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Multiple sclerosis (MS), a debilitating autoimmune inflammatory disease that affects the
brain and spinal cord, causes demyelination of neurons, axonal damage, and
neurodegeneration. MS and the murine experimental autoimmune encephalomyelitis
(EAE) model have been viewed mainly as T-cell-mediated diseases. Emerging data
have suggested the contribution of B-cells and autoantibodies to the disease
progression. However, the underlying mechanisms by which dysregulated B-cells and
antibody response promote MS and EAE remain largely unclear. Here, we provide an
updated review of this specific subject by including B-cell biology and the role of B-cells in
triggering autoimmune neuroinflammation with a focus on the regulation of antibody-
producing B-cells. We will then discuss the role of a specific type of antibody, IgE, as it
relates to the potential regulation of microglia and macrophage activation, autoimmunity
and MS/EAE development. This knowledge can be utilized to develop new and effective
therapeutic approaches to MS, which fits the scope of the Research Topic “Immune
Mechanism in White Matter Lesions: Clinical and Pathophysiological Implications”.

Keywords: B-cells, humoral antibody response, IgE, macrophage, microglia, neuroinflammation, multiple sclerosis,
experimental autoimmune encephalomyelitis
INTRODUCTION

Multiple sclerosis (MS) is the most prevalent chronic inflammatory demyelinating disease of the
central nervous system (CNS), affecting approximately 2.8 million people worldwide (1, 2). MS
varies between patients at presentation, displaying as one of three clinical forms, primary-
progressive MS (PPMS), secondary-progressive MS (SPMS) and relapsing-remitting MS (RRMS).
Approximately 85% of MS patients are diagnosed with RRMS, which is typically characterized by
acute, episodic periods of aggressive symptomology (relapses), followed by periods of remission (3).
Symptoms of MS include, but are not limited to, sensory loss, fatigue, visual impairments and ataxia
in consequence of inflammation, neuron demyelination and the accumulation of white-matter
lesions in the CNS. The progression of these disease manifestations consequently results in gradual
org June 2022 | Volume 13 | Article 9001171
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loss of mobility and cognition potentially leading to neurologic
disability (2). Currently, no medications can prevent or reverse
neurological deterioration (2).

MS is generally classified as an immune-mediated inflammatory
disease, involving a complex combination of neurodegenerative
processes amplified by immunological responses. During a relapse,
immune cells are activated in the periphery and traffic into the CNS,
where they are re-activated, trigger inflammation and recruitment of
other peripheral immune cells, consequently resulting in neuron
demyelination and tissue damage (3). The C57BL/6 (B6) murine
experimental autoimmune encephalomyelitis (EAE) is the most
widely used experimental model of MS due to the availability of
transgenic andgeneknock-outmodels on theB6background that are
used to investigate the disease pathogenesis (referring to reference 5
for details of other EAE models). The model is established by
sensitizing mice to myelin oligodendrocyte glycoprotein MOG35-55

peptide emulsified in complete Freund’s adjuvant along with the co-
adjuvant pertussis toxin (4). It can be actively induced through direct
immunization, or passively through adoptive transfer of myelin-
specificT-cells orCD4+Thelper (TH) cells froma sensitizeddonor to
a naïve recipient (5). EAE is characterized by the infiltration of
autoreactive immune cells into the CNS with subsequent
inflammation, demyelination, axonal damage and loss. Due to the
potential immune mechanisms involved in both MS and murine
MOG35-55-induced EAE, this model remains important in the MS
research, despite that the lesions in this model, which are different
from theMSpathology, appear to display extensive axonal injury and
loss with little primary demyelination and are largely confined to the
spinal cord (5).

Extensive studies on EAE and MS have focused on myelin-
specific autoreactive T-cells. The involvement of B-cells in MS
has also been appreciated, as evidenced by the presence of
oligoclonal bands (OCB) in the cerebral spinal fluid (CSF) of
MS patients (2, 6–8), and the effectiveness of recent B-cell
depleting therapies in MS patients that highlights antibody-
independent B-cell function in MS pathogenesis (9–12). The
primary focus of this review will discuss our expanded
understanding of B-cell involvement in autoimmune
neuroinflammation with a focus on antibody-secreting B-cells.
We will then discuss the role of a specific type of antibody, IgE, as
it relates to autoimmunity and MS/EAE development.
BIOLOGY OF B-CELLS

The role of B-cells in the maintenance of proper immune function
and regulation displays profound importance in human health and
disease. B-cells as a highly heterogenous population with a great
degree of functional plasticity are capable of modulating both innate
and adaptive immune responses. Consequently, their development
and effector functions are highly regulated, as an inappropriate
development can lead to the generation of autoreactive B-cells (13).

