency of the prediction models
established in the study (29) and assess the diagnostic value of
the screened genetic biomarkers used in the construction of
the models.

Machine Learning Algorithms
After ROC analysis was conducted for model construction, five
different popular classification algorithms, namely, Support
Vector Machines (SVMs), Random Forest (RF), Naïve Bayes
(NB), Neural Network (NN), and Flexible Discriminant Analysis
(FDA), were used to develop and conduct machine learning-
based models (30) and evaluate the model’s performance in
predicting the occurrence of sepsis/se-ARDS. These processes
were performed using the “caret” package in R.

Gene Expression Regulation and
Correlation Analysis
The regulation of gene expression during the development of
sepsis/se-ARDS was investigated. The expression profile of the
GSE32707 dataset was utilized to analyze the expression
variation trends of the gene markers among the healthy
control group, sepsis groups on days 0 (admission day) and 7,
and se-ARDS groups on days 0 and 7, where the expression
analysis was additionally performed in the external cohorts of
GSE28750 and GSE57065 datasets to validate the regulations of
specific genes. Then, multiple comparisons between groups were
executed separately for the comprehensive analysis of marker
gene expression during sepsis/se-ARDS development.

Moreover, Pearson correlation analysis was performed to
further analyze the correlation between the disease status of
samples and the expression of the identified diagnostic
biomarkers, as well as the correlation of different biomarkers’
expression during sepsis/se-ARDS development.

P<0.05 was considered statistically significant. All the results
were visualized by the “ggplot2” package in R.

Immune Infiltration and Correlation
Analysis With Diagnostic Biomarkers
During Sepsis/Se-ARDS Development
We performed immune infiltration analysis by CIBERSORT to
evaluate the profiles of 22 kinds of infiltrating immune cells
Frontiers in Immunology | www.frontiersin.org 4
based on all the samples from healthy controls and sepsis/se-
ARDS groups in the GSE32707 dataset. The matrix data of gene
expression were uploaded, and then CIBERSORT was used to
obtain the immune cell infiltration matrix for the following
analysis, and visualization was performed using the “ggplot2”
package in R (31). Bar-plot, heatmap, and violin diagram were
drawn to compare and evaluate the differences in immune
infiltration among the samples. Moreover, the correlation of
the 22 types of infiltrating immune cells among the samples was
performed and visualized by a correlation heatmap in R.

Pearson correlation analysis was performed and visualized by
the “ggplot2” package in R to analyze the correlation between the
expression of the identified diagnostic biomarkers and
infiltrating immune cells during sepsis/se-ARDS development.
RESULTS

Weighted Gene Co-Expression Networks
and Module Construction Analysis
WGCNA was carried out to identify the co-expression network
of sepsis/se-ARDS-associated genes in the GSE32707 dataset. A
total of 31311 genes expressed in 123 samples whose clinical
characteristics could be obtained from the original study (17)
were calculated by applying “quantile” function in R, and
accordingly, 7828 genes in the top 25% greatest variance genes
were screened to identify co-expression patterns. The outgroup
samples were removed (Supplementary Figure S1A), and the
dendrogram and trait heatmap of the remaining 82 samples were
displayed in Figure 1A. Based on the criteria for combining the
scale-free topology fit index of R2 and effective mean connectivity
(Supplementary Figures S1B, C), we selected 9 as the optimal
soft-thresholding power for later analysis. The co-expression
networks were then constructed. The cluster dendrogram and
network heatmap of all the genes were presented in Figures 1B,
C, respectively. Sixteen consensus gene co-expression modules
were obtained, and their interactions were presented by
hierarchical clustering analysis as the module eigengene
dendrogram and eigengene network heatmap (Supplementary
Figure S1D).

