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Despite a generally better prognosis than high-grade glioma (HGG), recurrence and
malignant progression are the main causes for the poor prognosis and difficulties in the
treatment of low-grade glioma (LGG). It is of great importance to learn about the risk
factors and underlying mechanisms of LGG recurrence and progression. In this study, the
transcriptome characteristics of four groups, namely, normal brain tissue and recurrent
LGG (rLGG), normal brain tissue and secondary glioblastoma (sGBM), primary LGG
(pLGG) and rLGG, and pLGG and sGBM, were compared using Chinese Glioma Genome
Atlas (CGGA) and Genotype-Tissue Expression Project (GTEx) databases. In this study,
296 downregulated and 396 upregulated differentially expressed genes (DEGs) with high
consensus were screened out. Univariate Cox regression analysis of data from The
Cancer Genome Atlas (TCGA) yielded 86 prognostically relevant DEGs; a prognostic
prediction model based on five key genes (HOXA1, KIF18A, FAM133A, HGF, and MN1)
was established using the least absolute shrinkage and selection operator (LASSO)
regression dimensionality reduction and multivariate Cox regression analysis. LGG was
divided into high- and low-risk groups using this prediction model. Gene Set Enrichment
Analysis (GSEA) revealed that signaling pathway differences in the high- and low-risk
groups were mainly seen in tumor immune regulation and DNA damage-related cell cycle
checkpoints. Furthermore, the infiltration of immune cells in the high- and low-risk groups
was analyzed, which indicated a stronger infiltration of immune cells in the high-risk group
than that in the low-risk group, suggesting that an immune microenvironment more
conducive to tumor growth emerged due to the interaction between tumor and immune
cells. The tumor mutational burden and tumor methylation burden in the high- and low-risk
groups were also analyzed, which indicated higher gene mutation burden and lower DNA
methylation level in the high-risk group, suggesting that with the accumulation of genomic
mutations and epigenetic changes, tumor cells continued to evolve and led to the
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progression of LGG to HGG. Finally, the value of potential therapeutic targets for the five
key genes was analyzed, and findings demonstrated that KIF18A was the gene most likely
to be a potential therapeutic target. In conclusion, the prediction model based on these
five key genes can better identify the high- and low-risk groups of LGG and lay a solid
foundation for evaluating the risk of LGG recurrence and malignant progression.
Keywords: low-grade glioma (LGG), recurrence, malignant progression, cell cycle checkpoint, immune
microenvironment, nomogram
INTRODUCTION

Low-grade gliomas (LGGs) make up about 7.6% of all brain
tumors and 31.8% of gliomas. Occurring at all ages, LGGs have
an incidence rate of 2.31/100,000 in the 0–14 years age group,
1.43/10,000 for 15–39 years of age, and 1.57/100,000 in the age
group of 40 years and older. Besides, LGG incidence is higher in
men (5.51/10,000) than in women (3.65/100,000) (1). Surgical
resection remains the mainstay of treatment for LGGs, and
adjuvant treatment with chemoradiotherapy is administered if
needed. Reportedly, LGG patients have a 5-year survival rate of
70%–97% and a 10-year survival rate of 49%–76% (2, 3). About
52%–62% of patients have a recurrence within 5 years (4–6). In
these recurrent cases, some have LGGs, while 17%–32% progress
to high-grade gliomas (HGGs) (7–10). Worse prognosis of
recurrent LGGs is predominantly a resultant of their malignant
transformation. It is currently believed that the transition of
LGGs to more aggressive HGGs is induced by the intrinsic
diversity and heterogeneity of tumor cells that evolve to overt
malignancy and develop resistance to therapy during tumor
growth, eventually leading to a worse prognosis (11).

In the studies on the recurrence and evolution of gliomas by (12,
13) exome sequencing andDNAmethylationdatawerederived from
23 and 19 patients before and after recurrence, respectively, for
comparative analysis, from which the researchers discovered
intratumoral heterogeneity during initial growth and subclones
sharing epigenetic [glioma CpG island methylator phenotype (G-
CIMP)] alterations, TP53 and ATRX mutations, and copy number
alterations (12, 13). Although LGGs may come back without
malignant progression after subtotal resection, some distinct
subclones may give rise to HGGs spontaneously or following the
use of temozolomide (TMZ). Particularly, spontaneous evolution is
associated with alterations in cell cycle genes caused by gene
mutations and promoter hypomethylation. Treatment-associated
progression to HGGs involves downregulation of RB gene
expression, activation of AKT-Mammalian Target Of Rapamycin
(AKT-mTOR)pathway, genetic defects in theDNAmismatch repair
(MMR)pathway, andhypermethylationofO6-methylguanine-DNA
methyltransferase (MGMT) (13, 14). By comparing the DNA and
RNA sequencing data of LGG patients with those with recurrent
LGGs evolving to secondary glioblastoma (sGBM), Jiang et al.
discovered that sGBM was significantly enriched with TP53
mutation, somatic hypermutation, MET-exon-14 (METex14)
skipping, PTPRZ1-MET (ZM) fusion, and MET amplification;
from their point of view, METex14 suppresses MET degradation
and activates the Signal Transducer andActivator of Transcription 3
org 2
(STAT3) signaling pathway to promote tumor growth and
angiogenesis and result in a significantly worse prognosis (15).
Therefore, mutations in key genes and accumulation of mutations
are the driving forces for the evolution and malignant progression
of LGG.

Ampleevidencehasdemonstrated the immunosuppressivenature
of gliomas in the antitumor immune response. Antigen presentation
was limited by the elevated expression of immunosuppressive factors
in glioma cells such as programmed cell death ligand 1 (PD-L1) and
indolamine2,3-dioxygenase (IDO)(16).Glioma-associatedmicroglia
andmacrophages (GAMs) inhibit immune cell activity by producing
interleukin-10 (IL-10), chemokine C-C ligand 20 (CCL20), CCL22,
and prostaglandin E2.5 (17). Moreover, regulatory T cells (Tregs)
mediate immunosuppressive activities through phagocytosis of
cytotoxic T lymphocytes in the glioma microenvironment (18).
These immunosuppressive activities may induce tumor immune
escape, promote the evolution of tumor cells, and eventually lead to
recurrence and malignant progression of gliomas.