B-Cell Developmental Subsets
B-cells develop from hematopoietic stem cells in the bone
marrow (BM), supported by growth factors and cytokines
Frontiers in Immunology | www.frontiersin.org 2
produced by resident stromal cells (14). The early B-cell
development in the BM involves different stages and
rearrangements of immunoglobulin (Ig) heavy and light gene
segments by recombination activating gene-dependent
processes, resulting in an enormous diversity of the antibody
repertoire (15). In mice, these early developing B-cells finally
differentiate into transitional B-cells which then migrate from the
BMmainly to the spleen, while in humans transitional B-cells are
present in the circulation and secondary lymphoid organs
(SLOs), including the spleen (16). The late transitional B-cells
give rise to mature B-cells, including follicular and marginal zone
(MZ) B-cells. Upon activation, both follicular and MZ B-cells can
develop into antibody-secreting cells (ASCs), including cycling
plasmablasts and non-dividing plasma cells, in a T-cell-
independent manner (17). When follicular B-cells encounter
antigen recognition and T-cell help, they can also be fully
activated, migrate into the follicle and induce the germinal
center (GC) formation in SLOs (17). The cognate T-B
interactions, namely T follicular helper (TFH)-GC B-cell
interactions, in the GC facilitate GC B-cells to undergo Ig class
switch recombination and somatic hypermutation followed by
developing into memory B-cells or ASCs, including long-lived
plasma cells producing class-switched antibodies (14, 16).
Memory B-cells are primarily responsible for mounting the
secondary immune response, triggered following a subsequent
exposure to the same antigen they recognize for the first time,
allowing them to proliferate and differentiate into plasma
cells (18).

Normal B-Cell Functions
A key characteristic of the mammalian adaptive immune response
is the ability to rapidly produce and secrete high-affinity antibodies
as they detect and help clear foreign pathogens or generate
protective immunity to vaccination. B-cells are indispensable for
the generation of plasmablasts and plasma cells, which are the only
cell types capable of antibody production. There are five distinct
antibody isotypes: IgA, IgD, IgE, IgG, and IgM, each possessing a
unique effector function and distinct heavy chain. Each antibody
contains a unique amino acid sequence and antigen-binding site
that resides in the antigen-binding fragment (Fab) or the variable
fragment (Fv) of Fab, conferring antigen specificity (19). Antibodies
serve three primary functions: neutralization, activation of the
complement cascade, and initiation of pathogen opsonization.
Neutralization occurs when secreted antibodies bind to infectious
pathogens and toxins, rendering them ineffective. Alternatively,
antibodies can activate the complement cascade, a complex innate
immune surveillance system that plays a primary role in protection
against bacterial pathogens. Lastly, antibodies can initiate
opsonization upon binding the foreign target, flagging it for
destruction by phagocytic cells (20).

Although B-cells are most notable for their ability to generate
and secrete antibodies, they also provide several other key effector
functions, including antigen presentation, directing immune
responses through cytokine secretion, and immunoregulatory
roles. B-cells, recognized as professional antigen-presenting cells
(APCs), constitutively express major histocompatibility complex
class II (MHCII) molecules produced during B-cell development in
June 2022 | Volume 13 | Article 900117
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the BM. MHCII expression in mature B-cells permits the
presentation of antigens to naïve CD4+ T-cells, which triggers T-
cell activation and proliferation when coupled with co-stimulatory
signals (21). B-cells also possess the ability to modulate immune
responses. Effector B-cells, Be1 or Be2 subsets, arising from naïve B-
cells upon activation can influence CD4+ T-cell differentiation into
effector andmemory subtypes through distinct cytokine production.
TH1 differentiation is promoted by Be1 cells that secrete tumor
necrosis factor (TNF-a), interferon-g (IFNg), interleukin-12 (IL-12),
and IL-6, while TH2 differentiation is driven by Be2 cells producing
IL-2, IL-13 and IL-4 (22–24). IL-6-secreting B-cells are also
implicated in the development of autoimmunity and promote the
development of proinflammatory TH17 cells, a cell subset known to
play a crucial role in MS pathogenesis (25). Finally, B regulatory
cells (Bregs) can negatively regulate immune responses through the
production of anti-inflammatory cytokines, IL-10, IL-35 and
transforming growth factor b (TGF-b) (22, 26–28). Bregs also
play an important role in maintaining invariant natural killer T-
cells, which promote tolerance against autoantigens involved in
autoimmune diseases (29). A continuous effort is being made to
understand Breg properties and functions in healthy adults as a
means of developing effective immunotherapies.

