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Interleukin-33 (IL-33) is a pleiotropic cytokine linked to various immune cells in

the innate and adaptive immune systems. Recent studies of the effects of IL-33

on immune cells are beginning to reveal its regulatory mechanisms at the levels

of cellular metabolism and epigenetic modifications. In response to IL-33

stimulation, these programs are intertwined with transcriptional programs,

ultimately determining the fate of immune cells. Understanding these

specific molecular events will help to explain the complex role of IL-33 in

immune cells, thereby guiding the development of new strategies for immune

intervention. Here, we highlight recent findings that reveal how IL-33, acting as

an intracellular nuclear factor or an extracellular cytokine, alters metabolic

checkpoints and cellular metabolism, which coordinately contribute to cell

growth and function. We also discuss recent studies supporting the role of IL-

33 in epigenetic alterations and speculate about the mechanisms underlying

this relationship.
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Introduction

Interleukin-33 (IL-33) is a pleiotropic cytokine that was originally described as a

nuclear protein (1, 2). Intracellular IL-33 can act as a chromatin-associated nuclear

factor, possessing transcriptional regulatory properties (1, 3). The precursor pro-cytokine

IL-33 is processed to a mature form and released in response to cellular stress; thus,

extracellular IL-33 acts as an ‘alarmin’ to alert the immune system of potential tissue
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stress or damage (4, 5). Extracellular IL-33 signals via IL-1

receptor-related protein (IL-1RL1, ST2), which shows

constitutive or induced expression on most, if not all, immune

cells (6, 7). Binding of IL-33 to its receptor ST2 recruits IL‐1R

accessory protein (IL‐1RAP), forming the myeloid

differentiation primary response protein 88 (MyD88) complex,

which activates at least two independent pathways: the mitogen-

activated protein kinase (MAPK) pathway and nuclear factor‐kB
(NF‐kB) pathway (8, 9). A soluble form of ST2 (sST2) is released

by various cell types and serves as decoy receptor to neutralize

IL-33 (10). By modulating the growth and function of myeloid

and lymphoid cells, IL-33 orchestrates innate inflammatory

responses and shapes adaptive immunity, contributing to

immune homeostasis and tissue repair in response to

environmental stresses (11–13).

Of note, IL-33 can influence systemic metabolism, for

example, by regulating lipid metabolism and increasing insulin

production, which are correlated with changes in immunological

parameters (14–16). These findings reforince the idea that

cytokine-induced signals may also affect metabolic pathways;

in parallel, there is clear evidence for the importance of cytokines

in altering metabolic properties in immune cells, i.e., several

cytokines exert anti-or pro-inflammatory effects in part via

metabolic reprogramming (17–21). Consistent with this, IL-

33-mediated metabolic programs that control the fate of

immune cells are beginning to be understood. For example,

the distinct IL-33-induced functional state of immune cells is

accompanied by changes of peroxisome proliferator activated

receptor-g (PPAR-g), mammalian target of rapamycin (mTOR),

and hypoxia-inducible factor 1a (HIF1a) (22, 23), which are key
regulators of glucose and lipid metabolism. These findings have

led to interest in the role of IL-33 in a relatively new field,

immunometabolism, which has flourished in the past

decade (24).

Cellular metabolism not only satisfies energetic and

biosynthetic requirements but can contribute to the epigenetic

control of immune cell development (25, 26). As such, recent

studies have suggested that IL-33 can shape the transcriptional

landscape of immune cells via epigenetic reprogramming and

chromatin accessibility (27, 28). The discovery of epigenetic

modifications that mediate the effects of IL-33 provides another

extensive layer of IL-33-mediated regulation in immune cells. In

this review, we focus on studies of two key mechanisms by which

IL-33 controls immune cells, metabolic reprogramming and

epigenetic modifications, highlighting areas that we feel hold

particular promise among cytokine-mediated effects. We

address the possibility that alterations in metabolic

checkpoints may provide a mechanistic link between cellular

metabolism and immune cell development in response to IL-33.

Additionally, we emphasize the role of IL-33-mediated cellular

metabolism in the control of growth and effector functions of

immune cells. Finally, we discuss recent discoveries and
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mechanisms underlying the unique epigenetic profiles of

immune cells after IL-33 stimulation.
IL-33 controls metabolic
checkpoints in immune cells

Metabolic checkpoints are involved in metabolic

reprogramming for the generation of energy and metabolites, and

they coordinate cellular functions by integrating environmental

cues (29). In immune cells, there are several metabolic checkpoints

by which IL-33 regulates cellular metabolism. Here, we focus our

discussion onmTOR,AMP-activated protein kinase (AMPK), and

phosphoinositide 3 kinase (PI3K)–AKT signaling (Figure 1).

The serine/threonine kinase mTOR comprises two complexes,

mTORC1 and mTORC2, which together have key roles in cellular

metabolism (30). mTORC2mainly promotes glucose uptake and de

novo lipogenesis, while mTORC1 orchestrates glycolytic and

lipogenic programs by the induction of downstream effector

molecules, such as HIF-1a, Myc, PPARg, and SREBP1 (31, 32).