As sequencing technology advances, numerous large-scale
tumor sequencing databases have been established to support
tumor research with a sufficiently large sample size and abundant
gene data resources. Additionally, the emergence of single-cell
sequencing helps form the basis for studying the genetic
characteristics of tumor subclones and deepening our knowledge
regarding the characteristics of immune cell infiltration and the
immune microenvironment. In this study, The Cancer Genome
Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA)
databases were applied to establish a transcriptomics-based gene
prediction model that helps assess the risk of recurrence and
malignant progression of LGGs for accurate and efficient
prognosis prediction. On this basis, immune cell infiltration and
the immune microenvironment in LGGs at varying risks of
recurrence and malignant progression were characterized to
evaluate potential immunotherapies.
MATERIALS AND METHODS

Data Source
A total of 530 patients’mRNA expressions sequenced by Illumina
HiSeq were downloaded from TCGA-LGG from UCSC Xena
database (https://xenabrowser.net/datapages/), and corresponding
clinical information was also downloaded. After filtering based on
overall survival status (OS) and overall survival days (OS.time),
there remained 465 samples without any Not Available (NA)
May 2022 | Volume 13 | Article 899710
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values (19). The CGGA sequence datasets (CGGA.mRNAseq_325
and CGGA.mRNAseq_693) were collected from CGGA database
(http://www.cgga.org.cn) (20). The mRNA expression of normal
brain tissue was collected from Genotype-Tissue Expression
Project (GTEx, https://www.gtexportal.org) (21). To remove
batch effects between GTEx and CGGA_325 datasets, we used
the ComBat function in sva package to integrate both datasets.

Differential Expression Analysis
The limma package of R was used to compare differences in gene
expression in two defined groups, and the genes with significance
cutoff criteria p value <0.05 (adjusted) and absolute fold change
more than 2 were identified as the differentially expressed
genes (DEGs).

Prognosis Analysis
Univariate Cox regression analysis was used to identify the
relationship between single signature and prognosis of patients.
A single signature can be the mRNA expression value of a gene
or a clinical feature. Multivariate Cox regression analysis was
used to identify the relationship between multiple signatures and
prognosis of patients. Univariate Cox and multivariate Cox
regression analyses were performed by the coxph function of
survival package of R.

Dimension Reduction and Risk
Score Modeling
The least absolute shrinkage and selection operator (LASSO)
method was used to further reduce the less important features.
The multivariate Cox regression with a stepwise procedure was
used to filter the redundant variables and formed the final risk
score model to predict the prognosis of the patients. The Beta
values in multivariate Cox analysis were retracted as the gene
coefficient. The surv_cutpoint function in the Survminer package
was used to determine the optimal cutting point of the risk score,
so that the samples in the dataset could be divided into high- and
low-risk groups. The calculation of risk score is show:

Risk score = ∑ coef (i)*log 2 (counts (i)+1), where i represents
the corresponding gene.

Bio Function Analysis
The Gene Ontology (GO) enrichment analysis was performed
based on DEGs by clusterprofile package of R (22). Based on
Gene Set Enrichment Analysis (GSEA) and Gene Set Variation
Analysis (GSVA) methods, we collected three gene sets (1,615
REACTOME gene sets, 186 Kyoto Encyclopedia of Genes and
Genomes (KEGG) gene sets, 50 hallmark gene sets) from the
Molecular Signatures Database (MSigDB v7.5.1) to explore
enrichment signaling pathways between clusters or groups (23).

Immune-Related Analysis
The abundance of six immune cell types, B cell, CD4 T cell, CD8
T cell, neutrophil, macrophage, and dendritic cell, in the tumor
microenvironment is estimated using TIMER based on mRNA
expression (24). The two other tools, CIBERSORT and xCell,
were also used to estimate the abundance of member cell types in
a mixed-cell population (25, 26). Several immune infiltration-
Frontiers in Immunology | www.frontiersin.org 3
related signatures from the study by Mariathasan et al. (27) were
used to analyze their association with risk score.

Correlation Analysis of Risk Score With
Tumor Mutational Burden and Tumor
Methylation Burden
Tumor mutational burden (TMB) is broadly defined as the
number of somatic mutations per megabase of interrogated
genomic sequence. The somatic mutation file *.maf of TCGA-
LGG was downloaded from the GDC Data Portal (https://portal.
gdc.cancer.gov) to calculate the TMB values. TCGA-LGG DNA
methylation (HumanMethylation450) profile was downloaded
from the UCSC Xena database (https://xenabrowser.net/
datapages). Probes with a beta value greater than 0.8 were
identified as sites of complete methylation, and the number of
complete methylated probes was used to evaluate the tumor
methylation burden. We used the abbreviations TMB.mut and
TMB.met for tumor mutational burden and tumor methylation
burden, respectively. The Pearson correlation was calculated by
cor.test package of R.

Nomogram Analysis of Risk Score
With Clinicopathological and
Molecular Characteristics
Univariate and multivariate Cox analyses were used to assess the
independent prognostic factors of risk score compared with
clinical features. Then, we used a nomogram to integrate risk
score and clinical features to improve prognosis prediction
accuracy. The performance of the nomogram model was tested
using receiver operating characteristic (ROC) and decision curve
analysis (DCA) curves of 1, 3, and 5 years.

Cancer Cell Line Encyclopedia
Chronos, an algorithm for inferring gene knockout fitness effects
based on an explicit model of cell proliferation dynamics after
CRISPR gene knockout, was used to evaluate the effect of
genes (28).