Regulation of GC B-Cell Responses
Upon activation, B-cells undergo differentiation into ASCs that
are classified as either plasmablasts or plasma cells (30). ASCs
can be generated via an extrafollicular differentiation pathway
and produce relatively low-affinity antibodies. Here we focus on
ASCs derived from the GC, where high-affinity antibodies and
memory B-cells are generated (17).

Within the GC reaction, somatic hypermutation of the variable
regions of Ig genes allows B-cells to produce high-affinity antibodies.
However, random point mutations can also lead to nonfunctional
or autoreactive antibody production, thus this process is tightly
regulated by positive and negative selection mechanisms controlling
for antibody affinity, while avoiding autoreactivity (31, 32). Two
critical players in these regulatory processes include TFH and T
follicular regulatory (TFR) cells. TFH cells are a specialized subset of
CD4+ TH cells, characterized by the expression of programmed cell
death protein 1 (PD-1), chemokine receptor CXCR5 and B cell
lymphoma 6 (Bcl6) transcription factor (33–36). TFH cells are
localized in B-cell follicles, where they participate in the GC
formation, promote the proliferation and differentiation of GC B-
cells, and support the production of high-affinity antibodies via the
cognate interactions with GC B-cells. TFH-derived IL-21 can
promote GC responses by directly acting on B-cells while
simultaneously promoting Bcl6 expression to further enhance TFH

cell development (35–37). During affinity maturation, B-cells
undergo division and Ig gene mutation in the GC dark zone
followed by migrating to the light zone, where B-cells with higher
affinity receptors present antigens to TFH cells for selection of high-
affinity cells that cycle back to the dark zone for additional rounds of
division andmutation (38, 39). This TFH-mediated selection process
is accompanied by substantial cell death and apoptosis, which
potentially provides self-antigens and induces autoreactive
antibody production (40, 41), testifying a need for a tight
regulation of this process. Although TFR cells share surface
Frontiers in Immunology | www.frontiersin.org 3
features with TFH cells and are also Bcl6+, they are the
immunosuppressive counterpart of TFH cells, as a subset of
Foxp3+ regulatory T-cells (Tregs) with their primary role to
control GC responses and maintain humoral self-tolerance (42–
45). A precise control of GC responses requires the maintenance of
the balance between TFH and TFR cell responses.

Our recent studies have demonstrated that dysregulated TFR

cells result in aberrant TFH cell expansion and excessive GC
responses with increased antibody production (42). The stability
and suppressive capacity of TFR cells require the expression of the
transcription factor, Blimp1. The deletion of Blimp1 in Foxp3+

Tregs reprograms Tregs and TFR cells into effector T-cells that
produce increased pro-inflammatory cytokines, such as IFNg
and IL-17A, promoting the autoimmune responses.
Additionally, unstable TFR cells migrate to the GC prematurely,
thus promoting TFH and GC B-cell expansion, along
with upregulated antibody and autoantibody production
(42) (Figure 1).
DYSREGULATED B-CELLS AND
ANTIBODIES IN CNS AUTOIMMUNITY

Dysregulation of B-cells directly or secondary to aberrant T-cell
responses due to the immune tolerance breakdown can lead to
autoantibody production, which is a classic hallmark of B-cell-
mediated autoimmune diseases (46). Autoantibodies directed
against membrane-associated, extracellular and nuclear
antigens are found in a plethora of autoimmune disorders,
including systemic lupus erythematosus (SLE), rheumatoid
arthritis (RA) and type I diabetes (TID) (47–49), where
they either directly injure target tissues or generate a
polyclonal activation of the immune system via forming
immune complexes and activating the complement cascade,
resulting in unregulated inflammatory responses (46, 50–52).
Conventionally, TH cells, particularly TH1 and TH17 subsets, are
thought to contribute heavily to MS and EAE (53). However,
emerging evidence suggests that B-cells play a comparably
crucial role in mediating disease through their ability to serve
as cytokine-producing regulatory cells, professional APCs and
ASCs (54). The impaired Breg activity may contribute to the
development of MS and EAE, as mice deficient in Breg-derived
IL-10 and IL-35 develop exacerbated EAE with failed recovery,
while elevated IL-35+ or IL-10+ Bregs ameliorate disease severity
(55, 56). Here we focus on the contribution of dysregulated T/B
responses and resultant autoantibody production to MS
and EAE.