In response to IL-33 stimulation, mTORC1 activity is required for

increased cellular metabolism in certain immune cells. IL-33-

stimulated CD8+ T cells require mTORC1 activity for increased

rates of glycolysis, accompanied by the upregulation of Myc and

Hif1a expression (22). mTORC1 activity also regulates IL-33-

dependent effector functions in both Th2 cells and group 2 innate

lymphoid cells (ILC2s) by a pathway that involves the upstream

activator PI3K p110d (33). In IL-33-activated ILC2s, mTORC1

controls the expression of Pparg and Dgat1, which allow the uptake

of glucose and lipids, thereby fueling nutrient metabolism (23).

However, IL-33-deficient Treg cells have increased phosphorylation

levels of the mTORC1 complex (S6, 4E-BP1), which is closely

correlated with Treg cell instability (27). Together, mTOR is an

essential component of IL-33 signaling and can be activated upon

immune cell exposure to extracellular IL-33; the mTOR complex

can also be inhibited by intracellular IL-33, which may be associated

with transcriptional repressor function of IL-33 (1, 3).

A key signaling pathway that antagonizes the mTOR-mediated

control of anabolic metabolism is the metabolic sensor AMPK (34).

AMPKpromotes catabolic processes via several pathways, including

the activation of PGC1a and inhibition of acetyl- CoA carboxylase 1

(ACC1) andACC2 (35). In ILC2s, AMPKmay be involved in IL-33-

mediatedeffects andcrosstalkwithadiponectin (36).After interfering

with AMPK expression, the ability of IL-33 to increase ILC2 cell

counts is lost (37). Mechanistically, IL-33 stimulates the

phosphorylation of AMPK at Thr172 in a TAK1-dependent

manner (36). By inhibiting downstream pathways of TAK1, such

as IKKa/b and IkBa, AMPK feedback suppresses IL-33-induced

NF-kBactivation and IL-13production (36).Detailed analyses of the
effects of AMPK on metabolites, mitochondrial respiration, and

related metabolic pathways have not been performed in IL-33-

activated immune cells, although it is well established that AMPK
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controls systemic thermogenesis and energy expenditure in adipose

tissues via IL-33-activated ILC2s (36).

The PI3K–AKT signaling network influences cellular

metabolism via many downstream effectors. They either

regulate nutrient transporters and metabolic enzymes or

activate downstream metabolic regulators, such as mTORC1,

GSK3, and members of the FOXO family (38, 39). PI3K activity

is involved in the IL-33-mediated activation of mTORC1, which,

as discussed above, serves a key function in ILC2 metabolism

and function (33). In response to IL-33, mast cells exhibit the

MK2/3-dependent activation of ERK1/2, which consequently

stimulates PI3K–AKT signaling, leading to cytokine production

and leukocyte attraction (40).

As discussed, several metabolic regulators involved in the

activation and function of IL-33-stimulated immune cells have

been identified. Furthermore, studies have begun to reveal their

contribution to the IL-33-mediated reprogramming of metabolic

processes, although more studies are needed. The specific

mechanisms by which these metabolic checkpoints coordinately

and differentially regulate metabolic processes during in different

immune cell states in response to IL-33 are unknown.
Regulation of cellular metabolism
by IL-33

The metabolic checkpoints discussed above work together to

modulate cellular metabolism, which determines cell growth,

survival, and function. Although it is not clear how IL-33 is

coupled to metabolic checkpoints, multiple studies have begun
Frontiers in Immunology 03
to demonstrate how IL-33 regulates cellular metabolic processes

to meet innate metabolic demands for cell activation

and functions.
Regulation of ILC2 metabolism by IL-33

ILCs are a novel lymphocyte subfamily; they express the

characteristic surface receptors and effector molecules of

differentiated T cell subsets under the control of specific

transcription factors (41). Among them, ILC2s express

GATA3 and ST2; as such, they react rapidly to IL-33 and

produce type 2 cytokines, including IL-5 and IL-13 (42). ILC2

activation by IL‐33 not only enables them to support type 2

immune responses but to facilitate tissue repair by the

production of amphiregulin and the generation of reparative

M2-like macrophages (15, 43).

Following the activation of IL-33, ILC2s become highly

proliferative and require an elevated glycolytic capacity to

produce IL-13 (44, 45). However, a shift from oxidative

phosphorylation (OXPHOS) toward increased glycolysis leads to

defective ILC2 maturation and function (46, 47). IL-33-stimulated

ILC2s also require glutamine to fuel OXPHOS and maintain cell

function and proliferation (45). This could be partially explained by

the observation that glycolysis results in attenuated ST2 expression

(46), indicating negative feedback between IL-33/ST2 signaling and

cell-intrinsic glycolytic metabolism in ILC2s. In addition to

glycolysis, IL-33 also enhances the mitochondrial membrane

potential and ATP synthesis in ILC2s and promotes ILC2-driven

allergic inflammation in the lung (48). Consistent with this, IL-33
FIGURE 1

IL-33 controls metabolic checkpoints in immune cells. There are several metabolic checkpoints by which IL-33 can participate in cellular metabolism.
IL-33 activates the metabolic regulators mTORC1, PI3K-AKT, and AMPK, which coordinately influence downstream effector molecules, such as HIF-
1a, Myc, and PPARg, and subsequently orchestrate glycolytic and lipogenic programs. In this process, AMPK suppresses IL-33-induced NF-kB
activation; intracellular IL-33 can also bind to NF-kB p65 and restricts its transcriptional activity, suggesting that a feedback loop controls cellular
metabolic homeostasis. Additionally, IL-33 activates mitochondrial STAT3 via MAPK and fuels the methionine cycle.
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activation has been shown to induce reactive oxygen species (ROS)

production by mitochondria, and ROS are required for optimal IL-

33-triggered activation of metabolic processes in ILC2s (49). ROS

scavengers can reduce the production of IL-5 and IL-13, ILC2

proliferation, and ILC2-mediated eosinophilia in response to IL-33

stimulation (49).