Cell Culturing and Processing
The two glioma cell lines used in this studywereU87 andU251, both
from Xiangya Hospital. The cells were cultured in Dulbecco's
Modified Eagle Medium (DMEM) containing 10% bovine serum
ina37°C, 5%CO2 incubator.Cellswere inoculatedona six-well plate,
and the experimental group was treated with BTB-1, a specific and
reversible inhibitor of KIF18A. BTB-1 was dissolved with
dimethylsulfoxide (DMSO) and diluted to a working concentration
of 30 mM/L. Cells were treated for 24 h, and the control group was
added with the same amount of DMSO (29). Finally, the two glioma
cell lines were divided into four groups (U87 with DMSO, U87 with
BTB-1, U251 with DMSO, and U251 with BTB-1).

Evaluation of the Effect of BTB-1 on
the Transcription Level of KIF18A in
Glioma Cells
We used QRT-PCR to detect KIF18A mRNA levels in the four
glioma cell lines, adding RNeasy Mini Kit (Qiagen, Hilden, NRW,
Germany) to each group to extract total RNA. RNA was reversely
May 2022 | Volume 13 | Article 899710
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transcribed into cDNA using Uni RT&qPCR Kit (TransGen
Biotech, Beijing, China). Quantitative polymerase chain reaction
was performed on Applied Biosystems QuantStudio 1 real-time
fluorescent quantitative PCR system (Thermo Fisher Scientific,
Waltham, MA, USA). Cycle conditions for qPCR were as follows:
an initial denaturation step at 95°C for 15min, followed by 40 cycles
of amplification at 95°C, and annealing/extension at 56°C for 32 s.
glyceraldehyde-phosphate dehydrogenase (GAPDH) was used as
the internal control. Each experiment was carried out in triplicate.
The primers were synthesized by Sangon Biotech, Shanghai, China.
Their sequences are as follows: KIF18A, forward 5′-
AAAAAGTGGTAGTTTGGGCTGA-3′ and reverse 5′-CTT
TCAAGGGAGATGGCATTAG-3′; GAPDH, forward 5′-
CATGAGAAGTATGACAACAGCCT-3′ and reverse 5′-
AGTCCTTCCACGATACCAAAG-3′.

Evaluation of the Effect of BTB-1 on
Glioma Cell Proliferation
Cell Counting Kit-8 (CCK-8) was used to detect cell proliferation
ability. Four groups of glioma cells were inoculated into 96-well
plates with 5 wells in each group, and about 3,000 cells in each
well were cultured in 100-ml medium for 0, 12, 24, and 36 h,
respectively. Here, 10 ml CCK-8 solution was added to each well
and incubated for 1.5 h. Absorbance was detected at 450-nm
wavelength using absorbance Microplate reader (Spectra Max,
ABS Plus), and Optical Density (OD) value was measured. The
average OD values of each group were taken.

Evaluation of the Effect of BTB-1 on
Glioma Cell Cycle
Flow cytometry was used to detect cell cycle distribution to
evaluate the effect of BTB-1 on glioma cell cycle. U87 and U251
cells with different processes were collected and washed twice
with Phosphate Buffer Saline (PBS), then fixed with 70% ethanol
at 4°C for 12 h, and then incubated with Prodium Iodide (PI)/
RNase buffer. Flow cytometry (CYTEK Athena, USA) used red
fluorescence and scattered light at 488 nm. The percentages of
each cell cycle were analyzed.

Gene Expression Data With
Immunotherapy
For further immunotherapy research, the IMvigor210 dataset
was downloaded to evaluate the predictive power of the risk score
for immunotherapy [programmed cell death protein-1 (PD-1)]
response, and it was available from http://research-pub.gene.
com/IMvigor210CoreBiologies with completed information
about the response to PD-L1 blockade (30).

Statistical Analysis
The difference between two groups was compared byWilcoxon test.
Kaplan–Meier analysis with log-rank tests was used to perform
survival curves. The ROC curve and corresponding Area Under the
Curve (AUC) were generated by using the R package “timeROC.”
* p-value <0.05, ** p-value <0.01, *** p-value <0.001, and p-value
<0.05 are statistically significant. All analyses were performed using
R 4.1.0 (https://cran.r-project.org).
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RESULTS