Like other APCs, such as macrophages and dendritic cells, B-
cells can present antigens to T-cells as an MHCII: peptide complex
once antigens are recognized through their B-cell receptor (BCR) to
activate T-cells, which in turn induce B-cell proliferation and
differentiation into ASCs in SLOs. As expected, unchecked T/B
response to self-antigens, like myelin-associated antigens, can
promote CNS pathology. The expanded autoreactive B-cell clones
are found in both the periphery, including draining cervical lymph
nodes, and CNS compartments (meninges, CSF and parenchyma)
June 2022 | Volume 13 | Article 900117
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of MS patients (57). In particular, IgG1+ B-cells expressing the
chemokine receptor CXCR3 and the transcription factor T-bet are
recruited and enriched in the CNS of some MS patients, likely
reflecting high levels of CXCR3 ligand CXCL10 in the CSF of these
patients (58, 59). These studies imply that autoreactive B-cells can
traffic across the blood-brain barrier (BBB) into the CNS where they
may undergo further differentiation into ASCs, promoting MS
pathology (58, 60). Interestingly, histological analysis has revealed
structures resembling lymphoid follicles compartmentalizing T, B,
plasma cells, and follicular dendritic cells within the meninges of the
CNS, termed as ectopic lymphoid structures (ELSs) (61). The
presence of these follicle-like structures within the CNS further
suggests that T/B-cell activation and proliferation in situ contribute
to disease pathogenesis (62). TFH and GC B-cells are found in these
ELSs, but the presence of TFR cells has not been reported in the
inflamed CNS until our recent study (63), despite that the regulatory
activity of TFR cells in the lesions still require further investigation.
Dysregulated TFH cell-GC-antibody responses secondary to
dysfunctional TFR cells are the root of autoimmune disorders,
including MS and EAE (64, 65) (Figure 1). MS patients have
been found to harbor substantially reduced circulating TFR cells
compared to healthy controls, and those residual cells in the
circulation resemble a more TH17-effector like phenotype with
impaired suppressive activity (66). Our recent study has also
shown that mice with dysfunctional TFR cells due to the deletion
of Blimp1 develop more severe EAE and fail to recover compared to
control mice (63). In this MOG35-55-induced EAE model, Blimp1-
deficient TFR cells become unstable and produce TH17-associated
cytokines, including GM-CSF and IL-17A.Moreover, these unstable
TFR cells acquire the TFH helper activity, and promote GC B-cell
expansion and antibody production, leading to augmented disease
(63) (Figure 1).

