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F-box protein 5 (FBXO5), an essential subunit of the ubiquitin protein ligase complex, is
increasingly recognized to exhibit important biological effects in regulating tumor occurrence
and progression. The present research was intended to systematically investigate the latent
roles of FBXO5 in prognosis and immunological function across cancers. Pan-cancer
analyses of FBXO5 were performed based upon publicly available online databases, mainly
including the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), UCSC
Xena, cBioPortal, and ImmuCellAl, revealing the possible relationships between FBXO5 and
prognosis, DNA methylation, tumor microenvironment (TME), infiltration of immune cells,
immune-related genes, immune checkpoints, tumor mutation burden (TMB), and
microsatellite instability (MSI). The results suggested that FBXO5 was expressed at a high
level in numerous tumor cell lines with significant upregulation in most cancers as opposed
to normal tissues. Of note, elevated expression of FBXO5 was significantly related to an
unfavorable prognosis in many cancer types. Furthermore, DNA methylation and TME were
confirmed to display evident correlation with the expression of FBXO5 in several
malignancies. Moreover, FBXO5 expression was remarkably positively correlated with the
levels of infiltrating Treg cells and Tcm cells in most tumors, but negatively correlated with
tumor-infilttrating CD8" T cells, NK/NKT cells, and Th2 cells. Meanwhile, FBXO5 was
demonstrated to be co-expressed with the genes encoding immune activating and
suppressive factors, chemokines, chemokine receptors, and major histocompatibility
complex (MHC). Immune checkpoints, TMB, and MSI were also overtly associated with
FBXO5 dysregulation among diverse kinds of cancers. Additionally, the enrichment
analyses showed close relationships between FBXO5 expression and the processes
related to cell cycle and immune inflammatory response. These findings provided a
detailed comprehension of the oncogenic function of FBXO5. Because of its crucial roles
in cancer immunity and tumorigenesis, FBXO5 may serve as a novel prognostic indicator
and immunotherapeutic target for various malignancies.
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INTRODUCTION

Malignant tumor poses a threat to global public health as a
leading cause of human death and the main hazard factor
reducing people’s quality of life, and so far, there is still a lack
of absolutely effective treatment for cancer (1). Although early
screening and surgery make heavy contributions to decreasing
the incidence and mortality of malignancies, the prognosis and
survival rate of most cancers remain unsatisfactory due to their
characteristics of metastasis, recurrence, and heterogeneity (2).
Tumor microenvironment (TME), containing various immune
cells, stromal cells, and extracellular matrix, exhibits pivotal
effects on tumor invasion and metastasis, cancer immunity,
and clinical outcomes (3, 4). In recent years, immunotherapy
has gradually become a prominent strategy for tumor treatment,
especially immune checkpoint blockade therapy. Immune
checkpoint inhibitors, such as CTLA-4-, PD-1-, and PD-LI-
blocking antibodies, have been approved for the standard
therapy in different malignancies (5). Nevertheless, the
objective response rate remains minimal in many cancer
patients receiving the same therapy (5, 6). Therefore, it is full
of prospects to discover novel immunotherapeutic targets by
analyzing gene expression in pan-cancer and exploring its
correlations with clinical prognosis and tumor immunity.
F-box protein 5 (FBXO5), also referred to as early mitotic
inhibitor-1 (EMI1), encodes a member of the F-box protein
family and functions as an essential cell cycle regulating gene,
which modulates the progression to S-phase and mitosis via the
mechanism of blocking the anaphase-promoting complex (APC)
(7, 8). According to previous reports, overexpression of FBXO5
produces chromosome instability and mitotic disorder, possibly
resulting in the tumorigenesis in ovarian clear cell carcinoma (9),
esophageal squamous cell carcinoma (10), breast carcinoma (11),
and hepatocellular carcinoma (12). Existing evidence has suggested
that FBXO5 affects tumor prognosis and clinical phenotypes.
FBXOS5 accumulation is tightly related to mitotic abnormalities
including centrosome overduplication and aberrant spindle
formation, which cause the emergence of tetraploidy in ovarian
clear cell carcinoma (9). Moreover, elevated expression of FBXO5 is
significantly correlated with an unfavorable prognosis among
patients suffering from esophageal squamous cell carcinoma (10)
and hepatocellular carcinoma (12). In addition, FBXO5 exhibits a