Identification of Recurrence Factors in
Low-Grade Glioma
Based on data acquired from CGGA and GTEx databases, a
comprehensive analysis was carried out on the DEGs between
normal brain tissue and recurrent LGG (rLGG), normal brain
tissue and secondary GBM (sGBM), primary LGG (pLGG) and
rLGG, as well as pLGG and sGBM (Figure 1A). A total of 4 DEG
datasets were obtained, and DEGs with high consensus were
defined as those with consistent differential expression trends in
at least three datasets (Supplementary Table S1), and a Venn
diagram was established to present the DEG datasets with
upregulated and downregulated expressions (Figures 1B, C).
Eventually, 296 downregulated and 396 upregulated DEGs were
screened through the above processes. Gene Ontology (GO)
analysis was then used to annotate the functions of
downregulated and upregulated DEGs. The biological process
(BP) category of downregulated DEGs was mainly enriched in
the regulation of membrane potential, modulation of chemical
synaptic transmission, regulation of trans-synaptic signaling, etc.
While for the cellular component (CC) category, the
downregulated DEGs were associated with presynapse,
transporter complex, transmembrane transporter complex, etc.
In the molecular function (MF) category, the downregulated
DEGs primarily participated in channel activity, passive
transmembrane transporter activity, ion channel activity, etc.
(Figure 1D). While the BP category of the upregulated DEGs
was enriched mostly in the nuclear division, organelle fission,
chromosome segregation, etc. In the CC category, the
upregulated DEGs mainly showed associations with the
chromosomal region, spindle, collagen-containing, etc. As for
the MF category, the upregulated DEGs were involved primarily
in antigen binding, microtubule binding, tubulin binding,
etc. (Figure 1E).
Identification of Main Contributors of
Recurrence and Malignant Progression
Factors and Construction of a Gene
Signature Model
Recurrence and malignant progression of LGG constitute the
primary factors affecting its prognosis. Therefore, in order to
determine the main contribution factors, the data of LGG
patients were extracted from TCGA database for univariate
Cox regression analysis on the identified highly consistent
DEGs. The False Discovery Rate (FDR) values of the training
set and test set are used for filtering. It was found that 24
downregulated and 62 upregulated DEGs were associated with
the prognosis of LGG (p < 0.05) (Supplementary Table S2). The
top 39 DEGs with statistically significant differences are shown in
Figure 2A. Subsequently, LASSO regression, one of the
techniques in machine learning, was adopted to dispose of
dimension reduction of the 86 DEGs with prognostic
significance (Figures 2B, C). Multivariate Cox regression was
then used to establish the prognosis prediction model to identify
May 2022 | Volume 13 | Article 899710
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the main contributors. Corresponding results revealed that
HOXA1, KIF18A, FAM133A, hepatocyte growth factor (HGF),
and MN1 were the primary contributors (p < 0.05) (Figure 2D).
Finally, the patients in the training dataset were stratified
according to the risk scores obtained in the 5-gene signature
model (Figure 2E). It was found that the established model could
well predict the prognosis of TCGA-LGG patients, showing good
stability at the same time (Area Under the Curve (AUC) of 1-, 3-,
and 5-year ROC: 0.8776, 0.8749, and 0.7682, respectively)
(Figures 2F, G).
Validation of Risk Signature in the Test
Dataset and Validation Dataset
Two sub-datasets of CGGA (CGGA325 and CGGA693) were
collected to verify the effectiveness and stability of the 5-gene
signature prediction model. In the CGGA325 dataset, the model
could well stratify the high-risk and low-risk LGG groups.
Survival analysis showed that the prognosis of the high-risk
Frontiers in Immunology | www.frontiersin.org 5
group was significantly worse than that of the low-risk group (p <
0.05) (Figures 3A–D). Furthermore, in the CGGA693 dataset,
the model could still better stratify the risk of LGG patients, and
the prognosis of the high-risk group was also obviously worse
than that of the low-risk group, as indicated by survival analysis
(p < 0.05) (Figures 3E–H).
The Gene Set Enrichment Analysis of the
High- and Low-Risk Groups
In order to clarify the mechanism of LGG recurrence or malignant
progression, the differences in signaling pathways between high-
risk and low-risk groups were analyzed based on TCGA-LGG
dataset. Meanwhile, GSVA and GSEA were performed to analyze
the signaling pathway differences between high-risk and low-risk
groups based on REACTOME gene set, KEGG gene set, and
hallmark gene set. In the REACTOME gene set, several signaling
pathways were significantly activated in the high-risk group
compared with the low-risk group, including cell cycle G2/M
A

D E

B C

FIGURE 1 | Identification of recurrence factors in low-grade gliomas. (A) Analysis design diagram of differentially expressed genes (DEGs). (B, C) Venn diagram was
used to display the upregulated (B) and downregulated (C) genes in the four sets of DEGs. (D, E) Gene Ontology (GO) analysis of the consistent upregulated (D)
and downregulated (E) genes in the four sets of DEGs.
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checkpoint, RB tumor suppressor/checkpoint signaling in
response to DNA damage, Gap-filling DNA repair synthesis and
ligation in TC-NER, Toll-like receptor 3 (TLR3) cascade
(Figure 4A). KEGG gene set-based analysis revealed that
signaling pathways such as cell cycle, extracellular matrix
(ECM)–receptor interaction, Janus kinase/signal transducers and
activators of transcription (JAK-STAT) signaling pathway,
complement and coagulation cascades, and cytokine receptor
interaction were obviously activated in the high-risk group,
while calcium signaling pathway, long-term potentiation,
Frontiers in Immunology | www.frontiersin.org 6
neuroactive ligand–receptor interaction, etc., were inactivated in
the high-risk group (Figures 4B, C). At the same time, similar
results can be obtained by the CGGA database based on KEGG
GSEA (Figures 4E, F). In the tumor-specific gene set of hallmark,
there existed activation in cell cycle G2/M checkpoint and tumor
immune-related signaling pathways (Figure 4D). Collectively, these
signals are mainly related to tumor immune regulation and DNA
damage-related cell cycle checkpoints, indicating that these
mechanisms may be significantly involved in LGG recurrence and
malignant progression.
A B

D

C

E F G

FIGURE 2 | Identification of main contributors of recurrence and malignant progression factors and construction of risk signature in TCGA-LGG cohort. (A) Univariate
Cox analysis of all recurrence factors. (B) Cross-validation for tuning the coefficient selection in the least absolute shrinkage and selection operator (LASSO) regression.
(C) LASSO regression of the 86 OS-associated genes. (D) Multivariate Cox regression analysis for the 5 genes. (E) Allocation of patients in the training set on the basis of
the risk score. (F) Kaplan–Meier curves display the diversity in OS between the high-risk and low-risk groups in the training set. (G) Area Under the Curve (AUC) of time-
dependent receiver operating characteristic (ROC) curves examined the prognostic performance of the risk score in the training set. "*" means 0.01<p<0.05, "***"means
p<0.001.
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Infiltrated Immune Cells in High- and
Low-Risk Score Groups From the
Training and Validation Cohorts
Based on the above exploration, multiple tumor immune-related
pathways were discovered to be activated in the high-risk group
of TCGA-LGG, suggesting an intimate association of the tumor
immune microenvironment with LGG recurrence and malignant
progression. Accordingly, the infiltration of immune cells was
further evaluated in the high- and low-risk score groups of
TCGA-LGG. The abundance of immune cells in the tumor
microenvironment was evaluated by the TIMER algorithm
according to mRNA expressions. The results showed that the
infiltration of B cells, CD4 T cells, CD8 T cells, neutrophils,
macrophages, and dendritic cells in the high-risk score group was
stronger than that in the low-risk score group of LGG
(Figure 5A). Further analyses were continued by using
CIBERSORT and the xCell algorithm. Analysis based on
CIBERSORT revealed that the infiltration of anti-inflammatory
immune cells such as CD8 T cells, CD4 memory resting T cells,
and M2 macrophages was stronger in the high-risk score group
than that in the low-risk score group (Figure 5B). xCell-based
analysis also indicated that the infiltration of most immune cells
increased in the high-risk score group (Figure 5C). Collectively,
these data suggest that the high-risk score group of LGG has
stronger immune cell infiltration than that of the low-risk score
group. In addition, using CGGA database (CGGA325 and
Frontiers in Immunology | www.frontiersin.org 7
CGGA693) as validation sets, we also found that immune cell
infiltration in the LGG high-risk group was stronger than that in
the low-risk group by ssGSEA algorithm (Figures 5D, E).