Although the contribution of antibodies, particularly antibody
isotypes, to the pathogenesis of MS and EAE remains largely
unclear, antibodies specific to self-antigens, including myelin-
derived lipids and proteins, are often detected in the CSF of MS
patients (67–69). The emergence of oligoclonal bands (OCB) in the
CSF, which are locally produced by clonally expanded antigen-
experienced B-cells, is one of the hallmarks of MS, with more than
Frontiers in Immunology | www.frontiersin.org 4
95% of MS patients containing the OCB of IgG class (8). RRMS
patients with intrathecal IgG synthesis, manifested by the presence
of OCB, are also associated with a higher risk of and shorter time to
disability worsening (as reflected by the Expanded Disability Status
Scale score) over a four-year period of follow-up (70). The antigen
specificity of OCB remains elusive. Using an approach that allows
concurrent analysis of the full-length sequences of matching Ig
heavy and light chains from distinct OCB followed by producing
recombinant OCB antibodies and antigen searches, Brändel et al.
have revealed that six OCB antibodies from four MS patients
recognize three ubiquitous intracellular proteins not specific to
brain tissue (71). These interesting findings suggest that part of
MS OCB antibodies target autoantigens released through tissue
destruction (71). Additionally, Liu et al. have tested the specificity of
recombinant IgG1 antibodies produced from clonally-expanded
plasmablasts isolated from MS CSF. The application of these
antibodies onto mouse organotypic cerebellar slices has shown
that these antibodies bind to the surface of oligodendrocytes and
myelinating axons inducing rapid demyelination accompanied with
enhanced microglia activation in the presence of complement,
suggesting their specificity to myelin-derived antigens (72).
Another study has demonstrated that higher CSF IgM levels in
treatment-naïve MS patients positively correlate with the CSF levels
of molecules related to B-cell immunity (IL-10), recruitment
(CXCL13 and CCL21), and macrophage/microglial activity (IL-
12p70, CX3CL1 and CHI3L1), as well as white matter lesion
numbers and disease activity after two years of follow-up,
suggesting a potential role of IgM in the MS disease course (73).
Several additional studies also implicate that intrathecal IgM
synthesis may serve as a predictor of the onset of new relapses
and worsened disease progression (74–77). In contrast, gut
commensal-specific IgA-producing plasma cells have been shown
to recirculate into the CNS of EAE mice and active MS patients
during disease relapse (78, 79). Despite their unclear function in MS
patients, these cells suppress neuroinflammation in EAE mice via
the production of IL-10 (79), suggesting the anti-inflammatory role
of IgA-producing cells which may serve as a predictor for MS
disease course (78). Finally, the IgE isotype has only recently been
implicated in taking part in MS pathology, as sera from some MS
FIGURE 1 | Excessive TFH-GC-B cell response and IgE production secondary to dysregulated TFR cells exacerbate MS/EAE. Under normal conditions, IgE
production is tightly controlled by the TFH-TFR cellular pair. Dysregulation of TFR cells leads to TFH/GC B-cell expansion and excessive IgE production, inducing
autoreactive IgE, resulting in exacerbated autoimmune diseases, such as MS and EAE. PC, plasma cellse. x-TFR, desreguated TFR cells.
June 2022 | Volume 13 | Article 900117
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patients contain significantly higher levels of IgE reactive against
myelin protein-derived peptides whereas peptide-reactive IgA or
IgG is often undetectable (80). Our recent study has also pointed to
a disease-promoting role of IgE in EAE (63). We will further discuss
the pathogenic role of IgE in autoimmune diseases with an
emphasis on MS and EAE in the following sections.
CONTRIBUTION OF IGE TO
AUTOIMMUNE DISEASES

Regulation of IgE Production
and Maintenance
B-cells undergo isotype switching, a complex process that requires
precise and sequential genomicDNAsplicing andrecombination, to
express surfacemembrane-bound IgE, and to secrete it aswell. IgE is
an antibody isotype with the lowest abundance and the shortest
serum half-life in vivo, suggesting that IgE responses are generally
limited at steady states (81). IgE can be derived from direct class-
switching where IgM directly converts to IgE, or from sequential
steps by initially converting IgMto IgG1 that then converts to IgE, or
alternatively from IgG1 directly (81). These differing mechanisms
for IgE generation are suggested to distinguish the IgE+ B-cell fates.
While direct class-switching is associatedwith the generationof IgE+

GC B-cells and the production of low-affinity IgE, the sequential
generation of IgE is more related to developing plasma cells with a
greater affinity of IgE (82–85). Interestingly, the membrane-bound
IgE (i.e., IgE+ BCR) has been shown in vivo and in vitro to
autonomously promote B-cell differentiation into antibody-
secreting plasma cells in the absence of cognate antigen, suggesting
that BCR signals restrict IgE+GCB-cell responses (86).Upon release
into circulation, IgE binds to the high-affinity FcϵRI receptor
expressed on the surface of mast cells, basophils and other cell
types (87). Binding of IgE to FcϵRI expressed on dendritic cells and
macrophages induces activation through the internalization of IgE-
bound antigens, and production of a cytokine milieu (e.g., IL-4)
favoring TH2 differentiation (81), which may in turn facilitate IgE
class-switching, implying a positive feedback mechanism in the
regulation of IgE production.

The IgE production is also tightly regulated by the TFH-TFR

cellular pair (Figure 1). TFH cells have been shown to undergo
progressive maturation after entering the GC to regulate GC B-cell
differentiation, starting with an IL-21+ TFH cells that enable the
selection of high-affinity antibodies to become IL-4+ TFH cells that
promote the differentiation of ASCs, including IgE-producing cells
(88). Although TFR cells can positively induce IgE under certain
settings (89, 90), we and others have reported that TFR cells,
particularly Blimp1+ TFR cells, are key suppressors of IgE
production (42, 63, 91–95). Using a unique TFR cell-deleter
mouse strain, TFR cells have been demonstrated to control IgG
and IgE responses and regulate IL-13-producing TFH cell-induced
IgE specifically in house dust mite models (94). A most recent study
by Dr. Carola Vinuesa’s group has further shown that TFR cells
produce neuritin -a neuropeptide known to regulate synaptic
plasticity and neuronal growth, migration, and survival- which
regulates GC B-cells to block the emergence of autoantibodies
Frontiers in Immunology | www.frontiersin.org 5
and excessive IgE (95). The deletion of neuritin in Tregs or
ablation of TFR cells expedites the differentiation of GC B-cells
into plasma cells and IgE class-switching (95). Thus, the immune
system has adopted various mechanisms to restrain IgE production
and keep it at proper levels under normal conditions.