Abbreviations: ACC, adrenocortical carcinoma; BLCA, bladder urothelial
carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell
carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma;
COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell
lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma; LGG, brain lower
grade glioma; HNSC, head and neck squamous cell carcinoma; KICH, kidney
chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal
papillary cell carcinoma; LAML, acute myeloid leukemia; LIHC, liver
hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous
cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma;
PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and
paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum
adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD,
stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid
carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma;
UCS, uterine carcinosarcoma; UVM, uveal melanoma.

pro-proliferative effect in breast cancer tissues through PI3K/Akt
signaling pathway, while PI3K inhibitor can reduce FBXO5
expression and arrest cell growth (11). Based upon these findings,
FBXO5 may perform an integral function in cell cycle abnormalities
and the disruption of genomic stability, both of which can enhance
tumor growth (13). At present, specific studies on FBXO5 in tumors
appear to be restricted to certain human cancers, but lack of
systematic pan-cancer investigation (9-12). In consequence, it is
urgent to elucidate the significance and role of FBXO5 expression
and alteration across different cancers.

In this research, we attempted to conduct a thorough data-
mining analysis using multiple public databases to assess the
expression and alteration of FBXO5 and visualize the prognostic
profiles of FBXO5 in pan-cancer, as well as analyze its correlations
with tumor-infiltrating immune cells along with associated
immune indicators. Figure 1 illustrated the design flow and
implementing approaches of this study. This work integrally
revealed that FBXO5 influenced the prognosis of cancer patients.
Upregulation of FBXO5 expression was detrimental to survival in
most cancers, with inconsistent findings in only a few types of
tumors. Furthermore, the potential biological effects were likely to
be linked with DNA methylation, tumor microenvironment, and
immune microenvironment. In summary, our findings proposed a
comprehensive view of the oncogenic role of FBXO5 in multiple
kinds of cancers and suggested that FBXO5 might function as a
viable indicator for predicting clinical prognosis and immune
therapy response in cancer patients.

MATERIAL AND METHODS

Collection of Pan-Cancer Data and
Analysis of Gene Differential Expression
FBXO5 gene expression pattern and clinical data in pan-cancer
and corresponding normal tissues obtained from the Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov) and
Genotype-Tissue Expression (GTEx, https://www.gtexportal.org)
were analyzed using UCSC Xena (https://xena.ucsc.edu), an online
tool for exploring gene expression and processing clinical and
phenotypic information. The Cancer Cell Line Encyclopedia
(CCLE, https://portals.broadinstitute.org/ccle) database was
employed for the purpose of acquiring tumor cell line-related
data. Differential expression of FBXO5 in 33 distinct kinds of
cancers in contrast with normal samples was explored by means of
merging normal tissue data accessed from both the GTEx and
TCGA databases. R language software and publicly available R-
package “ggplot2” were applied to evaluate the differential
expression levels by drawing box plots. All expression data
preprocessing and normalization were conducted by log,
(transcripts per million (TPM)+0.001) or log,(TPM+1)
transformation. Full names and corresponding abbreviations of
the 33 types of tumors were listed in the section of Abbreviations.

Survival and Prognostic Analysis of FBXO5
The survival information and clinical phenotype data concerning
each sample were acquired from TCGA database. A total of four
survival prognosis indexes, namely overall survival (OS), disease-
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FIGURE 1 | Flow chart of systematic pan-cancer analysis of FBXO5.

specific survival (DSS), progression-free interval (PFI), and
disease-free interval (DFI), were used to investigate the
correlation of FBXO5 expression with the prognosis of cancer
patients. The R-packages “survival” and “forestplot” were
employed to conduct a univariate Cox analysis. The median
levels of FBXO5 expression were recognized as the expression
threshold for classifying the low- and high-expression subgroups.
Subsequently, the curves of Kaplan-Meier survival were
established utilizing the R-packages “survminer” and “survival”.
The log-rank test was employed to determine statistically
significant differences.

Immunohistochemistry Analysis of FBXO5

The expression pattern of FBXO5 at the protein levels was
examined by means of the Human Protein Atlas (HPA, http://
www.proteinatlas.org) database containing the protein data of
tumor and normal clinical samples. Immunohistochemistry
(IHC) photomicrographs of FBXO5 in different types of tumor

Systemic pan-cancer analysis
on prognostic and immunological role of FBXO5

UCSC Xenalmmus:zi:A!
g COLEE-  (N) TIMER2.0
==== cBioPortal g Cancer Genome Atas
Genotype-Tissue Expression The Human Protein Atlas
31 normal tissues

