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The lumen of the gastrointestinal (GI) tract contains an incredibly diverse and

extensive collection of microorganisms that can directly stimulate the immune

system. There are significant data to demonstrate that the spatial localization of

the microbiome can impact viral disease pathogenesis. Here we discuss recent

studies that have investigated causes and consequences of GI tract pathologies

in HIV, SIV, and SARS-CoV-2 infections with HIV and SIV initiating GI pathology

from the basal side and SARS-CoV-2 from the luminal side. Both these

infections result in alterations of the intestinal barrier, leading to microbial

translocation, persistent inflammation, and T-cell immune activation. GI tract

damage is one of the major contributors to multisystem inflammatory

syndrome in SARS-CoV-2-infected individuals and to the incomplete

immune restoration in HIV-infected subjects, even in those with robust viral

control with antiretroviral therapy. While the causes of GI tract pathologies

differ between these virus families, therapeutic interventions to reduce

microbial translocation-induced inflammation and improve the integrity of

the GI tract may improve the prognoses of infected individuals.

KEYWORDS

HIV - human immunodeficiency virus, SIV, SARS-CoV-2, AIDS - acquired
immunodeficiency syndrome, COVID - 19, inflammation, microbial translocation,
barrier integrity
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Introduction

Differently from Joni Mitchell, the Canadian-American

singer-songwriter and painter who doesn’t know love at all (in

spite of looking at it from both sides), we know gastrointestinal

(GI) tract tissue as an immune organ very well. It contains about

80% of the total leukocytes in the body (1), and most of the

human microbiota (2–4) (Figure 1A). The GI tract is constantly
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exposed to foreign antigens from food and this exposure is

critical for normal development of the mucosal immune system

and immune tolerance (5–8).

The GI tract has the largest surface area exposed to the

environment and the intestinal epithelia confers protection

against toxic substances from food and microbes, both those

normally present in the human microbiome, as well as those

carried with food and water. The intestinal mucosal barrier is
A

B

C

FIGURE 1

Pathways of the gastrointestinal tract damage in HIV/SIV and SARS-CoV-2 infections. (A) Normal GI tract is a continuous barrier which protects
the internal milieu by the damage of an enormous microbiota existent in the GI lumen. This barrier is multistratified, being represented by
mucus, a continuous intestinal epithelium, and immune effectors that capture translocated microbes. (B) While HIV/SIV penetrates the body at
mucosal sites, GI infection occurs through systemic seeding. CD4+ T cell destruction and the inflammatory responses contribute to the
destruction of the mucosal barrier from within, leading to the translocation of the intestinal flora in the lamina propria and then systemically;
(C) SARS-CoV-2 infection of the enterocytes (that express high levels of the ACE-2 and TMPRSS-2 receptor) produce direct epithelial
destructions also leading to translocation of the intestinal microbiota to the lamina propria and then systemically. Mucosal damage is both a
major determinant of long COVID, as well as of an incomplete immune recovery even in HIV-infected individuals receiving suppressive
antiretroviral therapy. Was created with BioRender.com.
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multilayered, with intestinal mucus, commensal bacteria, GI

tract epithelium and the lamina propria immune system all

contributing to host defense (9, 10) (Figure 1A). Protection is

not limited to a physical barrier, but includes numerous active

cell populations that exert secretory functions: goblet cells which

produce mucus glycoproteins (11, 12); Paneth cells which

produce antimicrobials that have the ability to specifically lyse

bacteria (13); and B cells from the lamina propria which produce

immunoglobulins (IgA) that capture bacteria that arriving to

this gut level, preventing their successful translocation

(14) (Figure 1A).

Breaches of the mucosal integrity of the GI tract are central

to the pathogenesis of multiple chronic metabolic, autoimmune,

and aging-related diseases (9, 10). Multiple infections can alter

the integrity of the mucosal barrier including (15): human and

simian immunodeficiency viruses (16–21); influenza virus

infection (22); dengue (23); hepatitis B virus infection (24);

hepatitis C virus infection (25); and SARS-CoV-2 (26, 27).

Furthermore, the quality of our intestinal microbiome is

driving our overall morbidity (28–32). An inflammatory flora,

such as the one associated with a Western diet (i.e. rich in

saturated fats and sugars) drives a state of chronic inflammation,

which triggers multiple systemic diseases and is roughly

responsible for more than 50% of the deaths on the planet

(33). Replacement with a healthy diet (i.e., Mediterranean diet

rich in fiber, minerals and vitamins, and Omega 3) can alter the

microbiome in as little as 3 weeks and change its phenotype to an

anti-inflammatory one (34–42).