Genomic and Methylation Characteristics
in the High- and Low-Risk Score Groups
From TCGA-LGG Cohort
As mentioned above, DNA damage-related cell cycle checkpoint
pathways were activated in the high-risk score group of LGG,
suggesting that there may be more frequent gene mutations in
this group. For an in-depth understanding of gene mutations in
the high- and low-risk score groups of LGG, further grouping
was performed based on TMB (TMB.mut), including high and
low TMB.mut groups of LGG (Figure 6A). Survival analysis
between high and low TMB.mut groups showed that the
prognosis of high TMB.mut was significantly poorer than that
in the low TMB.mut group (p < 0.001) (Figure 6B). Correlation
analysis revealed a good positive correlation between risk factor
stratification and TMB.mut stratification (R = 0.34, p < 0.05),
that was, the mutation burden of the high-risk score group was
significantly higher than that of the low-risk score group of LGG
(Figures 6C-E). Simultaneous exploration was performed on the
level of methylation in the high- and low-risk score groups of
LGG. Similarly, two groups of high and low TMB.met were
divided based on tumor methylation burden (TMB.met)
(Figure 6F). Survival analysis indicated a significantly poorer
A B C D

E F G H

FIGURE 3 | Validation of risk signature in the test dataset (CGGA_325 cohort) and validation dataset (CGGA_693). (A, E) Allocation of patients in the training set on
the basis of the risk score in the test and validation dataset. (B, F) Area Under the Curve (AUC) of 1-, 3-, and 5-year receiver operating characteristic (ROC) curves
examined the prognostic performance of the risk score in the test and validation dataset. (C, G) Determine the optimal cut point for risk score in the test and
validation dataset. (D, H) Kaplan–Meier curves display the diversity in OS between the low- and high-risk score groups in the test and validation dataset.
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prognosis in the low TMB.met group than that in the high
TMB.met group (p < 0.001) (Figure 6G); moreover, the
correlation analysis presented a negative correlation between
risk factor stratification and TMB.met stratification (R = -0.39,
p < 0.05), suggesting that the DNA methylation level of the LGG
high-risk score group was remarkably lower than that of the low-
risk score group (Figures 6H–J). We further analyzed the
mutation of major driver genes in the high- and low-risk
groups, and the driver genes with a high mutation frequency
in the high-risk group were TP53, EGFR, IDH1, etc. (Figure 6K).
The driver genes with a high mutation frequency in the low-risk
Frontiers in Immunology | www.frontiersin.org 8
group were IDH1, TP53, ATRX, etc. (Figure 6L). TP53 mutation
had a strong coexisting relationship with the high-risk group,
and IDH1 mutation had a strong coexisting relationship with the
low-risk group (Figure 6L).
Independent Prognostic Value of the Tumor
Recurrence Factor (TRF) Risk Score

Subsequent analyses were conducted to integrate the 5-gene
signature prediction model established based on its expression
characteristics with other clinical features and promote its
A B

E F

D

C

FIGURE 4 | The biology function enrichment analysis between the low- and high-risk score groups. (A) Gene Set Variation Analysis (GSVA) results based on the
REACTOME gene sets. (B, C) Gene Set Enrichment Analysis (GSEA) results based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets. (D) GSVA
results based on the hallmark gene sets. (E, F) GSEA results based on the KEGG gene sets in the validation cohort (CGGA-LGG).
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application in prognosis judgment. Firstly, multivariate Cox
regression analysis was performed for determining the
independent prognostic factors of Histology, Grade,
IDH.status, X1p.19q.codel, Age, and Tumor Recurrence Factor
Frontiers in Immunology | www.frontiersin.org 9
(TRF) risk score (Figure 7A). The Tumor Recurrence Factor risk
score and Age were found to be relatively significant independent
prognostic factors (p < 0.001), followed by IDH.status (p = 0.055)
(Figure 7D). After that, a nomogram was constructed based on
A