30 cancer cell lines

33 cancer tissues
eUnpaired/paired analysis
eSubgroup analysis (age, stage)
0OS, DSS, DFl, PFI

eForest plot of hazard ratio
eKaplan-Meier analysis

eMethylation correlation analysis
eKaplan-Meier analysis

(OS, DSS, DFlI, PFI)
o TME-related terms
eStromalScore
elmmuneScore
oESTIMATEScore

elmmune cell infiltration

elmmune-related genes

elmmune checkpoints

e Tumor mutation burden
eMicrosatellite instability
oDNA mismatch repair

Enrichment analysis
oGSEA_GO/KEGG
oGSVA

o|C50 correlation analysis

tissues and corresponding normal control were collected from
the HPA. Specifically, the immunohistochemical results based on
the antibody against FBXO5 (Cat No. HPA029048; Atlas
Antibodies, Sigma-Aldrich) in various normal tissues were
downloaded from the tissue section of HPA database, while
these data in different tumor tissues were obtained from the
pathology section. All sample data are independent of each other.
FBXOS5 protein staining intensity in cancer tissues was quantified
as fold of their respective normal control using Image-Pro Plus
6.0 (Media Cybernetics, USA). According to the statistical
differences of these data generated from unpaired two-tailed
Student’s t-test, representative FBXO5 protein staining pictures
were displayed.

DNA Methylation Analysis of FBXO5

To assess the association between the expression of FBXO5 and
DNA methylation in each cancer type involved in this study, we
analyzed HM450 methylation data acquired from the cBioPortal
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database (http://www.cbioportal.org). The correlation between
the levels of FBXO5 expression and gene promoter methylation
levels was examined and visualized through the R-package
“ggpubr” for each malignancy studied. Further, the correlation
analysis between FBXOS5 methylation and tumor prognostic
value was also evaluated according to the determination of OS,
DSS, DFI, and PFI through applying the survival R-packages to
construct the Kaplan-Meier curves.

Relevance amongst FBXO5 Expression
and Tumor Microenvironment

Numerous research reports have demonstrated that tumor
microenvironment (TME) performs an integral function in
multidrug resistance and tumorigenesis and metastasis (3, 4).
To establish the connection between TME and FBXO5
expression, a previously reported method developed by Zeng
et al. was applied to estimate the related effects of FBXO5 within
TME of 33 cancers (14). Visualization of the associations
between FBXOS5 expression and TME indicators such as
stromal- and immune-relevant signatures was performed in a
heatmap using R-based packages.

In addition, ImmuneScore, StromalScore, and ESTIMATEScore
for the 33 types of cancers studied were calculated by the algorithm
of ESTIMATE (Estimation of Stromal and Immune Cells in
Malignant Tumor Tissues Using Expression Data). Increased
scores computed in ImmuneScore or StromalScore were deemed
to be favorably correlated with the elevated ratio of immunity or
stroma, which signified a greater proportion of the corresponding
components in TME. Besides, ESTIMATEScore was described as
the sum of ImmuneScore and StromalScore, which denoted the
combined percentage of both constituents in TME. In this
assessment, ImmuneScore and StromalScore of various tumors
were subjected to estimation utilizing the R-package “estimate”
and Pearson’s correlation test.

Immune Infiltration Analysis of FBXO5

A total of three methods were employed for the purpose of
investigating the abundance of infiltrating immune cells in
diverse cancers, such as neutrophils, dendritic cells (DCs), CD4"
and CD8" T cells, natural killer (NK) cells, mast cells, macrophages,
monocytes, and B cells. The first method investigated the
associations between the levels of FBXO5 expression and the
extent of 24 infiltrating immune cells in 32 distinct cancers
except for LAML without immune infiltration data by using the
R-packages “ggplot2”, “ggpubr’, and “ggExtra” and the tool
CIBERSORT to estimate immune infiltration data from the
ImmuCellAI database (http://bioinfo.life.hust.edu.cn/
ImmuCellAI#!/). Besides, the TIMER2.0 database (Tumor
Immune Estimation Resource, http://timer.comp-genomics.org/)
was employed as the auxiliary technique in order to assess the
correlations between FBXO5 expression and the levels of tumor-
infiltrating immune cells. The third method involved the use of R-
packages “limma”, “reshape2”, and “RColorBreyer” for the aim of
identifying the relevance between FBXO5 expression and immune-
associated genes, such as immune-activating genes,
immunosuppressive genes, chemokine genes, chemokine-receptor
genes as well as major histocompatibility complex (MHC) genes.