The interplay of the GI tract immune system and pathogens

which disrupt this complex mucosal barrier is critically

important in understanding pathogenesis, and providing

targets for reducing damage. We will explore the well-studied

impacts of HIV and SIV on the GI tract in addition to the

parallels and distinctions that can be made in a recently emerged

pandemic virus, SARS-CoV-2, and its corresponding disease,

COVID-19.

Breaching the barrier from within:
Mucosal pathogenesis of HIV and
SIV infection

Even since the discovery of HIV, the involvement of the GI

tract in the pathogenesis of AIDS was suggested by the high

frequency of the gut dysfunction and wasting disease (43). Yet,

the paradigm of HIV infection as a mucosal disease emerged

only after the detailed characterization of the interactions

between HIV and SIVs and their CD4-expressing target cells.

It was reported that only the CD4+ T cell subsets that expressed

high levels of CCR5 (i.e. central memory cells, transitional

memory cells, and effector memory cells) are preferentially

targeted by HIV and SIV (44–47) and that the main reservoir

is represented by the central memory cells (48). From a
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functional perspective, Th-17 CD4+ T cells contribute to the

maintenance of the gut integrity and are preferentially lost

during progressive HIV and SIV infections (49–51). As such,

since the vast majority of the effector memory cells are located at

mucosal surfaces, numerous studies have shown that the first

major immunologic injury inflicted by HIV/SIV to the immune

system is the massive depletion of mucosal CD4+ T cells (>95%)

that occurs at the mucosal sites within three weeks from

infection (52–54). As memory CD4+ T cells are the

preferential targets of HIV infection, their depletion is more

prominent at the effector sites, such as the lamina propria,

compared to inductive sites (i.e. the Peyer patches) which

contain naïve CD4+ T cells (55). CD4+ T cell depletion within

effector sites persists throughout chronic infection, irrespective

of the virological and clinical outcome (56). Furthermore,

differently from the circulating CD4+ T cells, which can be

rapidly restored to preinfection levels after administration of

combination antiretroviral therapy (cART), mucosal CD4+ T

cell restoration is slow and incomplete (35-50% from the

baseline levels) (56–58).

The severe immunologic insult produced following the

interactions between HIV/SIV and their target cells within the

GI tract trigger key pathogenic features of chronic SIV/HIV

infection that drive disease progression (Figure 1B). Indeed,

Th17 cells contribute to the maintenance of GI tract immunity

through induction of mucins, claudins, and defensins, which are

key components of the mucosal junctions and have

antimicrobial activities; therefore, loss of Th17 cells directly

compromises mucosal integrity (59). Their loss results in

reduced levels of IL-17 and IL-22, which promote the

recruitment of neutrophils and myeloid cells at the effector

sites of the mucosa and lead to growth of epithelial cells (59–

61). Alteration of the Th17/Treg ratio is associated with

increased indoleamine-2,3-dioxygenase (IDO) expression by

antigen-presenting cells (62–65). IDO is involved in the

tryptophan metabolization (64), and IDO metabolites directly

inhibit Th17 cell differentiation (66). IDO increases are also

associated with decreased frequencies of CD103 antigen-

presenting cells, which can induce Th17 cells (67). Altogether

these features, which are specifically associated with pathogenic

SIV infection and absent during the SIV infection of natural

NHP hosts (in which Th17 cells are preserved) (49, 51), point to

a vicious circle that leads to a continuous depletion of the Th17

population, the consequence of which is the occurrence and

intensification of the mucosal damage during HIV/

SIV infections.

The impact of HIV/SIV infection on the innate immune cell

populations at the mucosal sites has also been extensively

investigated. Progressive HIV and SIV infections lead to a

reduction of both plasmacytoid dendritic cells (pDCs) and

myeloid dendritic cells (mDCs) in both the peripheral blood

and spleen, and alter their homing to the gut (68). Progressive

infection leads to their excessive activation, leading to increased
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turnover in tissues (68). Similar profiles of increased apoptosis