These metabolic programs coordinate the uptake of

environmental nutrients, as IL-33 increases glucose and fatty

acid uptake to promote the formation of lipid droplets in ILC2s

(23). In this context, the availability of glucose allows the uptake

and storage of external lipids, and both functions are required to

fuel the proliferation of ILC2s (23). This cross-regulation of

glucose and fatty acid metabolism may be mediated by mTOR,

which controls the expression of Pparg and Dgat1 (23). Of note,

DGAT1, an enzyme involved in lipid droplet formation,

increases the uptake of external lipids and protects ILC2s from

lipotoxicity (23). Thus, it is reasonable to conclude that IL-33-

mediated processes that give rise to functional ILC2 are

dependent on metabolic reprogramming, which integrates

metabolic pathways with nutrient availability.

Mechanistically, four important regulators—HIF-1a, STAT3,
arginase-1, and PPARg—have distinct but crucial roles in the

regulation of metabolic pathways involved in IL-33-mediated
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ILC2 proliferation and function (Figure 2). Recently, it has been

elegantly shown that IL-33-activated mitochondrial STAT3 is

required for ATP production to fuel the methionine cycle and

generate S-adenosylmethionine (SAM), shaping ILC2 effector

function (48). These results are at least partially consistent with

those obtained in other cells (50, 51); mitochondrial STAT3, a

modulator of mitochondrial respiration, can sustain OXPHOS

and ATP production by regulating the activities of complexes I

and II of the electron transport chain (50, 51). The production of

SAM by STAT3 activation leads to increased levels of H3K4me3, a

transcriptional permissive modification, at the Il5 and Il13 loci

(48). These results suggest that the role of IL-33 in ILC2s is

complex and involves an immuno-metabolite-epigenetic axis.

This is further supported by the finding that in IL-33-activated

ILC2s, HIF-1a accumulation results in enhanced glycolytic

capacity and attenuated mitochondrial respiration (46). In

particular, HIF-1a drives the expression of the glycolytic

enzyme pyruvate kinase M2 (PKM2) and glycolytic metabolite

pyruvate, with a central role in controlling the homeostasis of

ILC2s (46). PKM2-pyruvate metabolic checkpoint reduces

H3K4me3 at the St2 and Il5 loci as well as at the Gata3

promoter in ILC2s with increased glycolytic capacity (46). As

discussed below, these findings indicate that IL-33-mediated
FIGURE 2

Regulation of ILC2 metabolism by IL-33. Both glycolysis and OXPHOS are activated in IL-33-activated ILC2s, and the glycolytic process allows
the uptake and storage of external lipids to fuel the proliferation of ILC2s. Four important regulators—HIF-1a, STAT3, arginase-1, and PPARg—
have been implicated in IL-33-activated ILC2s. HIF-1a drives the expression of the glycolytic enzyme PKM2 and the glycolytic metabolite
pyruvate, which reduce H3K4me3 levels at ILC2-specific genes. IL-33 drives the activation of STAT3 and subsequent generation of SAM, which
leads to increased H3K4me3 levels. IL-33 also increases the expression of PPARg, which mediates lipid metabolism in ILC2s. The enzyme
arginase-1 promotes the generation of L-arginine-derived polyamines and is closely related to aerobic glycolysis in IL-33-activated ILC2s.
OXPHOS, oxidative phosphorylation; PKM2, pyruvate kinase M2; SAM, S-adenosylmethionine.
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cellular metabolism promotes energy production, and metabolic

intermediates can act as epigenetic regulators.

The enzyme arginase-1 metabolizes the amino acid L-

arginine to generate urea and ornithine (52) and is selectively

expressed by ST2+ ILC2 populations (44). This enzyme is also

upregulated in IL-33-expresing myeloid-derived suppressor cells

(MDSCs) (28). Arginase-1 enzymatic activity serves as an

essential checkpoint controlling IL-33-activated ILC2

metabolism, subsequently contributing to cell proliferation and

the development of type 2 inflammation (44). Through its role in

metabolizing arginine, the disruption of arginase-1 in ILC2s

prevents the generation of L-arginine-derived polyamines (44),

molecules that support cell growth and survival (53). In addition

to the above effects, other studies have pointed to the role of L-

arginine in glycolytic function, without altering mitochondrial

biogenesis or the function of activated T cells (54). Consistent

with the effects of L-arginine in T cells, arginase-1 is closely

related to aerobic glycolysis in IL-33-stimulated ILC2s (44). The

inhibition of arginase-1 enzymatic activity does not affect

OXPHOS but markedly reduces the maximal glycolytic

capacity, thereby affecting proliferation (44). These studies

demonstrate an essential role for arginase-1 enzymatic activity

in IL-33-induced ILC2 proliferation.