C

B

D E

FIGURE 5 | Infiltrated immune cells in the high- and low-risk score group from the training and validation cohorts. (A) Immune infiltrates in the two groups based on the TIMER
algorithm from TCGA-LGG cohort. (B) Immune infiltrates in the two groups based on the CIBERSORT algorithm from TCGA-LGG cohort. (C) Immune infiltrates in the two groups
based on the xCell algorithm from TCGA-LGG cohort. (D) Immune infiltrates in the two groups based on the ssGSEA algorithm from the validation cohort (CGGA 325). (E) Immune
infiltrates in the two groups based on the ssGSEA algorithm from the validation cohort (CGGA 693). "*" means 0.01<p<0.05, "**"means 0.001<p<0.01, "***"means p<0.001,
"ns"means no significance.
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IDH.status, Age, and Tumor Recurrence Factor risk score to
predict the prognosis of TCGA-LGG patients. Using the
Calibration diagram to verify the prediction efficacy of the
constructed nomogram, it could be found that its 1-, 3-, and 5-
year prognostic prediction efficacy had high accuracy and
stability (Figure 7C). Furthermore, the ROC curve was then
drawn to compare the prediction efficacy of IDH.status, Age,
Tumor Recurrence Factor risk score, and nomogram model. It
could be noticed that the 1-, 3-, and 5-year prognostic prediction
Frontiers in Immunology | www.frontiersin.org 10
efficacy of the nomogram was higher than that of other features
in 1, 3, and 5 years. Among them, the Area Under the Curve
(AUC) of 1-year ROC was 0.8591 (IDH.status), 0.8176 (Age),
0.8777 (Tumor Recurrence Factor risk score), and 0.9396
(nomogram) (Figure 7E); that of 3-year ROC was 0.8172
(IDH.status), 0.7594 (Age), 0.0.8674 (Tumor Recurrence Factor
risk score), and 0.9433 (nomogram) (Figure 7F); and that of 5-
year ROC was 0.6918 (IDH.status), 0.6976 (Age), 0.7501 (Tumor
Recurrence Factor risk score), and 0.8595 (nomogram)
A B C ED
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K L
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FIGURE 6 | Genomic and methylation characteristics in the high- and low-risk score group from TCGA-LGG cohort. (A, F) Determine the optimal cut point for
TMB.mut and TMB.met. (B, G) Comparison of overall survival between the low and high group of TMB.mut and TMB.met. (C, H) Scatter distribution of the risk
score with TMB.mut and TMB.met. (D, I) Comparison of the risk score between the low and high group of TMB.mut and TMB.met. (E, J) Comparison of the
proportion of risk score type between the low and high group of TMB.mut and TMB.met. (K, L) Oncoplot of the high and low group of risk score.
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FIGURE 7 | Independent prognostic value of the Tumor Recurrence Factor risk score. (A) Forest plot of multivariate Cox analysis between the Tumor Recurrence Factor risk
score and clinical traits. (B) Comparison of the prediction power between this study and other studies. (C) Calibration plot was used to predict the 1-, 3-, and 5-year survival in
TCGA-LGG cohorts. (D) Nomogram of TCGA-LGG cohorts was used to predict overall survival. (E–G) Receiver operating characteristic (ROC) curves showed the 1-, 3-, and
5-year predictive efficiency of risk score, age, IDH mutation status, and nomogram model. (H–J) Decision curve analysis (DCA) curves showed the 1-, 3-, and 5-year predictive
efficiency of risk score, age, IDH mutation status, and nomogram model. "*" means 0.01<p<0.05, "***"means p<0.001.
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(Figure 7G). Furthermore, the DCA curve was generated to
examine the prediction efficacy of IDH.status, Age, Tumor
Recurrence Factor risk score, and nomogram model. Similar
results were observed as described above, which support the
strong stability of the prediction efficacy of the constructed
nomogram (Figures 7H–J). Moreover, we selected some
relevant literature to compare the predictive power of the
prognostic models. Compared with other models, our
prediction model has better predictive power (Figure 7B)
(31–35).

Evaluation of Potential Therapeutic
Targets of Risk Signature Genes Based on
the CCLE Database
In order to further explore whether the genes of the main
contributors were potential therapeutic targets, the responses
of the five genes to different tumor cell lines after inhibition were
evaluated based on the CCLE database. KIF18A and MN1 were
discovered to be potential therapeutic targets. Specifically,
KIF18A, as a risk factor, could significantly reduce the
proliferation of most tumor cell lines (including brain tumor
cell lines) (Figures 8B, G), while MN1, as a protective factor,
could enhance the proliferation of most tumor cell lines
(including brain tumor cell lines) (Figures 8E, J). However,
the other 3 genes could not induce corresponding changes in
Frontiers in Immunology | www.frontiersin.org 12
tumor cell lines after being inhibited (Figures 8A, C, D, F, H, I),
suggesting no potential therapeutic target value.

Evaluation of the Effect of KIF18A
Inhibitor BTB-1 on the Function of
Glioma Cell Lines
As mentioned above, KIF18A was found to be a potential
therapeutic target. Therefore, to evaluate its potential
therapeutic value, we treated glioma cells with BTB-1, a
specific small-molecule inhibitor of KIF18A, to evaluate its
effect on glioma cell function. KIF18A mRNA expression in
U87 and U251 cells decreased (p < 0.05) (Figure 9A). It
suggested that BTB-1 could inhibit the expression of KIF18A.
As a further study on the effect of BTB-1 on cell proliferation,
CCK-8 test showed that in U87 and U251 cell lines, the cell
proliferation rate of the BTB-1 treatment group was lower than
that of the control group. It was suggested that BTB-1 could
inhibit cell proliferation (Figure 9B). The results of flow
cytometry were shown in Figure 9C. The G2/M phase ratios
of U87 and U251 cells treated with BTB-1 were 31.4% and 31.1%,
and those of the control group were 22.6% and 22.2%,
respectively, with statistically significant differences (p < 0.05).
In conclusion, the cell cycle of BTB-1-treated glioma cells
stagnated in G2/M phase, and the proportion of cells in the
G2/M phase increased. These results suggest that BTB-1 inhibits
A CB ED

F HG JI

FIGURE 8 | Evaluation of the potential therapeutic targets of risk signature genes based on the CCLE database. (A–E) Scatter distribution of gene expression and
gene effect of the 5 genes, including HOXA1, KIF18A, FAM133A, HGF, and MN1, in brain cancer cell lines. (F–J) Distribution of gene effects of the 5 genes, including
HOXA1, KIF18A, FAM133A, HGF, and MN1, in various cancer cell lines.
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the proliferation of tumor cells mainly by inhibiting KIF18A and
arresting glioma cells in the G2/M phase.