and an altered functional profile upon HIV/SIV infections are

observed for the gut-resident innate lymphocyte type III cells

(69–71). As a result, instead of facilitating control of the virus

through recruitment to the mucosal sites, the innate immune

cells produce excess of cytokines; meanwhile their high mortality

triggers release of more inflammatory cytokines by the

surrounding cells, further enhancing mucosal inflammation

and epithelial cell activation (72). Interestingly, mDC and

macrophage recruitment to the mucosal sites also occurs

during the nonprogressive SIV infections of the natural hosts

or controller rhesus macaques (68). This process is, however,

only transient, is not associated with excessive production of

inflammatory cytokines, and does not result in their excessive

death, strongly suggesting that the fate of the immune cell

subsets and their functions in the GI tract is driven by the

local environment (73). As such, the current view is that, being

programmed to fight against the infections, the innate cells

migrate to the gut in progressive, as well as in nonprogressive

and controlled SIV infections. Yet, the innate cells become

hyperactivated only in the pathogenic infections, due to their

mucosal environment, which is altered by both the virus and

translocated microbial products, and thus further fuel the

inflammation, deepen the damage of the mucosal barrier, and

contribute to the negative outcome of HIV/SIV infection (74,

75) (Figure 1B).

The HIV/SIV-associated immunological alterations at the

mucosal sites result in structural and functional pathologies of

the GI tract. Virus replication, inflammation and immune

activation together with bystander apoptosis of the epithelial

cells throughout the GI tract result in enterocyte loss and

alterations of mucosal integrity (16). Progressive HIV and SIV

infections trigger enterocyte loss through multiple mechanisms:

(i) the virus itself can decrease glucose uptake by enterocytes

through a Tat-mediated microtubule disruption or through

GP120 binding to GPR15 on epithelial cells (76, 77); (ii)

increased enterocyte apoptosis occurs through bystander

effects, similar to other colitis (i.e. celiac disease) (78); (iii)

excessive production of inflammatory cytokines (i.e., tumor

necrosis factor-TNFa by innate and adaptive immune cells

from the lamina propria) at the mucosal sites lead to increased

apoptosis of the epithelial cells and perturbations of the tight

junction epithelial barrier (79); and (iv) loss of IL22-producing

innate lymphoid cells and Th17 cells leads to decreased

proliferation of enterocytes (59, 61). Loss of epithelial GI tract

integrity through any of these mechanisms in progressive HIV/

SIV infection is associated with inflammation (80–83).

Enterocyte loss and subsequent intestinal alterations are

associated with: (i) low levels of serum citrulline (a protein that

is produced by the enterocytes); (ii) decreased ratio of the villous

height/crypt depth (i.e., atrophy) (84); (iii) hyperproliferation of

the crypt stem cells (resulting in malabsorption) (85); (iv)

Increased plasma levels of the biomarkers of enterocyte damage,
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abnormal enterocyte differentiation through alterations of the

sodium glucose transport and of the concentrations of

intraepithelial calcium (87–89). GI tract dysfunction occurs as

early as 14 days during progressive HIV/SIV infections and is

associated with colitis, diarrhea, and malabsorption (43, 90).

These pathologies are specific to pathogenic SIV infections

in macaques and absent during nonpathogenic SIV infections of

the African nonhuman primates that are natural hosts of SIV

(91–93). In these species, the mucosal lesions characteristic to

pathogenic SIV infections do not occur during either the acute

or chronic stages of infection (84, 94) due to an exquisite ability

to maintain gut health throughout the SIV infection (94, 95).
Breaching the barrier from outside:
Mucosal pathogenesis of SARS-
CoV-2 infection

SARS-CoV-2 is the etiological agent of COVID-19, a

respiratory disease characterized by severe pneumonia and a

plethora of symptoms suggestive of viral pneumonia: cough and

sputum production, sore throat, shortness of breath, fever,

myalgia, and fatigue (96–99). However, despite SARS-CoV-2

infection’s main clinical presentation as a respiratory tract

infection, it may also cause symptoms associated with multiple

organs, including the GI tract (diarrhea, anorexia, nausea,

vomiting, and abdominal pain), liver (abnormal enzymes

levels), pancreas (pancreatitis), kidney (proteinuria and

hematuria, abnormal creatinine levels), brain (strokes, seizures,

confusion, and brain inflammation), heart and blood vessels

(elevations of cardiac injury biomarkers, palmus, chest distress,

cardiac inflammation and injury, arrhythmias, and blood clots),

eyes (conjunctivitis, membrane inflammation), anosmia (loss of

smell), and ageusia (loss of sense of taste) (100–124).

To enter target cells, SARS-CoV-2 engages angiotensin-

converting enzyme 2 (ACE2) as the entry receptor and serine

protease TMPRSS2 for the Spike (S) protein priming (125, 126).