Identification of Key Consensus Modules
and Hub Genes Associated With
Sepsis/Se-ARDS
All of the consensus gene co-expression modules were analyzed
to identify the crosstalk between the consensus modules and
clinical traits. As shown in Figure 1D, the module–trait
relationships indicated that the magenta and midnight blue
modules were remarkably correlated with the clinical traits of
the healthy control, sepsis, and se-ARDS groups.

Therefore, the magenta and midnight blue modules were
identified as the key related consensus gene modules which were
separated based on the connectivity and covariance coefficients of
highly interconnected genes for the final hierarchical clusters, and
the involved 384 modular genes obtained from the above key
magenta and midnight blue modules, which were remarkably
June 2022 | Volume 13 | Article 897390
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correlated with the clinical traits in this study, were listed
in Supplementary Table S1 and then used for the screening
of hub genes associated with sepsis/se-ARDS. The relationship
between GS and the intramodular connectivity of the magenta
and midnight blue modules in different groups was
proven to be substantial as indicated in Supplementary Figures
S2A–C. fThe correlation between GS and MM was explored, and
the results shown in Figures 2A–F demonstrated that the magenta
and midnight blue modules were considerably associated with all
the clinical traits of the control, sepsis, and se-ARDS groups.
Accordingly, the heatmaps of the involved genes in the magenta
and midnight blue modules among samples were displayed in
Supplementary Figures S3A, B and the top36 genes in the
magenta and midnight blue modules were screened and
identified as hub genes using the criteria: MM>0.8 and GS>0.3
(Supplementary Table S2).

Functional and Pathway Enrichment
Analyses of Modular Genes Involved in
Sepsis/Se-ARDS
The enrichment of the 384 modular genes with their expression
levels in samples was studied via a comprehensive analysis based on
DAVID, GSEA, and GSVA (Supplementary Figures S4A–D).
Frontiers in Immunology | www.frontiersin.org 5
Notably, the results of GO enrichment performed by DAVID
showed that innate immune response in the mucosa, defense
response to bacterium, lipopolysaccharide-mediated signaling
pathway, and inflammatory response were remarkably
upregulated in sepsis/se-ARDS compared with the control,
whereas response to drug, mitotic nuclear division, cell division,
and DNA replication were substantially downregulated. KEGG
pathway analysis showed that lysosome, peroxisome, calcium
signaling pathway, and glycerolipid metabolism were
considerably upregulated in sepsis/se-ARDS compared with the
control. Conversely, hematopoietic cell lineage, proteasome,
glycine serine, and threonine metabolism were markedly
downregulated. The calculation of BP terms in GSEA also
revealed and confirmed that inflammation and immunity-
related gene sets, such as innate immune response and cell
activation involved in immune response, were remarkably
enriched in sepsis/se-ARDS (Figure 3A). In summary, the
enrichment scores of common terms were qualified by GSVA
and visualized in R as exhibited in Figures 3B, C.

In addition, in order to acquire more details for
understanding the picture of the hub genes, the above
enrichment analyses were also performed in the 36 hub genes
identified previously. Similarly, the GSVA scores of GO
B

C D

A

FIGURE 1 | Co-expression network and module–trait relations of sepsis/se-ARDS. (A) Sample dendrogram and trait heatmap of sepsis/se-ARDS. (B) Cluster
dendrogram of all genes based on key modules. (C) Co-expression network heatmap based on dissTOM. (D) Relationships of modules with clinical traits.
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enrichments and KEGG pathways shown in Supplementary
Figures S5A, B also demonstrated that quite a few terms of GO
annotations and KEGG pathways were coincidentally enriched
such as immune response, inflammation and metabolism,
which validated the consistency of the enriched functional
terms and pathways in this study.
Frontiers in Immunology | www.frontiersin.org 6
Construction of Diagnostic Prediction
Model for Sepsis/Se-ARDS
The differential expression of the 36 hub genes obtained from
WGCNA was detected and identified by differential expression
analysis to verify their potential diagnostic prediction value.
Figure 4A presented all the hub genes with their gene symbols
B