Evaluation of Response to Immunotherapy
Based on the Tumor Recurrence Factor
Risk Score
To test whether this predictive model can predict the
immunotherapy response of LGG, we first assessed the
differences in key factors in the immune response process
between the high- and low-risk groups and found that the
expression of these factors was higher in the high-risk group
than that in the low-risk group (Figure 10A). Further analysis of
the association between the Tumor Recurrence Factor risk score
and common immune checkpoints of tumors showed that the
Tumor Recurrence Factor risk score was correlated with CD47,
CTLA7, HAVCR2, LAG3, PDCD1, and other immune
checkpoints (Figure 10B). Independent analysis of the
association between the 5 genes and immune checkpoints
showed that all of the 5 genes were closely related to immune
checkpoints (Figure 10C). Finally, the IMvigor210 dataset model
(a database of bladder cancer) was selected and patients with
bladder cancer in the database were divided into the high- and
Frontiers in Immunology | www.frontiersin.org 13
low-risk score groups (Figure 10D). Meanwhile, survival
analysis showed that the model had a significant difference in
prognosis between the high- and low-risk score groups of
bladder cancer (Figure 10E), with relatively good stability in
predicting the prognosis (Figure 10F). Analysis of the data of
immunotherapy effect in the database revealed that the low-risk
score group had a better response to immunotherapy than that in
the high-risk score group (Figure 10G). With respect to the
above, the constructed gene signature model not only has good
universality and stability in predicting tumor prognosis but also
provides a potential reference for predicting tumor response
to immunotherapy.
DISCUSSION

LGG has a better prognosis than that of HGG, which, however,
shows a deterioration in its prognosis primarily owing to the risk
of recurrence and malignant progression, becoming a critical
concern in the treatment of LGG. Based on transcriptome
analysis, a new prediction model was established in our study,
which can effectively evaluate the risk of LGG and predict the
A

C

B

FIGURE 9 | Evaluation of the effect of KIF18A inhibitor BTB-1 on the function of glioma cell lines. (A) Evaluation of the effect of BTB-1 on the transcription level of KIF18A in glioma
cells. (B) Evaluation of the effect of BTB-1 on glioma cell proliferation. (C) Evaluation of the effect of BTB-1 on glioma cell cycle. "*" means 0.01<p<0.05, "***"means p<0.001.
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risk of recurrence and malignant progression. Finally, a total of 5
genes related to the recurrence and malignant progression of
LGG were screened in our study, including three risk factors
(HOXA1, HGF, and KIF18A) and two protective factors
(FAM133A and MN1).

HOXA1 is highly expressed in breast cancer, ovarian cancer,
gastric cancer, and various other cancers, which has regulatory
roles on cell differentiation, apoptosis, and migration (36–38).
For instance, in glioblastoma, long non-coding RNA (lncRNA)
HOTAIRM1 has been documented to upregulate the expression
of HOXA1 by blocking the binding of G9a and EZH2 to histones
H3K9 and H3K27, resulting in the inability of methyltransferase
to methylate the promoter of HOXA1 (39). At present, there is
no relevant research on its downstream pathway in glioma.
HOXA1 was found to upregulate the expression of BCL2 in
breast cancer, which could also enhance cell proliferation and
promote malignant transformation of cancer cells by activating
STAT5a/b and MAPK signaling pathways (40). Furthermore,
HGF is mainly produced by stromal cells, and its receptor is the
mesenchymal–epithelial transition (MET) factor (41). HGF can
bind to MET to activate various pathways such as Ras/MAPK,
PI3K/Akt, and STAT, thereby regulating cell growth, movement,
Frontiers in Immunology | www.frontiersin.org 14
and morphogenesis (42–45). It has been reported that HGF and
MET were highly expressed in glioma to promote tumor growth
and angiogenesis, which could also boost tumor evolution and
malignant progression to HGG by activating AKT and MAPK
pathways (46, 47). Meanwhile, KIF18A belongs to the kinesin 9
family. It has a significantly upregulated expression in G2/M
phase, which can contribute to the arrangement of chromosomes
on the equatorial plate by adjusting the length of microtubules
(Mts), ensuring the normal separation of sister chromosomes
and normal progression of mitosis (48–51). High expression of
KIF18A has been confirmed in multiple cancers such as breast
cancer, lung cancer, and colorectal cancer (52–54). Prior cell
function experiments showed that overexpression of KIF18A in
the HeLa cell line could significantly increase the number of cells
with multipolar mitotic spindles (50). At the same time, KIF18A
can combine with microtubules (Mts), move along Mts, and has
microtubule depolymerizing activity, both of which require the
participation of ATP as a major substrate to supply energy (55,
56). Accordingly, considering the ATPase activity of KIF18A,
Catarinella et al. (29) developed a small-molecule drug BTB-1,
which can inhibit KIF18A in an ATP-competitive and Mt-
uncompetitive manner; and tumor cells after BTB-1 treatment
A B C

D FE G

FIGURE 10 | Evaluation of the response to immunotherapy. (A) Comparation of the immune response signature between the high- and low-risk groups. (B) Corelationships
between the Tumor Recurrence Factor risk score and common immune checkpoints. (C) Corelationships between the 5 key genes and common immune checkpoints.
(D) Determine the optimal cut point for the Tumor Recurrence Factor risk score. (E) Comparison of the overall survival between the low and high Tumor Recurrence Factor
risk score. (F) Receiver operating characteristic (ROC) curves showed the 1-, 3-, and 5-year predictive efficiency of the Tumor Recurrence Factor risk score. (G) Comparison
of the proportion of response to treatment between the low and high Tumor Recurrence Factor risk score. "*" means 0.01<p<0.05, "**"means 0.001<p<0.01, "***"means
p<0.001,"ns"means no significance
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showed abnormal spindle formation and chromosome division,
resulting in tumor cell apoptosis. In our study, analysis of data
acquired from the CCLE database revealed the potential
therapeutic target significance of KIF18A, that was, inhibiting
its expression or function could inhibit tumor growth. Further in
vitro experiments on glioma cell lines (U87 and U251) confirmed
that KIF18A’s specific inhibitor BTB-1 inhibited the proliferation
of glioma cells significantly, and the cell cycle stagnated in G2/M
phase. Therefore, the mechanism of treating glioma with KIF18A
as a target is worthy of further study.