Use of ACE2 is shared with SARS (127), but not with MERS,

which uses a different receptor, DPP4 (128). ACE2 is widely

distributed in the body, being identified in up to 72 tissues (129),

and SARS-CoV-2 infection is likewise highly disseminated

(130). The ACE2 protein is expressed in enterocytes, renal

tubules, gallbladder, cardiomyocytes, male reproductive cells,

placental trophoblasts, ductal cells, eyes, and vasculature (131).

Notably, limited ACE2 expression is observed in the respiratory

system both on the protein and mRNA level (132). However, a

relatively limited number of cells express high levels of both

ACE2 and TMPRSS2: Type II pneumocytes, nasal secretory cells,

and absorptive enterocytes (131).

ACE2 expression in the human respiratory tract is highly

heterogenous, being highest within regions of the sinonasal
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cavity (in the nasal ciliated cells) and pulmonary alveoli; these

are the sites of viral transmission and severe disease

development, respectively (133–137). In the lung parenchyma,

ACE2 is expressed on the apical surface of a small subset of

alveolar type II cells, where it was colocalized with TMPRSS2

(133–137). Interestingly, ACE2 protein expression is not

reported to be lower in children, who have a lower incidence

of severe COVID-19, in some studies (133); however, other

investigations have described lower levels of the protein

transcript in children’s airways (138).

ACE2 expression is increased in physiologic and pathologic

circumstances: smoking is correlated with increased expression

of the ACE2 gene in the upper airway, but lower expression in

certain lung cells (139). As such, smokers are 14 times more

likely to develop a severe form of the disease (140). Interferon

and influenza increase ACE2 in human nasal epithelia and lung

tissue (131). Some ACE2 inhibitors (i.e. lisinopril) have the

ability to raise tissue levels of ACE2 in mice (141), while other

studies did not find an increase of ACE2 expression in people

treated with ACE2 inhibitors (137). Severe COVID-19, which is

associated with high levels of inflammatory cytokines (IL-1b and

type I and type III interferons), upregulates ACE2 expression,

which has the potential to increase target cell availability and,

thus, viral replication (131, 134, 139, 142). Yet, the impact on the

variations of ACE2 expression on disease severity it is not

known, and recently, it was reported that interferon-stimulated

expression of ACE2 yields a truncated isoform that cannot bind

SARS-CoV-2 (143).

Different clinical conditions were also reported to modulate

ACE2 expression: hypertension, hyperlipidaemia, diabetes,

chronic pulmonary diseases, and aging (134) (144). All these

conditions are also risk factors for more severe clinical

expression of COVID-19 (145–157). Note, however, that these

data regarding ACE2 are highly debated and, to date, no

comorbidity has been unambiguously associated with ACE2

expression level (144).

Several molecules were reported as alternative receptors for

SARS-CoV-2, such as the C-type lectins DC-SIGN and L-SIGN

(158–160), and TIM1 and AXL (161, 162). However, lectins and

phosphatidylserine are not classical receptors for the virus: they

are nonspecific and do not function efficiently in binding SARS-

CoV-2 in the absence of ACE2 (163). Therefore, it was proposed

that a more correct term for these molecules would be that of

‘attachment factors’ (144). CD147 is a transmembrane

glycoprotein expressed ubiquitously in epithelial and immune

cells, that was proposed as a receptor for SARS-CoV-2, yet its

role as a viral receptor is downplayed by the observation that

CD147 cannot bind to the S protein (164–166). Neuropilin 1

(NRP1) was also reported to be a host factor for SARS-CoV-2

(167, 168). NRP1 is expressed in olfactory and respiratory

epithelial cells (167), yet its expression is low in the SARS-

CoV-2 target cells (ciliated cells) and high in the goblet cells,
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virus cofactor that is expressed in the GI tract and kidney, but

not in the lung; B0AT1 expression in the small intestine depends

on interaction with ACE2 (170). Additional human genes are

important for SARS-CoV-2 infection of lung epithelial cells: the

GTPase encoded by RAB7A is critical for endocytosis, and CTSL

encoding cathepsin L contributes to SARS-CoV-2 spike cleavage;

yet more genes support other viral life cycle stages (171).

Integrins were also reported to mediate cell entry of SARS-

CoV-2 (172, 173), although other studies did not confirm these

observations (174). Reduction of human ACE2 in the epithelia of

K18 transgenic mice in concert with increased CTSL did not

alter the pathogenesis of SARS-CoV-2 (175), further suggesting

the importance of the interplay between host factors at mucosal

sites for successful viral entry and propagation.