C D

E F

A

FIGURE 2 | Identification of hub genes associated with sepsis/se-ARDS. Correlation between module membership (MM) and gene significance (GS) for the (A, B)
control, (C, D) sepsis, and (E, F) se-ARDS groups in the key magenta (left) and midnight blue (right) modules.
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B

C

A

FIGURE 3 | Functional and pathway enrichment analyses of the key modules of sepsis/se-ARDS. (A) GSEA of innate immune response (left) and cell activation
involved in immune response (right). (B) GSVA-based analysis of biological function enrichment by bubble plot. (C) GSVA-based analysis of KEGG pathway
enrichment by bar-plot.
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in a volcano diagram. Thirty-two hub genes were differentially
expressed and entered into the subsequent model construction.

Based on the LASSO algorithm, the 32 hub genes were reduced
into 10 potential predictors (lambda. min=0.01824334, Figures 4B,
C). These 10 variables with nonzero coefficients were subjected to
the following multivariable logistic regression analysis. As indicated
in Table 1, four genes, namely, SIGLEC9, TSPO, CKS1B, and
PTTG3P, stood out of the 10 genes and were recognized as
diagnostic biomarker candidates for sepsis/se-ARDS. A second
round of multivariable logistic regression analysis was performed
to eliminate unnecessary interference of the insubstantial variables
and then to construct a more practicable diagnostic prediction
model focused on these four genes (Table 2).

Afterwards, a sepsis/se-ARDS risk nomogram model that
involves SIGLEC9, TSPO, CKS1B, and PTTG3P as the
independent predictors was constructed (Figure 4C). The
calibration curve of the nomogram for sepsis/se-ARDS
risk prediction demonstrated great agreement with the actually
diagnosed probability of sepsis/se-ARDS (Figure 4D). The C-index
of the prediction nomogram was 0.950 (95% CI=0.928–0.972).
Moreover, the results of the decision curve and calibration curve
analyses (Figures 4E, F) for the sepsis/se-ARDS risk nomogram
exhibited apparent performance with excellent discrimination and
prediction capability.

Furthermore, additional four-gene models based on different
machine learning methods were established for the validation
analysis of the identified biomarker signatures. It was indicated in
Table 3 that based on their respective optimum parameters, all the
five machine learning models exhibited great classification
performance inpredicting sepsis/se-ARDS in regard toROCanalysis.
Frontiers in Immunology | www.frontiersin.org 8
Verification and Validation of Diagnostic
Biomarkers and Prediction Models for
Sepsis/Se-ARDS
ROC curve analyses verified and validated the prediction efficacy
of the diagnostic biomarker candidates, SIGLEC9, TSPO, CKS1B,
and PTTG3P, as well as the prediction models based on the
foregoing analysis. The AUCs of the respective diagnostic values
of the four genes for sepsis/se-ARDS in GSE32707, GSE28570
and GSE57065 were detected. And as displayed in Figures 5A–C,
most of these four genes especially SIGLEC9 and TSPO exhibited
great diagnostic values for sepsis/se-ARDS. The prediction
performances of the models based on the four biomarkers were
evaluated in different cohorts. Interestingly, all these models
exhibited substantial prediction efficiency in sepsis and se-ARDS
cohorts, as well as in the training, test, or validation cohorts
(Figures 5D–F).

Analysis of Marker Gene Expressions
During Sepsis/Se-ARDS Development
The regulations of marker gene expressions during the course of
sepsis/se-ARDS were detected in samples of GSE32707 and were
presented in Figure 6A. All of these four identified biomarkers,
SIGLEC9, TSPO, CKS1B, and PTTG3P, were remarkably
upregulated in the sepsis and se-ARDS group compared with
the control group (P<0.05, except for CKS1B in se-ARDS group),
whereas no remarkable changes were shown in the se-ARDS
group compared with the sepsis groups (P>0.05). Moreover, the
expression analysis of these four genes in sepsis condition was
also additionally performed in the external cohorts of GSE28750
and GSE57065 to validate their consistency in regulations of gene
TABLE 1 | Results of multiple logistic regression analysis based on 10 hub genes screened from LASSO regression.