The metabolic sensor PPARg is selectively expressed in ILC2s,
and a PPARg deficiency intrinsically impairs ILC2 function (55,

56). The activation of ILC2 by IL-33 leads to the increased

expression of PPARg and, in turn, PPARg upregulates ST2

expression on ILC2s (55, 56), suggesting that there is a positive

feedback loop between PPARg and IL-33/ST2 signaling in the

regulation of ILC2 activation. PPARg has a crucial role in various

aspects of IL-33-mediated ILC2 proliferation and function. First,

the pharmacologic inhibition or genetic deletion of PPARg in

ILC2s significantly impairs IL-33-induced mitochondrial fitness,

which subsequently results in reductions in IL-13 and IL-5

secretion (57). Second, the pharmacological inhibition of PPARg
leads to decreased expression of CD36, which transports

particular lipids into ILC2s for conversion into PPARg ligands

and facilitates fatty acid uptake (55). Third, the inhibition or

absence of PPARg also reduces glucose uptake (55), a likely

consequence of the modulation by PPARg-mediated glucose

transporter expression (58). Of note, the expression of Pparg

can be controlled by the availability of glucose, particularly via the

nutrient sensor mTOR in ILC2s (23). Thus, IL-33-activated ILC2s

depend on PPARg, which controls glucose and fatty

acid metabolism.

Collectively, these studies indicate that IL-33/ST2 signaling

can regulate various metabolic regulators that adapt to intrinsic

metabolic demands of ILC2s. By the regulation of metabolic

pathways, IL-33-treated ILC2s promote airway hyperreactivity

and lung inflammation (47, 49, 59) and drive pro-tumorigenic

immunity (57). These studies provide a foundation for further

investigations of strategies to modify ILC2 metabolism for

disease treatment.
Frontiers in Immunology 05
Regulation of Th2 cell metabolism
by IL-33

Like ILC2s, Th2 cells constitutively express high levels of

ST2 and respond directly to IL-33, thereby producing Th2-

related cytokines IL-5 and IL-13 and effectively inducing type 2

immunity (60). With activation via IL-33, Th2 cells exhibit a

high spare respiratory capacity and high extracellular

acidification rate, although both rates are lower than those

observed in ILC2s (44). It is not clear whether these findings

reflect fundamental differences between the metabolic pathways

in ILC2s and Th2 cells or differences in the intensity or duration

of type 2 immunity. Nevertheless, Th2 cells share the same

PPARg expression patterns as those in ILC2s (61, 62), and this

expression is critical for ST2 expression in Th2 cells (62). In

these contexts, IL-33-activated Th2 cells promote type 2

inflammatory responses in allergic airway inflammation and

anti-infection responses (61, 62). Furthermore, consistent with

IL-33 in ILC2s, IL-33-induced IL-5 and IL-13 production by Th2

cells also depends on mTOR activation (33). Altogether, Th2

cells and ILC2s, as important effector cells and sources of type 2

cytokines during the inflammatory process, have shared

metabolic pathways and metabolic profiles in response to IL-

33 stimulation. However, our understanding of the roles of IL-33

in Th2 cell metabolism during type 2 immunity remains at an

early stage, and further studies are needed.
Regulation of macrophage metabolism
by IL-33

Macrophages are important components of the innate system

and have unique tissue-specific functions (63). Depending on the

developmental origin, location, and microenvironmental cues,

macrophages exhibit extensive phenotypic and functional

plasticity with a wide range of roles in homeostatic and

pathological conditions (64). Despite the high diversity in these

populations, it is important to note that some data related to IL-33

are contextualized within the classical M1-M2 macrophage

polarization system (64–67). Studies have revealed that IL-33

can contribute to macrophage polarization and metabolic

processes in both pro-M1 and pro-M2 settings (65–67). In the

pro-M1 setting stimulated with LPS, IL-33 overexpression

promotes glycolysis and decreases mitochondrial function (68),

consistent with the fact that M1macrophages preferentially utilize

aerobic glycolysis (69). Accordingly, an IL-33/ST2 signaling

deficiency increases the number and activity of mitochondria in

macrophages; this can be attributed to high expression levels of

Ppargc1a, which encodes PGC-1a, a master regulator of

mitochondrial biogenesis (68). In this context, St2-deficient

macrophages have decreased Il1a, Il1b, Nos2, and Ifng

expression as well as IL-1a, IL-1b, and IFNg production (68).

M2macrophages, which are induced by stimulation with IL-4 and
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IL-13, exhibited the marked upregulation of fatty acid oxidation

(FAO) and OXPHOS (70). A similar metabolic process occurs in

IL-33-activated macrophages under the pro-M2 setting. IL-33

overexpression decreases glycolysis but increases OXPHOS,

accompanied by increased M2 marker gene expression (71).

This metabolic shift is due to increased mitochondria and

consequently decreased mitochondrial autophagy, which is

associated with IL-33-mediated mTOR activity (71). These

opposing results led to the hypothesis that IL-33 contributes

to metabolic divergence among macrophage lineages in

cooperation with other signaling factors. Of note, since these

results stem from studies of extremely polarized macrophages

generated in vitro under a defined inflammatory condition, the

simplification of the M1/M2 paradigm makes it difficult to

clearly determine how IL-33 drives the metabolic process in the

specific microenvironmental niche.