Enterocytes express ACE2 and support viral replication

that is enhanced by TMPRSS2 and 4 (176, 177), and SARS-

CoV-2 virions have been directly visualized in the GI tracts of

COVID-19 patients (178). SARS-CoV-2 infection rapidly

induces activated CD8+ T cell infiltration to the intestinal

epithelium (179) and increased effector CD4+ and CD8+ T

cells in the lamina propria (180). This is in spite of a lack of

gross pathological changes in histological findings on

endoscopy in the same patients (179, 180), though others

have reported abnormalities such as crypt hyperplasia with

necrotic cell debris in the absence of inflammation following a

positive SARS-CoV-2 test (181). Similar to this dichotomy,

several studies have reported presence (182, 183) or absence

(184) of viable virus isolation from stool, while viral RNA may

be shed in feces for prolonged periods compared to respiratory

tract samples (185, 186); persistence of viral antigens have also

been reported in GI biopsies for approximately three months

following infection while nasopharyngeal swabs were negative

for SARS-CoV-2 RNA (187). Such a paucity of consensus

regarding the impact of viral replication on GI inflammation

and/or pathology is in stark contrast to HIV/SIV infection, in

which ongoing viral replication in untreated infection is a

clear determinant of mucosal and systemic inflammation,

although such inflammation is reduced but not eliminated

with the drastic reduction of viral replication during ART

(188–190).

SARS-CoV-2 infection of an in vitro GI tract model

demonstrates direct damage to tight junctions and upregulated

proinflammatory cytokine transcripts (191) (Figure 1C). GI

symptoms in COVID-19 have also been associated with

elevated liver enzymes (192) while increased markers of

inflammation such as TNFa and IL-6 have separately been

associated with severe and/or fatal disease (193–195). The

capability of SARS-CoV-2 to enter and replicate in GI barrier

cells, with corresponding immune responses and GI symptoms,

suggests GI tract damage may be a critical component of

COVID-19 disease.
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Microbial translocation and its role
in inflammation: Are lessons learned
from HIV/SIV relevant to
SARS-CoV-2?

GI tract dysfunction in progressive HIV and SIV infection

leads to translocation of microbial products from the lumen.

However, this phenomenon is not specific to SIV/HIV infection,

and occurs in multiple clinical conditions in which mucosal

epithelium is altered and gut permeability is increased (17).

Microbial translocation is a key determinant of systemic

inflammation, which is the most important driver of

progressive HIV/SIV disease progression. The intestinal flora

is large and diverse (approximately 1014 bacteria, fungi,

protozoans, helminths, and viruses) and is composed of

numerous antigens which can directly stimulate the immune

system, including: peptidoglycan and lipoteichoic acid (through

TLR2), lipopolysaccharide (LPS, through TLR4), flagellin

(through TLR5), CpG-containing DNA (through TLR9 and

other cytoplasmic sensors), and double stranded and single

stranded RNAs (through TLR 7/8 and other cytoplasmic

sensors) (88). Microbial translocation also includes fungal

products that have relevance for immune activation and

clinical outcome independently of bacterial products (196,

197). GI tract dysfunction, therefore, leads to significant

inflammation with increased production of proinflammatory

cytokines IL-1b, IL-6, TNFa and interferons (88).

Microbial translocation is specifically associated with

progressive SIV/HIV infections and is nearly absent in African

nonhuman primates that are natural hosts of SIV (198), and

studies in nonhuman primates have established a direct link

between microbial translocation and inflammation. Chronically

SIV-infected African green monkeys (AGMs) that do not

progress to AIDS maintain a healthy mucosal barrier and lack

evidence of microbial translocation and systemic inflammation

(91, 92, 94). However, intravenous administration of LPS, either

in single dose or in prolonged administration over a three-week

duration, resulted in increased levels of inflammation and

coagulation markers (199). Similarly, alcohol or dextran

sulphate administration to rhesus macaques increased GI tract

permeability, induced microbial translocation, and resulted in

increased levels of inflammation and SIV replication (200).

Conversely, direct blockade of microbial translocation in

progressively SIV infected Asian macaques with sevelamer, a

chelator of LPS, resulted in a significant reduction of systemic

inflammation and coagulation markers (201). Altogether, these

studies provide direct evidence for microbial translocation as a

key determinant of immune activation and associated

pathologies, such as non-AIDS comorbidities, in SIV infection

(202, 203).