Variable Regression Coefficient Std. Error OR (95%CI) z-value p-Value

(Intercept) -28.492 11.49144 4.228e-13
(1.620e-24, 4.448e-04)

-2.479 0.0132*

DDAH2 -0.20547 1.95753 0.814
(1.781e-02, 3.997e+01)

-0.105 0.9164

OSCAR -0.03748 0.94491 0.963
(1.416871e-01, 6.491463e+00)

-0.04 0.9684

SIGLEC9 5.43723 2.24103 229.8053
(4.952e+00, 3.675e+04)

2.426 0.0153*

GPR84 0.65854 0.94666 1.932
(3.635e-01, 1.442e+01)

0.696 0.4866

LTB4R 0.9101 1.16046 2.485
(2.383e-01, 2.502e+01)

0.784 0.4329

TSPO -2.28203 0.89929 0.102
(9.725e-03, 4.604e-01)

-2.538 0.0112*

CKS1B -3.68616 1.61789 0.0251
(6.925e-04, 4.371e-01)

-2.278 0.0227*

UBTD1 0.2199 1.28837 1.246
(1.069e-01, 1.745e+01)

0.171 0.8645

PTTG3P 3.86828 1.53974 47.860
(3.230e+00, 1.556e+03)

2.512 0.0120*

TDRD9 0.12884 1.02718 1.138
(1.616e-01, 9.624e+00)

0.125 0.9002
June 202
2 | Volume 13 | Article
*P<0.05. Diagnostic biomarker candidates are indicated in bold.
LASSO, least absolute shrink and selection operator; OR, odds ratio; CI, confidence interval; DDAH2, dimethylarginine dimethyl amino hydrolase 2; OSCAR, osteoclast associated Ig-like
receptor; SIGLEC9, sialic acid-binding Ig-like lectin 9; GPR84, G protein-coupled receptor 84; LTB4R, leukotriene B4 receptor; TSPO, translocator protein; CKS1B, cyclin-dependent
kinase regulatory subunit 1B; UBTD1, ubiquitin domain containing 1; PTTG3P, putative pituitary tumor-transforming gene 3 protein; TDRD9, tudor domain containing 9.
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FIGURE 4 | Construction of diagnostic prediction model for sepsis/se-ARDS. (A) Thirty-six hub genes differentially expressed between sepsis/se-ARDS samples
and controls. (B) Different coefficients values and (C) binomial deviance values within the range of lambda. (D) Nomogram model for sepsis/se-ARDS prediction
based on the identified biomarkers, SIGLEC9, TSPO, CKS1B, and PTTG3P. (E) Decision curve analysis and (F) calibration curve analysis of the sepsis/se-ARDS risk
nomogram model.
TABLE 2 | Results of multiple logistic regression analysis based on the four key genes.

Variable Regression Coefficient Std. Error OR (95%CI) z-value p-Value

(Intercept) -21.7946 7.9037 3.425e-10
(7.470e-18, 5.800e-04)

-2.758 0.00582**

SIGLEC9 6.2852 1.5547 5.366e+02
(4.008e+01, 1.997e+04)

4.043 5.28e-05***

TSPO -2.0966 0.7011 1.229e-01
(2.386e-02, 3.868e-01)

-2.99 0.00279**

CKS1B -4.5461 1.3966 1.061e-02
(4.531e-04, 1.194e-01)

-3.255 0.00113**

PTTG3P 4.5038 1.3778 9.036e+01
(8.279e+00, 2.046e+03)

3.269 0.00108**
Frontiers in Immunology
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**P<0.01; ***P<0.001. Identified diagnostic biomarkers are indicated in bold.
OR, odds ratio; CI, confidence interval; SIGLEC9, sialic acid-binding Ig-like lectin 9; TSPO, translocator protein; CKS1B, cyclin-dependent kinase regulatory subunit 1B; PTTG3P, putative
pituitary tumor-transforming gene 3 protein.
TABLE 3 | Diagnostic performances of the four-gene models based on machine learning algorithms.