Correlations Between FBXO5

Expression and Immune Checkpoints,
Tumor Mutation Burden, Microsatellite
Instability, and DNA Mismatch Repair

The investigation of relationships between FBXOS5 and the
recognized immune checkpoint genes such as CTLA4, CD274,
TIGIT, PDCDI, and LAG3 was conducted in accordance with
the database of TCGA. Tumor mutation burden (TMB) is a
quantitative biological marker of immune response that reflects
the proportion of somatic mutations present in tumor cells (15).
The somatic mutation data of the 33 tumors involved in this
study were acquired from the UCSC Xena repository (https://
tcga.xenahubs.net) for the calculation of TMB scores using a Perl
script with the correction by dividing based upon the total exon
length. Microsatellite instability (MSI) as a result of DNA
mismatch repair deficiency is related with patient outcomes
(16, 17), and the MSI data were acquired according to a
previously published report (18). Both TMB and MSI are
associated with the effectiveness of immunotherapy across
diverse cancers. The correlation between FBXO5 expression
and TMB or MSI was explored by means of Pearson
correlation coefficient, with these findings displayed in the
form of radar plots. Mismatch repair (MMR) is an intracellular
DNA repair mechanism. Downregulation or functional defects
of MMR genes such as MSH2, MSH6, PMS2, MLH1, and
EPCAM can lead to irreparable DNA replication errors,
resulting in high-frequency somatic mutations and thereby
increasing susceptibility to cancer (19). The correlation
between FBXO5 and MMR gene expression was determined
based upon gene expression profile data from the TCGA cohort
and visualized as a heatmap using the R-packages “reshape2”
and “RColorBrewer”.

FBXO5-Associated Enrichment Analysis

in Pan-Cancer

An investigation into the biological effects of FBXO5 in the
human cancers studied was conducted by means of Gene Set
Enrichment Analysis (GSEA) and Gene Set Variation Analysis
(GSVA). The R-packages “ClusterProfiler”, “limma”, and
“enrichplot” were employed for the enrichment analyses of
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG). GO and KEGG gene sets were obtained from
the GSEA website (https://www.gsea-msigdb.org/gsea/index.jsp).
GSVA gene set was downloaded from the module “hallmark
gene sets” in the Molecular Signatures Database (MSigDB,
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).
Moreover, GSVA scores were measured as the correlations
between 50 well-defined biological processes or states and
FBXO5 expression levels for all tumors.

Drug Resistance Analysis of FBXO5

For exploring the correlation of FBXO5 expression with drug
resistance or sensitivity of tumor cells, the information of various
compounds and the corresponding IC50 values and FBXO5
expression data in cancer cell lines were obtained from the
GDSC2 dataset (Genomics of Drug Sensitivity in Cancer,
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https://www.cancerrxgene.org). IC50 here refers to the half
maximal inhibitory concentration, which represents the
concentration of an inhibitor that is required for 50%
inhibition of tumor cell survival. IC50 reflects the tolerance of
cells to drugs, i.e., the lower the IC50 value, the more sensitive the
cells are to drugs. The correlation between IC50 value of each
compound and the levels of FBXO5 expression in cancer cells
was analyzed using Spearman correlation coefficient and shown
in Table S1.

Statistical Analysis

Statistical data analyses were carried out with the help of R
software (https://www.r-project.org/). Comparison of differences
between two groups was conducted using Student’s t-test or
Wilcoxon rank sum test. One-way analysis of variance
(ANOVA) was used to compare more than two experimental
groups. All survival analyses were performed by applying the
Kaplan-Meier product-limit method with a log-rank test and
Cox proportional hazards regression model. The correlation
between two variables was assessed utilizing Pearson product-
moment correlation coefficient. For all statistical differences, p-
values of less than 0.05, 0.01, 0.001, and 0.0001 were judged to be
statistically significant and presented as “*7, “*”, “°*” and
o respectively. Besides, “ns” indicated no significance.

RESULTS

Differential Expression of FBXO5 Between
Tumor and Normal Samples

The physiologic gene expression profiles of FBXO5 among
various normal tissues were first analyzed and ranked from
low to high, using the GTEx and TCGA data sets (Figure 2A).
FBXO5 exhibited the highest expression level in bone marrow,
but, in general, a majority of other normal samples were found to
exhibit low levels of FBXO5 expression. Next, comparative gene
expression profiles of FBXO5 among different tumor cell lines
that had been obtained from the CCLE database were described
in Figure 2B, which showed that FBXO5 expression levels were
generally higher in up to 30 types of cancer cell lines. Besides,
FBXO5 expression levels in various tumors were assayed by the
TCGA database, and the findings illustrated that from the 33
cancer tissues analyzed, FBXO5 was expressed with the lowest
expression in KICH and with the greatest expression in
TGCT (Figure 2C).