Unconventional Role of IgE in
Autoimmune Disorders
Conventionally, IgE is known for mediating immediate, allergen-
specific reactions, commonly referred to as type 1
hypersensitivity. Effector functions are triggered by the cross-
linking of allergen-specific IgE to the FcϵRI receptor on mast
cells and basophils, inducing the subsequent degranulation and
release of potent proinflammatory mediators, such as histamine
and TH2 cytokines, to cause inflammatory responses (96). IgE
also binds to low-affinity receptors known as FcϵRII or CD23 on
B-cells and other cells to mediate the uptake of IgE-antigen
complexes (81, 97). Additionally, IgE plays an important
evolutionary role in host protection against venoms and
parasitic infections (98), particularly those caused by helminths
and specific protozoans (99).

The association of elevated serum IgE levels with autoimmunity
has been understudied, but recent clinical evidence linking
autoreactive IgE beyond its conventional role in inducing allergic
responses to autoimmune diseases has attracted more attention
from the research community (100, 101). IgE has been implicated
in contributing to the onset of inflammatory and autoimmune
diseases such as RA, SLE, TID, atopic dermatitis, bullous
pemphigoid, atherosclerosis, obesity, and coronary heart disease
(102–106). Autoreactive IgE, including antinuclear IgE antibodies,
are found in a significant portion of these patient populations (103,
104), despite that the exact pathogenic role of IgE remains largely
unclear, and in some cases, autoreactive IgE levels are comparable
to autoreactive IgG levels making a definitive causal relationship
challenging to establish (100, 107). Notably, a key study of SLE
patients demonstrates that double-stranded DNA (dsDNA)-
reactive IgE can trigger IFNa production via activating
plasmacytoid dendritic cells (pDCs) upon binding to FcϵRI on
these cells, and that the serum concentrations of these dsDNA-
reactive IgE correlate with disease severity (108). These studies have
justified and stimulated the application of IgE blocker
(omalizumab), which is used to treat allergic asthma, as a
therapeutic option for some autoimmune disorders (109).

Supporting evidences from clinical and experimental data
suggest the involvement of IgE in bothMS and EAE (63, 80, 110).
The discovery of significant serum levels of IgE specific to a panel
of short, unique myelin protein-derived peptides in the cohort of
26 MS patients irrespective of clinical subtype based on an
author-developed radioimmunoassay suggests that autoreactive
IgE against CNS target antigens may hold valuable diagnostic
potential in some MS patients (80). Indeed, IgE+ cells are
detectable in all lesions of MS brains from 14 different
patients, including areas with active immune infiltration (110).
These studies also point out that the encephalitogenic potential
of IgE may rely on its abundance in the CNS, and the presence of
other pathogenic Ig isotypes, as they may compete with IgE for
June 2022 | Volume 13 | Article 900117
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the same targets. Consistent with the findings that mice with
disrupted Ig Fc receptors, including FcϵRI, display ameliorated
EAE (111), we have recently revealed the increased CNS
deposition of total and MOG-specific IgE in MOG35-55-
induced EAE mice with dysregulated Tregs and TFR cells, and
the serum IgE levels positively correlate with EAE disease
severity (63). The increased IL-17A and IL-4 produced by
over-activated TH cells and unstable Tregs in these mice may
account for the elevated IgE (63), although other mechanisms,
such as reduced neuritin expression by dysregulated TFR cells,
may be at play and are worth further investigation. Additionally,
MOG-IgE (specific to the model antigen MOG35-55) but not
MOG-IgG are elevated in these mice. Although MOG-IgG has
become a new diagnostic marker for neuromyelitis optica
(NMO) but not MS (112), we do not know if MOG-IgE is
derived from MOG-IgG via class-switching in this pre-clinical
study and if MOG-IgE may potentially contribute to NMO or
MS. It will also be interesting to investigate if the IgE-mediated
pathogenesis in other autoimmune disorders, such as activation
of pDCs and production of IFNa, contributes to MS and EAE,
despite that the role of type 1 IFNs in MS has been a contentious
subject (113, 114). As one of the conventional target cells of IgE,
earlier studies have suggested that mast cells in the CNS as a
direct result of intravascular myelin-reactive IgE penetrating the
BBB promote MS and EAE (80, 111, 115, 116). Our recent study
has also suggested that CNS myeloid cells, including microglia
and infiltrating macrophages, are targeted by IgE to induce their
activation (63) (Figure 2). We will provide a more detailed
discussion of this topic in the following section.