Model Optimum Parameter Sensitivity Specificity ROC

SVM sigma=0.007904905, C=0.25 0.3846667 0.8799167 0.7833028*
RF mtry=43 0.7056000 0.8731167 0.8977694**
NB lapplace=0, usekernel=TRUE, adjust=1 1 0.005625 0.8207542**
NN Size=5, decay=0.1 0.3486833 0.9781583 0.7925806*
FDA degree=1, nprune=2 0.7183500 0.7919083 0.8511097**
*0.70≤ROC<0.80, good; **0.80≤ROC<0.90, great.
ROC, receiver operating characteristic; SVMs, Support Vector Machines; RF, Random Forest; NB, Naïve Bayes; NN, Neural Network; FDA, Flexible Discriminant Analysis.
icle 897390

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ming et al. Integrated Analysis in Sepsis/Se-ARDS
expressions. As demonstrated in Supplementary Figures S6A-
D, SIGLEC9, TSPO, CKS1B, and PTTG3P all exhibited
remarkable changes of upregulations in the sepsis group
compared with control group in both datasets with P<0.05
(except for CKS1B in GSE28750), which proved the great
diagnostic and predictive performance of these four biomarkers.

The expression variation trends of the gene markers were
analyzed among different groups of healthy control, patients on
days 0 (admission day) and 7 of sepsis/se-ARDS. As displayed in
Figures 6B, both SIGLEC9 and TSPO were significantly
upregulated on sepsis day 0 and then descended a bit more on
sepsis day 7 (***P<0.001) during sepsis development, while both
CKS1B and PTTG3P appeared to be steadily upregulated on
sepsis day 0 and day 7 (*P<0.05). Similar alterations were
observed in the expressions of SIGLEC9, TSPO and PTTG3P
during se-ARDS development, whereas CKS1B was not regulated
significantly (Figures 6C).

Further correlation analysis based on SIGLEC9, TSPO,
CKS1B, and PTTG3P was carried out to identify the potential
interactions and effects of these diagnostic biomarkers during
sepsis/se-ARDS development. As displayed in Figure 6D, the
expressions of four genes were remarkably related to each other,
and it is apparent that the highly positive correlations between
SIGLEC9 and TSPO and between CKS1B and PTTG3P were
Frontiers in Immunology | www.frontiersin.org 10
spectacularly remarkable at all the stages of sepsis/se-ARDS
progression (Figures 6E, F).

Landscape of Immune Cell Infiltration and
Its Correlation Analysis With Diagnostic
Biomarkers During Sepsis/Se-ARDS
Development
The immune infiltration analysis performed by CIBERSORT
summarized the infiltrating levels of 22 types of immune cells
among all the samples from healthy controls and sepsis/se-ARDS
patients in GSE32707 dataset, and the results were presented as
the relative infiltrating proportions (Supplementary Figure
S7A). The hierarchical clustering heatmap of subpopulations
was shown in Figure 7A. The comparisons of every immune cell
infiltration between groups were analyzed in GSE32707 and
presented with the significantly dysregulated results of
infiltrating immune cells indicated in Figure 7B and the
remaining results with no remarkable difference were indicated
in Supplementary Figure S7B, which have been verified again
by the same analysis in external validation cohorts of GSE28570
and GSE57065 as exhibited in Supplementary Figures S7C, D.
Compared with the control group, multiple types of immune
cells especially higher levels of neutrophils (P=0.035 in
GSE32707, 0.007 in GSE28750 and <0.001 in GSE57065) and
B C