FAM133A is a type of Cancer-Testis Antigen (CTA), a class
of proteins that is highly expressed in immune privilege sites such
as the brain and testis (57). High expression of FAM133A in
cervical cancer and pancreatic cancer has been reported to be
associated with the malignant degree of tumors (58, 59). While in
glioma, FAM133A is the downstream target of miR-155. The low
expression of miR-155 in IDH1-mutant glioma can upregulate the
expression of FAM133A, which may further reduce the
invasiveness and proliferation of IDH1-mutant glioma by
targeting Matrix metalloproteinase-14 (MMP14) (60). Therefore,
consistent with previous reports, this study indicated that LGG
patients with a high expression of FAM133A had a better
prognosis. Furthermore, MN1 was initially found to cause gene
rearrangement by chromosomal balanced translocation, which
plays an important role in the pathogenesis of meningioma and
myeloproliferative diseases (61, 62). The loss-of-functionmutation
of MN1 may induce CEBALID syndrome, which is manifested as
neurodevelopmental impairments and facial deformities (63).
According to current research, the genomic changes of MN1 are
predominated by rearrangement (64–67), with the report of the
deletion and increase of adjacent loci as well (67). Moreover, in
astroblastoma or neuroepithelial tumors, patients with MN1
rearrangement were reported to have longer survival and better
prognosis (65, 68). However, some researchers considered no
significant superiority in the clinical progression and prognosis
of these patients (69). So far, it is unknown with respect to the
relationship between the expression of MN1 at the transcriptome
level and the prognosis of glioma. In the present study, the
prognosis of LGG patients was poorer in the case of low
expression of MN1, accompanied by a higher risk of progression
to HGG. Further analysis of data acquired from the CCLE
database revealed stronger cell proliferation and invasion
abilities in cell lines of brain tumors with the silencing of MN1
expression. Consequently, it is believed that MN1 may be related
to the normal development and differentiation of the nervous
system. Its low expression may increase the stemness of glioma
cells to boost the malignant progression of glioma. Its role and
mechanism in the malignant progression of glioma need to be
further studied.

Furthermore, in our study, the abnormality of DNA damage-
related cell cycle checkpoints showed an intimate association with
the recurrence and malignant progression of LGG. The cell cycle
consists of four phases: G1, S, G2 andM.Cells have a strict cell cycle
checkpoint mechanism to ensure the correct transmission of
genetic materials to the next generation of cells. Dysfunction in
checkpoints can lead to abnormal proliferation of cells and
Frontiers in Immunology | www.frontiersin.org 15
tumorigenesis (70). Under normal circumstances, in the case of
DNA damage, the ATR-CHK1-CDC25 pathway may be activated
to inhibit cyclinA/B-CDK1 complex and hence block the cell
replication arresting at G2 phase (71). While the CDK1 gene is
overexpressed in glioma, which may promote the G2 phase
transition of cells with DNA damage. It has been documented
that the expression of CDK1 is positively correlated with the grade
of glioma,whichmayalso increasewithmalignantprogression after
recurrence (72–74). In addition, Rb is a tumor suppressor, and its
inactivation by mutation can activate E2F protein to overexpress
cyclinE/A. The cyclinE/A-CDK2 is an important complex of cell
cycle checkpoints. The overexpressed cyclinE/A plays a critical
promoting role in G1/S cell transition of cells with DNA damage
(75). Deletion or downregulation of Rb gene is common in gliomas
(76), and its downregulation is more common in HGG (77, 78).
Moreover, van Thuijl et al. (14) believed that patients with LGG
treated with TMZ can induce Rb genemutation, resulting in tumor
recurrence and progression to HGG. Collectively, in our opinion,
there may be a regulation disorder in the cell cycle checkpoints
related to DNA damage through various mechanisms during the
progressionof LGGto induce continuous accumulation of genomic
mutations, leading to tumor evolution and further progression
to HGG.

Immune cell infiltration in the tumor, as an indicator of the
tumormicroenvironment, plays a critical role in the recurrence and
progression of glioma. The proposed impact is double-edged
generally. To be specific, while immune cells play a role in
discouraging tumor progression, due to the “immune escape”
mechanism, besides avoiding attack by the immune system,
tumor cells can even “tame” immune cells by regulating the
phenotype and function of immune cells (e.g., secreting cytokines,
chemokines, etc.) and hence contribute to a microenvironment
conducive to tumor progression (79–81). On the other hand, the
“tamed” immune cells can also secrete cytokines to regulate the
DNAmethylation of tumor cells, thereby promoting the evolution
of tumors (17). In this study, the degree of immune cell infiltration
was significantly higher in the LGGhigh-risk group than that in the
low-r i sk group. GSEA and GSVA also found that
immunosuppressive and anti-inflammatory pathways were
significantly activated in the high-risk group. It is suggested that
LGG in the high-risk group can create an immunosuppressive
microenvironmentmore conducive to tumor growth and evolution
through tumor–immune cell interaction under stronger immune
cell infiltration. Moreover, an immune barrier is developed in the
tumor marginal microenvironment by immune cells at the
periphery of tumors, which may facilitate the development of
LGG chemoradiotherapy resistance and boost the recurrence and
malignant progression of LGG (82).
CONCLUSIONS

We obtained 5 genes (HOXA1, HGF, KIF18A, FAM133A, MN1)
associated with LGG recurrence and malignant progression
through differential expression gene analysis and established a
stable and efficient prognostic model based on these. Among the
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five genes, KIF18A is considered to be the most significant
potential therapeutic target. Its specific inhibitor BTB-1 can
block the cell cycle of glioma cells in G2/M phase to inhibit the
proliferation of glioma cells. We also found that abnormal DNA
damage-related cell cycle checkpoints and changes in the tumor
immune microenvironment may be important mechanisms
leading to tumor cell evolution and LGG progression to HGG.
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