IgE-Mediated Regulation of Microglia and
Macrophages in MS and EAE
The crosstalk between the innate and adaptive arms of the immune
system often occurs to ensure proper immune responses.
Disruption within this complex network of cell communication
can result in devastating consequences. In addition to T/B-cells and
myeloid cells/macrophages that infiltrate into the CNS during MS
and EAE progression, microglia, non-circulating tissue resident
macrophages of the CNS, are critical for the regulation of
neuroinflammation. Microglia are the cell types responsible for
removing and pruning damaged and unnecessary neurons and
synapses to maintain CNS homeostasis (117). Besides serving as
APCs to induce T-cell activation, microglia and monocyte-derived
macrophages are armed with several receptors equipped to remove
aged, necrotic tissues and toxic molecules from their surroundings
while eliciting endocytosis of immunocomplexes and complement-
opsonized proteins through Fc receptors (118, 119). Upon
homeostatic dysregulation, microglia and CNS-infiltrated
macrophages can be pushed towards an M1 pro-inflammatory
phenotype to mediate secretion of TNFa, IL-12, IL-6, IL-23, and
TGFb at elevated levels, promoting TH1 and TH17 differentiation,
which in turn provide feedback to facilitate M1 polarization, and
ultimately leading to MS pathology (120, 121). In MS and EAE,
activated microglia and macrophages are hallmarks of active
demyelinating lesions (122–124). Upon activation, microglia and
macrophages can produce inflammatory cytokines, free radicals,
protease and other mediators to augment CNS inflammation,
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destroy oligodendrocytes and cause axon injury and
demyelination (125). The importance of microglia and
macrophages in MS and EAE has been evidenced by the fact that
the inhibition of microglial activation or downregulation of
molecules in these cells to diminish their function results in
disease attenuation along with reduced demyelination (125–127).
However, it should be noted that microglia and macrophages can
also provide neuroprotection by aiding in axonal remyelination and
regeneration. Their beneficial and harmful effects are possibly
attributed to the heterogeneity of these cells and temporal and
spatial requirements during disease progression (125, 128, 129).

The impact of IgE on macrophages has been mainly
investigated in atherosclerosis and cardiovascular diseases and
more recently, in cancer (102, 130, 131). Using mice lacking IgE
or FcϵRI combined with atherosclerosis prone models, IgE is
reported to bind to FcϵRI on macrophages to induce activation,
accumulation into the inflammatory lesions and skewed
differentiation towards the pro-inflammatory M1 phenotype
(102 , 130 , 131) . Treatment of quiescent M0 and
immunosuppressive M2 macrophages with IgE results in elevated
levels of M1-associated molecules. In contrast, treatment of pro-
inflammatory M1 cells retains the levels of these molecules,
including CD80, TNFa, IFNg and IL-1b (131), suggesting a
favorable role of IgE in driving M1 type inflammatory responses.
Our recent study has for the first time reported that IgE can activate
CNS myeloid cells in the context of EAE (63). This study shows
that supplementing sera from EAE mice into the CNS CD11b+

myeloid cell culture promotes activation and M1 polarization of
these cells via upregulation of CD68, MHCII, and TNFa. Most
notably, pre-incubation of sera with anti-IgE to neutralize IgE
activity diminishes the activation of CD11b+ cells, suggesting a
direct regulation of myeloid cells by IgE (63) (Figure 2), despite
that a follow-up experiment is needed to distinguish the relative
impact of IgE on microglia to CNS-infiltrated macrophages. The
impact of IgE on other CNS resident cells, such as astrocytes, which
may influence the disease course, is also warranted for future
investigation. Moreover, further in vivo study and exploration of
IgE’s mechanistic action are required to establish the importance of
IgE in MS and EAE (Figure 2).
THERAPEUTIC TARGETING B-CELLS AND
ANTIBODY RESPONSE TO TREAT MS
AND EAE