Due to the key role of microbial translocation in the

pathogenesis of HIV/SIV infection, studies have also focused
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on characterization of the impact of infection on the

composition of the GI microbiome. Analysis of longitudinal

samples from Asian macaques has shown that, while levels of

enteric virus genomes increase, the bacterial microbiome is not

dramatically altered (204–206). However, analyses of cross-

sectional cohorts of HIV-infected and uninfected individuals

routinely demonstrate the bacterial microbiomes of infected

humans are altered (207–209). Recent studies have shown that

one major contributor to the bacterial dysbiosis observed in

HIV-infected individuals are risk factors for HIV acquisition

(210, 211); when these risk factors are controlled for, significant

dysbiosis is observed only in individuals with advanced HIV

disease (210, 212). Moreover, while high fat diets lead to

accelerated SIV disease in Asian macaques, with significantly

increased inflammation (213), antibiotic-induced dysbiosis of

the GI tract microbiome is insufficient to accelerate SIV

disease (214).

Alteration to the GI tract virome may also play a role in

disease. A significant increase in the size of the fecal virome was

reported to occur in the progressive SIV infection of macaques,

while no such change was detected in the nonprogressive SIV

infection of AGMs (204). Furthermore, potentially pathogenic

viruses, such as adenoviruses, are specifically colocalized with

the areas of structural damage of the GI tract in progressively

SIV-infected macaques (204). Finally, analysis of circulating

microbial nucleic acids and those in tissues have demonstrated

that microbes which translocate are not a representation of those

present within the lumen, and the individual types of

translocating organisms can be associated with prognosis (20,

205). Taken together it is clear that GI tract dysfunction,

microbial translocation, and resulting inflammation play

important roles in progressive HIV and SIV infections.

Alterations to the GI tract bacterial microbiome have been

reported in hospitalized (215, 216) and even asymptomatic

COVID-19 patients (217), though it is challenging to control

for the confounding effects of diet, environment, and chronic

conditions between infected and uninfected individuals to assess

changes in microbial communities. K18 transgenic mice with a

controlled diet and environment demonstrate dose-dependent

GI tract microbiome alterations with SARS-CoV-2 infection

(218), but the integrity of the intestinal barrier was not

assessed. However, inflammation of the intestine itself has

been implicated in SARS-CoV-2 infection, as COVID-19

patients with diarrhea demonstrated significantly higher levels

of fecal calprotectin, largely produced by neutrophils and an

indication of neutrophilic inflammation, which correlated with

systemic IL-6 levels (219). Additionally, GI tract microbial

dysbiosis and an increase in LPS-binding protein (LBP) were

observed in severe COVID-19 patients over those with mild

COVID-19, with LBP correlating to other inflammatory markers

such as C-reactive protein (CRP) and IL-6 (220). Furthermore,

bacterial proteins were found in COVID-19 patient blood

plasma (220). Finally, in a comprehensive study by Giron
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et al., the tight junction protein zonulin was significantly

elevated in COVID-19 patients with moderate or severe

disease over controls, as were LBP and the product of

monocyte inflammation in response to LPS, soluble CD14

(221). The levels of zonulin and LBP were correlated with a

number of systemic inflammatory markers, again including IL-6

and CRP (221). Interestingly, both in Giron et al. (221) and

another study from Hoel et al. investigating GI tract barrier

integrity in COVID-19 patients (222), there was an increase in

LBP without an increase in I-FABP indicative of enterocyte

damage, suggesting that the epithelial barrier is disrupted by

another means. The translocation of microbes and/or microbial

products across a damaged intestinal epithelium, however, can

induce systemic inflammation and contribute to the

pathogenesis of SARS-CoV-2 infection (Figure 1C), as in HIV

and SIV infection. Furthermore, intestinal dysbiosis in HIV

infection was reported to be associated with low CD4+ T cell

reconstitution, which may be relevant for COVID-19-associated

lymphopenia (223).

While systemic inflammation, including that which may be

induced by microbial translocation, is associated with COVID-

19 mortality, there are additional mechanisms in which

inflammation influences COVID-19 morbidity. Symptoms

may persist or recur after primary infection, leading to the

diagnosis of Post-Acute Sequalae of SARS-CoV-2 (PASC) or

“long COVID-19” (https://recovercovid.org). Multisystem

inflammatory syndrome can also occur in children (MIS-C) or

adults (MIS-A) following COVID-19 diagnosis (https://www.