Recent studies with different animal models have revealed

the metabolic control of IL-33/ST2 signaling in tissue-resident

macrophages with tissue-specific transcriptional signatures and

functions (72, 73). IL-33 alone can directly poise macrophages

for differentiation toward a ‘tissue-reparative’ and M2-like state,

which promotes muscle regeneration (72) and protects against

chronic rejection in cardiac transplants (73). In these contexts,

IL-33 controls rapid metabolic rewiring during macrophage

development (73). At early time points following IL-33

stimulation (6 h), IL-33 does not directly affect the

extracellular acidification rate and does not change the basal

or maximal respiratory capacity in macrophages (72). At later

time points following IL-33 stimulation (15–18 h), IL-33-

activated macrophages mainly use OXPHOS to increase basal

respiration and ATP production; they metabolize fatty acids and

limit anaerobic glycolysis (73). This phenomenon is consistent

with increased concentrations of carnitine (73), which is

required for fatty acid transport into the mitochondria (73,

74), as well as increased concentrations of aspartate, malate,

and fumarate (73), which are components of the aspartate-

argininosuccinate shunt (AASS) and coordinate with the

tricarboxylic acid cycle (TCA) cycle (75–77). These results

provide insight into metabolic kinetics in macrophages

following IL-33 induction. This could also be explained by the

observation that IL-33 sequentially triggers a molecular

transition from a pro-inflammatory to a pro-resolving M2-like

macrophage phenotype in response to tissue damage-related

signals (72). Mechanistically, uncoupling protein 2 (UCP2)-

mediated uncoupling of the respiratory chain has a critical role

in the response to the IL-33-induced metabolic profile in

macrophages, which blocks the generation of ROS and allows

sustained mitochondrial respiration and an intact TCA cycle

(72). Of particular interest is the IL-33-dependent increase in the

mitochondria-derived metabolite itaconate, which activates the

transcription factor Nrf2, subsequently triggering GATA3-

mediated M2-like macrophage polarization (72). These results

establish the important role of an immune-metabolic axis during
Frontiers in Immunology 06
the transition from pro-inflammatory monocytes to anti-

inflammatory macrophages upon tissue injury (Figure 3).

These findings provide a brief view of the diverse metabolic

processes of macrophages that are regulated by IL-33 under

different environmental cues, conferring functional specialization.

An understanding of the metabolic state of IL-33-activated

macrophages is required to fully understand the complexity of

the interplay with the specific immune microenvironment and with

the evolving process of cellular differentiation.
Regulation of Treg cell metabolism
by IL-33

Regulatory T cells (Treg cells) expressing the Foxp3

transcription factor ensure immune homeostasis by the control

of tissue- and inflammation-specific responses (78). In the

context of autoimmunity and inflammation, extracellular IL-33

binds to ST2 directly to promote local expansion, stability, and

the conversion of CD4+Foxp3- T cells to Foxp3-expressing

inducible Treg cells in non-lymphoid tissues (adipose tissue,

skeletal muscle, and colon) (79–81). Interestingly, this

phenomenon is not observed in Treg cells within the tumor

microenvironment (27); intratumoral Treg cells need

intranuclear IL-33 to shape their transcriptional landscape and

maintain their suppressive properties (27). In this regard, IL-33

has the ability to shape the plasticity and heterogeneity of Treg

cell compartments by distinct anatomic locations and

inflammatory environments.

Consequently, IL-33-activated Treg cells have unique

metabolic profiles that confer location-specific properties by

activating metabolic transcriptional factors and pathways. In

muscle Treg cells, extracellular IL-33 induces the expression of

genes typically associated with metabolism, such as Pfkfb1 (which

encodes 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1),

Adh1 (which encodes alcohol dehydrogenase), Fbp2 (which

encodes fructose-bisphosphatase 2), and Vldlr (which encodes

very low-density lipoprotein receptor) (80), and this may reflect

metabolic responses induced by the IL-33-ST2 axis. In this study,

IL-33-expressing Treg cells accumulate in injured muscles of old

mice and promote muscle regeneration (80). In adipose tissue,

Treg cells are tightly associated with improvements in metabolic

parameters in obese mice and uniquely express PPARg, which
induces lipid metabolism (79). This is consistent with the fact that

Treg cells favor FAO-driven OXPHOS, which maintains the

suppressive phenotype and is further promoted by the

expression of Foxp3 (82–84). However, in this context, IL-33

acts as an accessory to Treg cell metabolism, rather a driving force;

TCR signaling (and not IL-33) directly upregulates Pparg (79). At

this point, the molecular mechanism underlying the effects of

extracellular IL-33 on Treg cell metabolism are unknown;

however, it is interesting to speculate that PI3K-Akt-mTORC1

signaling may be involved. IL-33-mediated Treg cell
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differentiation requires the adaptor protein MyD88, which is a

putative downstream adaptor protein in Toll-like receptor (TLR)

signaling (85). TLR signaling increases glycolysis and the

expression of Glut1 in Treg cells via PI3K-Akt-mTORC1

signaling and impairs the Treg cell suppressive capacity (83).

These findings are at odds with the fact that mTOR can

coordinate transcriptional programs and mitochondrial

metabolism in activated Treg cells to promote immune

tolerance and tissue homeostasis (86). This discrepancy may

point to the intriguing possibility that the effects of IL-33 on

Treg cell functions may be determined by the extent to which IL-

33 interacts with these metabolic pathways.