D E F

A

FIGURE 5 | Comparisons of ROC curves and AUC performances. The ROC curve analysis of sepsis/se-ARDS diagnostic efficacy of SIGLEC9, TSPO, CKS1B, and
PTTG3P in (A) GSE32707, (B) GSE28750 and (C) GSE57065. (D) The ROC curve analysis of sepsis/se-ARDS prediction efficacy of the four-gene model in sepsis,
se-ARDS or sepsis/se-ARDS cohorts(left) and (E) in training or test cohorts (right) of GSE32707. (F) The ROC curve analysis of sepsis/se-ARDS prediction efficacy of
the four-gene models in validation cohorts of GSE28750 and GSE57065.
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FIGURE 6 | Expression of marker genes during sepsis/se-ARDS development. (A) Expression regulation of SIGLEC9, TSPO, CKS1B, and PTTG3P during the
course of sepsis/se-ARDS. (B) Expression variation trends of SIGLEC9, TSPO, CKS1B, and PTTG3P among the control, sepsis day 0 and 7 groups. (C) Expression
variation trends of CKS1B, PTTG3P, SIGLEC9, and TSPO among the control, se-ARDS day 0 and 7 groups. (D) Correlation analysis of the four biomarkers during
sepsis/se-ARDS development. Correlation analysis between (E) SIGLEC9 and TSPO and between (F) CKS1B and PTTG3P. *P < 0.05; **P < 0.01; ***P < 0.001.
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monocytes (P<0.001 in GSE32707, 0.031 in GSE28750 and 0.028
in GSE57065) were repeatedly differentially infiltrated in the
samples from the sepsis/se-ARDS groups (Figure 7B and
Supplementary Figure S4B). In addition, as displayed in
Figure 7C, the detailed correlation analysis of the 22 types of
immune cells demonstrated that almost all infiltrating immune
cells except for macrophages M2 were significantly correlated
with specific types of immune cells partly, where both
neutrophils and monocytes exhibited strong correlations with
substantial immune cells (*P<0.05; **P<0.01; ***P<0.001).

Moreover, the levels of immune cell infiltration in the
progress of sepsis/se-ARDS promoted their further correlation
analysis based on SIGLEC9, TSPO, CKS1B, and PTTG3P, the
diagnostic biomarkers identified in the study. It was revealed in
Figure 7D that these four genes, all demonstrated good
correlations with various infiltrating immune cells. As the
identified immune cell types, neutrophils and monocytes in
particular, might suggest a remarkable dysregulation during
the pathological process, and their correlations with these
four genes were analyzed accordingly. In addition, both
SIGLEC9 and TSPO showed significant positive correlations
with the infiltration levels of both neutrophils and monocytes
(SIGLEC9: r=0.45, P=2.3e−07 for neutrophils and r=0. 58, P=1.2e
Frontiers in Immunology | www.frontiersin.org 12
−12 for monocytes; TSPO: r=0.64, P=1.8e−15 for neutrophils
and r=0.5, P=3.8e−09 for monocytes) as displayed in
Supplementary Figures S8A-D, while both CKS1B and
PTTG3P showed significant negative correlations with the
infiltration levels of both neutrophils and monocytes (CKS1B:
r=−0.55, P=2.8e−11 for neutrophils and r=−0.59, P=5.2e−13
for monocytes; PTTG3P: r=−0.46, P=7.2e−08 for neutrophils
and r=−0.56, P=1e−11 for monocytes) as displayed in
Supplementary Figures S8E–H.