cdc.gov/mis/about.html), and is manifested by severe organ

system inflammation similar to Kawasaki disease that can

occur in the presence or absence of viral antigen (224) and

may be attributed to super-antigen-like attributes of SARS-CoV-

2 spike protein (225). Notably, children and adults exhibit

differential inflammatory responses during primary COVID-

19, with adults demonstrating higher levels of LBP and IL-6,

while healthy adult and pediatric controls were not significantly

different in these markers (226). However, children with MIS

had higher rates of GI symptoms than children with primary

COVID-19, as well as increased zonulin, LBP, and IL-6 in the

early stage of MIS-C (226, 227). Furthermore, mortality in MIS-

C cases and primary severe pediatric COVID-19 is similar (228),

suggesting that the high levels of inflammation in MISC-C may

contribute to mortality as in adult COVID-19 cases. The impact

of GI tract barrier disruption has been minimally explored in

MIS-A or PASC cases, with one study reporting gut microbiome

dysbiosis in adults with PASC at six months post-infection

versus convalescent COVID-19 patients without PASC, who

had returned to microbial communities similar to previously

uninfected individuals (229). An additional study observed

higher TNFa and IP-10 in the early recovery phase from

primary COVID-19 in adults who would go on to experience

PASC (230). Understanding the mechanisms of PASC and MIS,

including GI damage, microbial translation, and resulting
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inflammation that may contribute to mortality, is therefore of

critical importance. Insights from HIV/SIV infections that

persistent immune activation and inflammation may occur

with low levels or absence of viral antigen during virologically

suppressive antiretroviral therapy (188–190) are the foundation

upon which a more detailed knowledge of inflammation

following primary COVID-19 may be built to provide

prevention and treatment strategies.
Therapeutic approaches aimed at
limiting the impact of gut
dysfunction on the outcome of HIV
and SARS-CoV-2 infections

Although ART has dramatically improved the lifespan of

individuals living with HIV, with life expectancy reaching near

that of uninfected individuals (231, 232), treatment neither

eliminates the virus nor all inflammation (233, 234).

Therapeutics to complement ART and reduce the GI tract

dysfunction and inflammation experienced from early

infection on have taken many forms, from microbial products

to probiotics to small peptides such as an apoA-I mimetic (235).

Additionally, immunomodulatory treatments for reducing GI

inflammation in inflammatory bowel diseases (IBD) have been

assessed, and at least one therapy was evaluated for loss of gut

barrier integrity and inflammation in a MIS-C case (227). The

shared mechanisms of GI tract permeability and resulting

inflammation in these infectious and chronic conditions

suggest that strategies to effectively address inflammation in

one condition may prove beneficial in another as well.

Gut microbiota are key regulators of GI tract immunity, and

promotion of anti-inflammatory functions can be attempted in

many ways, including provision of prebiotics, probiotics, and

microbial metabolic products. Prebiotic therapies including

bacterial energy sources such as short and long chain

oligosaccharides have shown modest improvements to gut-

related inflammation in HIV infected individuals, with

significant reductions in CRP and IL-6 (236) or sCD14 (237).

However, these studies were conducted in small numbers of

individuals, and only demonstrated these effects in people not

receiving cART (237) or individuals who had initiated treatment

but poorly reconstituted CD4+ T cell counts of <350, and

without significant change to gut microbiota alpha diversity

(236). Polyphenol, a key component of the Amazonian fruit

Camu Camu (CC), has also been suggested as a prebiotic

candidate based on its anti-inflammatory and antioxidant

properties in animal models and tobacco smokers, and is

under investigation for use in HIV infected individuals

(238, 239).

Direct ly modifying the gut microbiota through

administration of microbial strains as probiotics has also been
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trialed in HIV patients receiving cART to mixed results: men

with CD4+ T cell counts <350 did not experience changes in

systemic inflammation with probiotics including eight bacterial

strains, and may have experienced increased T cell activation

(240); two additional studies with distinct single bacterial strain

probiotics observed no significant changes with treatment (241,

242); a study with multi-strain bacterial probiotics has

demonstrated reductions in systemic inflammatory markers

(D-dimer, IL-6, CRP), but no reductions in LPS or sCD14

(243); one study has shown improved gut barrier health with

lower enterocyte apoptosis in the intestine and increased Th17

cell in GALT with high-dose, multi-strain bacterial probiotics

(244). Probiotic effects (or lack thereof) may be influenced by a

number of factors such as the strain(s) used, dose, and duration

of treatment; in the studies detailed above, gut bacterial

microbiome alterations were not assessed (241) or not

observed (242) in the single bacterial strain probiotic

treatments, with only multi-strain treatments demonstrating

changes to the microbial communities (243, 244). Attempts to

alter the complex gut microbiota may therefore require complex

therapeutics, and indeed combinations of pre- and probiotics

(synbiotics) have been utilized. However, like their probiotic

counterparts, these studies have shown mixed results, with

unaltered sCD14 and CRP levels in women (245), reduction in

IL-6 in ART-naïve individuals (246), and lessened gut

dysfunction in ART-treated macaques (247).