In intratumoral Treg cells under a nutrient deficiency and

sufficient immunosuppressive metabolites, intranuclear IL-33

can employ a cell-intrinsic role to shape the function and

metabolic profile of Treg cells to promote tumor development

(27). IL-33-deficient Treg cells exhibit an increased abundance

of phosphorylated mTOR, S6, and eukaryotic translation

initiation factor 4E-binding protein 1 (4E-BP1) (27). mTOR

appears to antagonize Treg cell differentiation and expansion in

vitro and suppressive activity in vivo (87), consistent with a

‘fragile’ phenotype of intratumoral Treg cells in the absence of

IL-33 (27). Moreover, the repression of NF-kB by intranuclear

IL-33 may also contribute to the metabolic profile of

intratumoral Treg cells (27), as NF-kB inhibition induces the

utilization of glycolysis and impairs mitochondrial respiration

(88). IL-33 is therefore related to the diversity of metabolic

signaling that can be exploited for the phenotypic and functional

specialization of Treg cells; however, more studies are needed to

fully characterize metabolism in IL-33-expressing Treg cells. For

example, it is not clear how these signaling pathways are

intertwined with extracellular nutrients and metabolites and
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how they shape cell-intrinsic metabolic programming and

ultimately determine the fate of IL-33-expressing Treg cells.
Regulation of CD8+T cell metabolism
by IL-33

Cytotoxic CD8+T cells help to eliminate intracellular

infections and kill malignant cells, while memory CD8+ T cells

provide long-term protective immunity from reinfection (89).

The differentiation of naïve CD8+ T cells into effector and

memory T cell populations involves profound and unique

metabolic reprogramming (89). As virus-specific CD8+T cells

express the IL-33 receptor, IL-33 enhances the conventional

memory CD8+T cell response and promotes their expansion

following virus infection via the IL-33-ST2 axis (90, 91).

In IL-33-activated CD8+T cells, by the control of mTORC1

activity, IL-33 increases glucose uptake and lactate production,

leading to vigorous effector responses to LCMV infection (22).

This metabolic process is associated with the upregulation of

Glut1 expression, glycolytic enzymes, and key regulators,

including Myc and Hif1a (22). In these cells, IL-33 fails to

directly alter mitochondrial functions, as evidenced by the lack

of an increase in mitochondrial membrane potential by IL-33

treatment (22). Given the highly proliferative nature of IL-33-

expressing CD8+ T cells, it may not be surprising that they

promote glycolysis in this context, which highlights the rapid

production of energy that is necessary to fuel proliferation

and differentiation.

It seems paradoxical that a recent report by Cupovic et al.

revealed a dominant role of IL-33 in modulating mitochondrial

morphology and the maintenance of metabolic fitness in inflating
FIGURE 3

Regulation of macrophage metabolism by IL-33. In the pro-M1 setting, IL-33 drives glycolysis and decreases mitochondrial function; in the pro-
M2 setting, IL-33 decreases glycolysis but increases OXPHOS. IL-33 alone directs macrophages toward a M2-like state, which mainly use
OXPHOS to increase basal respiration and ATP production; in this context, UCP2-mediated uncoupling of the respiratory chain plays a critical
role, which blocks the generation of ROS and allows sustained mitochondrial respiration and an intact TCA cycle. OXPHOS, oxidative
phosphorylation; TCA, tricarboxylic acid; UCP2, uncoupling protein 2.
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memory CD8+T cells (92); this study revealed that adenovirus-

based vaccination confers a protective effect and contributes to the

metabolic fitness of inflating memory CD8+T cells in an IL-33-

dependent manner (92). Mechanistically, inflating memory CD8+ T

cells deficient in IL-33 lose the typical inflating-memory phenotype

and function and show marked losses in mitochondrial

maintenance and activity, with reductions in both mitochondrial

membrane potential and the expression of electron transport chain

components, including Uqcrc2 (Cytochrome b-c1 complex subunit

2), Sdha (Succinate dehydrogenase complex subunit A), and Cox

4I1 (Cytochrome c oxidase subunit 4 isoform 1) (92). In agreement

with the energy requirement of memory CD8+T cell differentiation,

mitochondrial function impacts ETC complex formation and thus

the ability of memory CD8+ T cells to use long-chain fatty acid b-
oxidation to sustain a high spare respiratory capacity (93, 94). As

discussed above, IL-33 has been implicated in glycolysis in the

activation of CD8+T cells and, of note, is also important in

maintaining mitochondrial dynamics during the differentiation of

memory CD8+T cells following virus infection.
Regulation of NK cell metabolism
by IL-33

Natural killer (NK) cells are important innate lymphocytes

with rapid cytolytic activity in infectious diseases and cancer

(95). Resting NK cells have relatively low basal metabolic rates,

while activated NK cells have elevated glycolysis and OXPHOS

rates, and these processes are closely coupled with their effector

functions (96). Although IL-33 has the ability to promote NK

cell proliferation and activation (97), the metabolic functions of

IL-33 in NK cells are not well defined. IL-33 is not considered a

major metabolic regulator in NK cells. IL-33 can induce the

expression of transferrin receptor CD71 and the L-amino acid

transporter CD98 (SLC3A2) in NK cells via MyD88 signaling

(98). This effect is partly partially reliant on IL-12 (98), which

can increase the expression of ST2, rendering NK cells sensitive

to IL-33 activity (99–101). It is also worth noting that IL-33 has

an indirectly deleterious effect on NK cell function by

metabolically modulating the tumor microenvironment (102).