Together, these results indicated that these four genes were
closely related to each other, and might play important roles in
the dysregulated infiltration of specific immune cells during
sepsis/se-ARDS development.
DISCUSSION

Sepsis has emerged as a life-threatening condition, and ARDS
induced by sepsis has added massive destructions and posed
a great threat worldwide for the unavailability of efficient risk
prediction, accurate genetic diagnosis, and molecular
intervention; thus, se-ARDS gave rise to poor outcome and
prognosis and limited effective prevention and therapy (5). The
B

C D

A

FIGURE 7 | Analysis of immune cell infiltration during sepsis/se-ARDS development. (A) Hierarchical clustering heatmap of the subpopulations of 22 types of
infiltrating immune cells among all samples. (B) Violin plot of the significantly dysregulated immune cells in sepsis/se-ARDS. (C) Correlation analysis of the 22 types of
infiltrating immune cells. (D) Correlation analysis of the four biomarkers with the levels of immune cell infiltration. *P < 0.05; **P < 0.01; ***P < 0.001.
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early prediction, recognition, and diagnosis of sepsis/se-ARDS
are critical for appropriate treatment, while bioinformatics
analysis provides an ideal method to screen large-scale gene
expression data to explore the underlying mechanism of sepsis/
se-ARDS (10).

WGCNA has functioned a lot on developing correlation patterns
between phenotype and genomics, and the key modules and hub
genes from the co-expression network has great importance in
bioinformatics (32–34). However, these bioinformatic studies are
rarely used in sepsis/se-ARDS (35). LASSO analysis, multivariable
logistic regression method, ROC analysis and machine learning
algorithms have been proven to act well on the bioinformatics of
various diseases (36, 37). Accordingly, we identified SIGLEC9,
TSPO, CKS1B, and PTTG3P as the diagnostic biomarkers and
then established and validated four-gene-based models for
the disease prediction. The fantastic performances of
the algorithmic models especially the multivariable logistic
regression as well as the significant dysregulation of
these diagnostic biomarkers proved their remarkable theoretically
instructive importance and application value for clinical practice.

Immunoregulation plays an essential role in the pathogenesis of
sepsis/se-ARDS (7, 38). The functional enrichment analysis also
suggested that immune response was considerably dysregulated in
the study, but the detailed landscape of immune infiltration remains
unclear and needs to be explored by immune cell infiltration
analysis, despite the wide application of CIBERSORT for cancer
and immune disease in recent years (39). The present study found
that multiple infiltrating immune cells including neutrophils and
monocytes in particular might participate in the dysregulated
immune response during the progress of sepsis/se-ARDS.
Importantly, the correlations of the four identified genes and the
above immune infiltration cells with the development of sepsis/se-
ARDS were analyzed. Surprisingly, SIGLEC9, TSPO, CKS1B, and
PTTG3P all exhibited remarkable correlations with neutrophils and
monocytes. This finding further consolidates the potential roles of
the biomarkers and provide novel insights into the
immunotherapeutic targets.

It was revealed in our study that the four identified biomarkers,
exhibited substantial differentiation and significant correlations with
each other and immune cell infiltrations during sepsis/se-ARDS
development. Sialic acid-binding Ig-like lectin 9 (SIGLEC9) is a
member of Siglecs that are only expressed in immune cells and
regulate immune balance in inflammatory diseases (40). It has been
revealed that Siglec-9 helps endocytosis of toll-like receptor 4,
regulates macrophages polarization, and inhibits the function of
neutrophils by mediating death signals in neutrophils during
infection in the pathogenesis of sepsis (40, 41). Previous study has
proved that septic shock patients exhibit different ex vivo death
responses of blood neutrophils after Siglec-9 ligation early in shock
(41). A human anti-Siglec-9 Fab fragment, named hS9-Fab03, has
been developed and investigated its efficient immune activity for
blocking LPS-induced pro-inflammatory cytokines production
activity in human macrophages (42) and a recent study reported
that synthetic Siglec-9 agonists inhibit neutrophil activation
associated with COVID-19 (43). Moreover, SIGLEC9 has been
reported to function a lot on antivirus and antitumor progression
Frontiers in Immunology | www.frontiersin.org 13
by mediating inhibitory immunoregulation as well as immune
surveillance (44, 45). Translocator protein (TSPO) is a
mitochondrial protein implicated in steroidogenesis and
inflammatory responses such as cytokine release and oxidative
stress (46). It is upregulated in immune cells and has attracted
great interest as a biomarker of the neuroinflammatory response.
Recent studies have shown that the TSPOmRNA and protein were
upregulated in the inflammatory brain of the murine endotoxemia
model and identified the possible role of TSPO in sepsis-associated
encephalopathy (SAE) (47). Cyclin-dependent kinase regulatory
subunit 1B (CKS1B) is crucial in cell cycle regulation and closely
related to tumor initiation, maintenance, and progression, thus
significantly associated with the prognosis of cancers (48, 49).
Putative pituitary tumor-transforming gene 3 protein (PTTG3P)
was found to be regulated expressed in several tumors, which
proved to play a role in interleukin (IL)-1b, IL-8 production and
B cell growth and a series of cell functions such as cell growth,
migration, invasion and apoptosis (50, 51). In spite of the proven
effects of SIGLEC9 and TSPO on sepsis and sepsis-related
pathological mechanisms as well as the potent underlying roles of
these four genes in immune and inflammatory responses, none of
these genes have been studied or explored in se-ARDS at a clinical
level. Considering their great performances of diagnostic value and
immune correlation in the present study, the potential roles of these
identified biomarkers in sepsis/se-ARDS and their underlying
mechanisms deserve to be elucidated in the near future.