Supplementation with microbial metabolic products such as

short-chain fatty acids, which are produced by GI tract

microbiota through fiber fermentation and promote intestinal

homeostasis (248, 249), has long been sought as a means of

reducing GI tract inflammation (250). A recent study utilizing

sodium propionate in conjunction with cART has shown a

transient increase in circulating IL-17, but consistent decline

in CD4+ Th17 and Treg cells (251), which may not promote

improved gut dysfunction.

Additional microbial therapies to promote intestinal barrier

integrity warrant further investigation, however: mucosaly-

associated fungi promoted IL-22 and IL-17 production in the

intestine of mice, promoting barrier integrity and reducing

damage during infection (252). Modulating bacterial

communities to specifically reduce those associated with

enhanced inflammation, rather than providing beneficial

bacteria as probiotics, also may be a promising alternative

approach: bacteriophage mediated delivery of CRISPR-Cas9

has successfully reduced specific bacterial strains in the

intestines of mice (253).

Although most therapies for reduced inflammation induced

by GI tract damage target the gut microbiota, another means of

modulating dysregulated gut inflammation includes apoA-I

mimetics, which bind LPS and lipids. Not only has an apoA-I

mimetic peptide demonstrated reduction of HDL cholesterol ex

vivo (254), but the molecule and another mimetic have also

reduced inflammatory cytokines such as TNFa and IL-6 in the
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plasma of HIV-infected humanized mice (235). These peptides

do not directly interact with the virus, and have already been

implicated in treatment of chronic non-infectious inflammatory

GI tract conditions such as inflammatory bowel disease (IBD)

(255). Investigated as a complement to ART, apoA-I mimetics

could be an excellent candidate for reduction of HIV or SARS-

CoV-2 induced GI tract dysregulation and inflammation.

Steroids are a clear treatment for consideration to reduce

inflammation, but are not components of standard therapies for

individuals living with HIV. However, in an acute infection

characterized by hyperinflammatory conditions such as

COVID-19, the immunosuppressive effects of corticosteroids

have been beneficial: in severe COVID-19 patients, moderate

doses of dexamethasone administered for a short duration

reduced the duration of hospitalization and mortality (256–260).

Finally, cell signaling approaches have been taken to reduce

inflammation resulting from GI tract disruption. In a case of

severe MIS-C, inhibiting zonulin signaling with a zonulin

receptor agonist was undertaken to improve tight junctions,

with tight junction loss hypothesized to lead to antigenemia and

severe systemic inflammation (227). The child’s condition did

improve with treatment, as evidenced by decreased CRP, D-

dimer, and indeed lower SARS-CoV-2 spike protein in the blood

(227). This virus-independent means of reducing GI tract

disruption, which is currently approved for a clinical trial for

celiac disease treatment (261), may be appropriate for HIV as

well, as might anti-inflammatory treatments for other chronic

immune conditions such as IBD. Although TNF antagonist and

immunosuppressive thiopurine treatment was associated with

risk of hospitalization or death from COVID-19, TNF antagonist

treatment alone was associated with lower odds ratios of

hospitalization or death (262). Treatment with anti-TNFa
antibodies has proven successful at reducing inflammation in

clinical trials (263) and may be a safe strategy for reducing GI

tract inflammation that results from viral infection, either

chronically in HIV or acutely in SARS-CoV-2; indeed anti-

TNFa antibodies were successful at reducing pulmonary

pathology in a case study of a COVID-19 patient (264) and in

inflammation and pathology in progressive SIV infection (79).

Furthermore, anti-IL-6 therapies have been investigated for HIV

and SARS-CoV-2 and proposed for inflammatory gut diseases,

though efficacy has been mixed for both viral infections

(265–268).

In conclusion, despite the distinctions of SARS-CoV-2 and

HIV infections in terms of target cells, viral persistence, and

symptomatology, there are considerable parallels in the loss of

gut barrier integrity and corresponding inflammation that

results. These parallels suggest that therapies to address

chronic HIV inflammation, as well as that of non-infectious

diseases, may be appropriate for treating SARS-CoV-2.

Although the infection is acute rather than chronic, MIS cases

strongly suggest persistent or recrudescent damage of organ

systems including the GI tract that can lead to serious and fatal
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inflammation. Treatment therapies to reduce GI tract damage

and/or resulting inflammation may therefore not only improve

acute SARS-CoV-2 infection outcomes, but also improve

morbidity and mortality associated with subsequent

multisystem inflammation.
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