The effect of IL-33 is dependent on ILC2-driven lung

eosinophilia, which restricts extracellular glucose availability

and impairs the glycolysis-dependent effector functions of lung

NK cells (102). However, extensive work is needed because the

potential for direct effects of IL-33 on the NK cell metabolic

profile has not been determined.
Regulation of mast cell metabolism
by IL-33

Mast cells can function as effector and immunoregulatory

cells in IgE-associated immune responses (103). IL-33 activates
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ERK phosphorylation and NF-kB-mediated transcription,

leading to an increase in the rates of glycolysis and OXPHOS

in mast cells (104). Interestingly, it is glycolysis and not

OXPHOS that directly enhances mast cell production of IL-6

and TNF by modulating ATP production (104). Glycolytic

inhibitors suppress IL-33-induced mast cell function,

evidenced by decreased neutrophil recruitment and cytokine

production in an animal model of peritonitis, which highlights

the more critical role of the rapid production of energy in initial

mast cell activation over OXPHOS (104). Of note, this effect can

also be inhibited by activating AMPK, an important metabolic

regulator that induces a switch from anabolic to catabolic

pathways, indicating an antagonistic metabolic effect between

IL-33 and AMPK (104). Increased lactic acid is also a key feature

of IL-33-activated mast cells (104). By contrast, lactic acid can

selectively alter IL-33 signaling, including suppressed TAK1,

JNK, ERK, and NF-kB phosphorylation, accompanied by

increased HIF-1a expression, contributing to the suppression

of IL-33-induced inflammatory cytokine and chemokine

secretion (105). Collectively, these data suggest that a feedback

loop involving the IL-33-glycolysis-lactic acid axis regulates the

activation of mast cells.
Regulation of eosinophil metabolism
by IL-33

Eosinophils have multiple functions in the innate immune

system, with display key effector functions in allergic diseases,

helminth infections, and cancers (106, 107). IL-33 signaling via

ST2 is not only crucial for eosinophil activation and accumulation/

migration but also promotes the formation of an active

degranulating synapse for eosinophil effector functions (107).

With respect to metabolism, eosinophils are associated with IL-

33-driven energy expenditure and browningofwhite adipose tissue

in obesity (108). A lipidomic analysis of inflamed lung tissues has

further identified a role of 12/15-lipoxygenase-derived lipid

mediators in IL-33-induced eosinophilic airway inflammation, as

demonstrated by the prevention of inflammation after

administration of 14(S)-HDoHE, a major product of 12/15-

lipoxygenase (109). Importantly, a transcriptome analysis of

eosinophils has revealed that the IL-33-dependent secretion of

IL-4 and IL-13 is likely associated with the increased expression

hypoxia- and glycolysis-related genes, which are increased by the

surface expression of sialic acid-binding immunoglobulin-like

lectin F (Siglec-F), a lineage-specific marker of eosinophils in

mice (110). These upregulated genes include hypoxia-associated

genes (Fam162a, Egln2, Ankrd37, Hilpda, Ftl1, and Prdx1), likely

hypoxia-induced metabolism/glycolysis-associated genes (Pfkl,

Tpi1, Pgk1, and Pgm2), and genes encoding the hypoxia-induced,

proinflammatory cytokine migration inhibitory factor (110).

However, the metabolic features (e.g., metabolic profiles and key

metabolic parameters, such as glycolysis and OXPHOS) of
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comprehensively examined.
Epigenetic modifications in immune
cells by IL-33

Herein, we use the term ‘epigenetic modification’ to refer to

mechanisms that can alter gene expression in the context of the

same DNA sequence (111). Epigenetic regulation provides an

explanation for molecular rewiring in cytokine-polarized cells,

justifying the need to better understand epigenetic changes in

immune cells in response to IL-33. The mechanisms by which

IL-33 is coupled to epigenetic programming in immune cells are

not well understand.

Recently, several studies have revealed epigenetic modifications

following by IL-33 stimulation in immune cells. In MDSCs, IL-33

induceshistoneH3Lys-4 trimethylation (H3K4me3)andhistoneH3

Lys-14 acetylation (H3K14ac) but decreases the levels of H3K18ac

(28). IL-33doesnothaveamarkedeffectonH3K9acorH3K27me3, a

stablehistonemarkassociatedwithgene repression (28). InTh2cells,

IL-33 increases H3K4 trimethylation and H3K9 acetylation and

decreases H3K27 trimethylation at the Il5 locus, enhancing IL-5

production (112). Tissue-resident Treg cells expressing ST2 have

distinct methylome profiles, with 11,000 differentially methylated

regions associatedwith about 4,000 genes (113), suggesting that there

is an associationbetween epigenetic profiles and characteristics in IL-

33-related immune cells. However, the mechanisms dictating

epigenetic modifications induced by IL-33 are far from

complete (Figure 4).

One consequence of the metabolic changes in response to IL-33

stimulation is an alteration in the production of metabolites (44, 48).