B-cell depletion therapy using monoclonal antibodies (mAbs)
that target CD20 expressing B-cells is a highly effective treatment
option for relapsing MS patients (132). Anti-CD20 mAbs work
by depleting circulating CD20+ B-cells, with treatments lasting
up to 9 months (133). There are currently three clinically
approved anti-CD20 mAbs used in the treatment of MS
patients: rituximab (RTX), ocrelizumab (OCR), and
ofatumumab (OFA). These drugs differ in their clinical
effectiveness based on their molecular structure and
mechanism of action targeting B-cells, as reviewed elsewhere
(132). The first of the three mAbs, RTX, a chimeric mouse-
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human mAb, was initially developed to target B-cell lymphomas,
but is repurposed as an off-label treatment for MS patients and is
now widely used in several autoimmune diseases (134–136). Its
primary mechanism of action is complement-dependent
cytotoxicity, but antibody-dependent cellular cytotoxicity
(ADCC) also plays an important role in its effectiveness (137).
OCR is used in patients with RRMS and PPMS. Currently, it is
the only approved treatment for patients with the primary
progressive form of the disease. OCR is a fully-humanized lytic
mAb with ADCC as its primary mechanism of action; however
apoptotic and antibody-dependent phagocytosis assist in B-cell
depletion (138). OFA is a fully human mAb and is the only
approved anti-CD20 mAb that uses a subcutaneous route of
administration (139). Anti-CD20 clinical trials involving patients
with RRMS show significant reductions in brain lesion
formation, clinical relapse rates and no substantial side effects.
However, a caveat is that CD20 is expressed on B-cells beginning
in the late pre-B developmental stage, until the cells are
terminally differentiated as antibody-secreting plasmablasts and
plasma cells (140). Thus, pro-B cells and all ASCs are spared with
anti-CD20 mAbs as they are CD20 negative (140), which may
underlie the potential ineffectiveness, if any occurs, in some
patients. The efficacy of B-cell depleting therapy may also need to
consider the abundance and activity of Bregs, as transfer of these
Frontiers in Immunology | www.frontiersin.org 7
cells leads to disease mitigation, at least reported in EAE mice
(141, 142). With the emergence of a critical pathogenic role of
IgE in promoting EAE and MS, therapies against MS could be
developed to neutralize IgE or block IgE activity, such as the use
of omalizumab in other autoimmune disorders (109).
CONCLUSIONS AND PERSPECTIVES

Considerable progress has been made in uncovering the
mechanisms guiding CNS autoimmunity, particularly in MS.
However, there are many critical knowledge gaps that remain. It
is essential to understand the emerging role of B-cells and IgE in
triggering autoimmune diseases. Current and future areas of interest
should include defining the effector activity of IgE in mediating
macrophage/microglial activation, influencing the CNS resident
cells and promoting a pro-inflammatory milieu in the CNS.
Better delineation of autoreactivity of autoantibodies may enable
immunological phenotyping of MS patients, facilitate the
development of a diagnostic test and lead to new treatment
directions. In addition, as our knowledge of B-cell involvement in
MS progression, elucidating the mechanisms by which TFR, TFH,
GC-B cells and antibody production (particularly IgE) are properly
regulated is crucial in discovering disease-promoting factors. This
FIGURE 2 | The potential pathogenic role of IgE in MS and EAE. In the periphery, IgE, including myelin-specific or autoreactive IgE, polarizes macrophages toward the M1
phenotype and induces mast cell degranulation, which promotes a leaky BBB allowing increased infiltration of T/B-cells, macrophages and mast cells into the CNS. IgE may
also penetrate the BBB allowing the deposition into the CNS. In the CNS, IgE activates and polarizes microglia into the M1 phenotype. The M1 microglia and infiltrated
macrophages produce inflammatory mediators to further drive the differentiation of encephalitogenic TH cells, which in turn amplify the M1 polarization of these cells. IgE may
directly activate astrocytes that cooperate with microglia to enhance neuroinflammation and induce axonal demyelination and destruction. IgE may also potentially directly
target oligodendrocytes (not depicted) to promote axonal damage. The accumulation of TH cells and B-cells may form ELSs that perpetuate inflammation, demyelination
and disease progression. The small circles with different colors close to different cell types represent different secreted inflammatory mediators.
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represents a new era for identifying therapeutic targets to
manipulate B-cell activity for targeted immunotherapies.
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