In regard to sepsis-related bioinformatics studies, the gene
expression of the whole blood was obtained and analyzed for
potential gene expression dysregulation and novel genetic
biomarkers, except for traditional methods, such as clinical
biochemical indexes, known protein biomarkers, and
inflammatory or immune mediators (52). The use of single
biomarkers, little database application, and simple superficial
analysis methods led to the tardiness and limitations of the
advances in bioinformatics studies on sepsis especially se-ARDS
(13). Nowadays, there existed few well-described bioinformatic
studies especially on the regulation of gene expression network,
the immune landscape, and the molecular mechanisms and
underlying pathogenesis of sepsis/se-ARDS (15). The current
study applied overall data and advanced means, combined
multiple biomarkers, established disease models and explored the
in-depth mechanism of sepsis/se-ARDS. By the identification of
diagnostic biomarkers, the construction of prediction models, and
the illustration of the immunoregulatory pathogenesis, our study
was the first to achieve the personalized risk evaluation, early
prediction, molecular diagnosis, disease recognition, effective
prevention, therapy, and prognoses of sepsis/se-ARDS, which
might provide novel insight and certain significance for
improving the strategies for future clinical practice.

Regrettably, the study still has some limitations, such as the
lack of available clinical data which contained the pre-conditions
of samples that could affect the immune response in the analysis
and various aspects of novel deep learning or artificial intelligence
algorithms (53), biomedical data sciences, precision medicine, and
translational bioinformatics approaches. How this impacts the
advancement of knowledge in septic patients, how to medically
June 2022 | Volume 13 | Article 897390
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prove the effectiveness and necessity of this prediction model and
how to practice the significance of clinical transformation would
need more investigations and efforts. More importantly, solid and
diverse evidences in demand, including relevant original wet
experiments of sepsis/se-ARDS, especially studies on immune-
related mechanisms and by specific gene knock-out in vivo and in
vitro, are required to generate a more comprehensive
understanding of sepsis/se-ARDS in future medical practice.
CONCLUSION

In summary, the present study identified SIGLEC9, TSPO, CKS1B,
and PTTG3P as the genetic biomarkers and established a four-gene-
based model for the effective diagnosis and risk prediction of sepsis/
se-ARDS based on gene co-expression network. Immune
dysregulation mediated by these four biomarkers might be
associated with sepsis/se-ARDS development. The study would
provide novel insights into the potential molecular targets to
combat sepsis and promote a more comprehensive understanding
of the underlying immune mechanism involved in the pathogenesis
of sepsis/se-ARDS.
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