Some metabolites can be used as substrates for epigenetic

modifications, such as acetyl-CoA for histone acetylation and a-
ketoglutarate for demethylases (111). The existence of metabolite–

epigenetic links may help to explain the role of IL-33 in epigenetic

modifications. This hypothesis is supported by results obtained for

IL-33-stimulated ILC2s. As mentioned above, IL-33 increases the

glycolytic capacity in ILC2s (44). Via the PKM2-pyruvate

checkpoint, glycolysis leads to a decrease in H3K4me3

modification, a transcriptional permissive modification, at Il1rl1

(ST2) (46), resulting in a negative feedback loop controlling IL-33-

mediated ILC2maturation. In addition to glycolysis, IL-33-mediated

STAT3 activity, which increases the levels of SAM, a major methyl

donorduringDNAorhistonemethylation, candramatically increase

H3K4me3 levels at Il5and Il13 (48).This is a canonical exampleof IL-

33-regulated metabolites acting in concert to regulate epigenetic

marks in immune cells.

Furthermore, several studies have identified transcription

factors, such as GATA3 and T-bet, as a possible initiator of

epigenetic remodeling in immune cells (114–116), suggesting that

these transcription factors may cooperate in IL-33-stimulated

epigenetic modification. Supporting this hypothesis, IL-33-
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induced GATA3 phosphorylation has been described in Treg

cells and Th2 cells (117); GATA3 activity leads to histone H3K4

methylation and H3K9 acetylation at Th2 cytokine genes, such as

Il4, Il5, and Il13 (115, 118). Of interest, it has recently been shown

that IL-33 induces ERK1/2 kinases to increase chromatin

accessibility for GATA3 motifs during the development of red

pulp macrophages (119). In addition to GATA3, IL-33 promotes

the Th1 lineage-specifying transcription factor T-bet (120, 121),

which induces epigenetic changes through physical interactions

with epigenetic modifying complexes, particularly the H3K27-

demethylase JMJD3 and the H3K4-methyltransferase Set7/9

complex, and target genes (116, 122, 123).

Finally, intracellular IL-33, acting as a chromatin-associated

nuclear factor, possesses transcriptional repressor properties (1).

Consistent with this, intracellular IL-33 can bind to NF-kB p65 to

dampen NF-kB-stimulated gene transcription (3); however, it is

not clear whether this explains the ability of intracellular IL-33 to

modulate epigenetic profiles in immune cells. It is interesting to

note that IL-33-deficient Treg cells, which attenuate suppressive

properties in an ST2-independent fashion, exhibit epigenetic

reprogramming with increased chromatin accessibility at the Ifng

locus in an NF-kB–T-bet-dependent manner (27).

As discussed above, both extracellular and intracellular IL-33

participate in epigenetic modifications in an ST2-depednent or

independent manner and are important in immune cell

responses to IL-33, although formal proof of the underlying

mechanism is lacking.
Perspectives

Over the past decade, our understanding of cellular responses to

IL-33 has expanded substantially beyond its induction of the core

MyD88/MAPK/NF‐kBsignalingpathways aswell as its intrinsic role
(i.e., chromatin-associated transcriptional repressor properties). We

are now realizing that IL-33 can induce a complex cell state by

epigenetic and metabolic mechanisms in immune cells. This is of

note, given the recent interest in the link between epigenetic

reprogramming and immune cell metabolism. However, as a

relatively new area of IL-33 biology, many unresolved issues remain.

It is now clear that each immune cell subset has distinct

metabolic properties that are in accord with functional demands

in the context of specific challenges. Briefly, aerobic glycolysis

drives rapid ATP production for cell proliferation and

activation, whereas OXPHOS is required for energy-intensive

processes in regulatory and memory properties (124). These

metabolic pathways are coordinately regulated by metabolic

checkpoints, including mTOR, AMPK, and PI3K–AKT signals,

which work closely to integrate extracellular and intracellular

signals (125). Although IL-33 activates the same metabolic

regulators, it induces different metabolic phenotypes in

different immune cell subsets. The hypothesis predicts that

additional metabolic components mediated by IL-33 are
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necessary to induce metabolic reprogramming. Thus, it will be

important to determine whether and by what mechanism IL-33

co-opts metabolic checkpoints and contributes to metabolic

activity in immune cells.

With regard to IL-33-mediated epigenetic modification, the

IL-33-related chromatin landscape and changes in epigenetic

regulatory enzymes have only been determined in certain

immune cells. However, the causal relationship between

epigenetic modifications and IL-33 has not been established.

Given that various metabolites are known to modulate

epigenetic modifiers, a better understanding is now needed

regarding the IL-33-mediated interdependence between

metabolic reprogramming and epigenetic modification. In

other words, it is very challenging to unambiguously

demonstrate the epigenetic status of IL-33-stimulated immune

cells and how this can be manipulated by IL-33 according to

metabolic and functional demands.
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FIGURE 4

Epigenetic modification in immune cells by IL-33. Epigenetic changes have been described in IL-33-activated immune cells. (A) One
consequence of the metabolic changes induced by IL-33 stimulation is an alteration in the production of intermediate metabolites, some of
which influence transcriptional activity by the epigenetic regulation of DNA or histones. (B) IL-33 activates transcription factors, such as GATA3
and T-bet, which can induce epigenetic changes at target loci. (C) Intracellular IL-33, as a chromatin-associated nuclear factor, can bind to NF-
kB p65 to dampen NF-kB-stimulated gene transcription.
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