Moreover, differential expression levels of FBXO5 across
tumor and normal samples were computed with the aid of the
TCGA database (Figure 3A). Apart from those tumors with no
available normal tissue data including MESO and UVM,
statistical significance of FBXO5 expression differences between
normal and tumor samples was detected in 27 types of cancers.
Among these, highly expressed FBXO5 was further observed in
24 types of cancers, namely ACC, BLCA, BRCA, CESC, CHOL,
COAD, DLBC, ESCA, GBM, HNSC, KIRC, LGG, LIHC, LUAD,
LUSC, OV, PAAD, READ, SKCM, STAD, TGCT, THYM,
UCEC, and UCS (p-value < 0.001 in the above tumors except
p-value < 0.01 in KIRC). Notably, the fold change of upregulation

of FBXO5 expression levels among tumor tissues was the highest
in GBM compared with the corresponding normal tissues. On
the contrary, FBXO5 expression levels showed significantly
downregulated in KICH, LAML, and THCA in comparison to
their respective normal control (p-value < 0.001). Besides, the
expression levels of FBXO5 presented no significant differences
in KIRP, PCPG, PRAD, and SARC tissues relative to the
corresponding normal tissues.

Additionally, the paired differential expression analysis of
FBXO5 among tumor and normal tissues was performed
followed by a paired Student’s t-test. Increased expression of
FBXO5 in BLCA, BRCA, CHOL, COAD, ESCA, HNSC, LIHC,
LUAD, LUSC, and STAD while decreased expression in KICH
and THCA was respectively confirmed in comparison of
matched normal samples (Figure 3B).

Next, the differential analysis of FBXO5 expression in each
tumor type were examined in accordance with the age of
patients, which suggested that patients aged > 60 years old
had lower expression levels of FBXO5 compared with those aged
< 60 years old in several tumor types including BRCA, ESCA,
HNSC, LIHC, and THYM, while patients aged > 60 years old
with OV had higher FBXO5 expression than those aged < 60
years old (Figure 3C). Moreover, the comparison of FBXO5
expression across different pathological stages of each cancer
type was assessed, which indicated that FBXO5 expression was
higher in more advanced stages of the four malignancies,
namely ACC, KICH, LIHC, and UCEC. However, the
expression of FBXO5 in higher stages appeared lower in
SKCM and THCA (Figure 3D).

Subsequently, we further explored the protein expression
levels of FBXO5 across tumor and normal clinical samples
based upon the HPA database, as depicted in Supplementary
Figures 1A-J. Quantitative analysis of IHC showed that FBXO5
protein staining intensity in BRCA, CESC, COAD, LIHC, OV,
PAAD, STAD, TGCT, and UCEC tissues was respectively
detected to be more obvious than weak FBXO5 staining of
normal breast, cervix, liver, ovaries, pancreas, and stomach
tissues, and also stronger compared with moderate FBXO5
staining of normal colon, testes, and endometrium tissues
(Supplementary Figure 1K). In contrast, FBXO5 IHC staining
in THCA was lighter than that in normal thyroid gland samples
(Supplementary Figure 1K). Therefore, these IHC staining data
were consistent with the sequencing results of FBXO5 at the
transcriptome level.

Pan-Cancer Prognostic Value of FBXO5

For the purpose of clarifying the correlation between FBXO5
expression and tumor prognosis, hazard ratio statistics for OS,
DSS, DFI, and PFI were processed via forest plots for each cancer
included in this study. According to the univariate Cox
regression analysis, FBXO5 was a remarkable risk factor for OS
in LGG, ACC, MESO, LIHC, KICH, KIRP, LUAD, and BRCA
(p-value < 0.001 except LUAD and BRCA in which p-value <
0.01), while a protective factor in THYM (p-value = 0.008) and
READ (p-value = 0.009) (Figure 4A). Next, Cox regression
analysis of DSS identified that FBXO5 was a prominent
risk factor in LGG, ACC, MESO, LIHC, KICH, KIRP, and
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LUAD (p-value < 0.001 other than LUAD in which p-value =
0.002). On the other side, FBXO5 served as a protective factor in
THYM (p-value = 0.036), as displayed in Figure 4B.
Subsequently, DFI Cox regression analysis regarded FBXO5 as
a risk factor in HNSC (p-value < 0.001) and LIHC (p-value =
0.005) but a protective factor in STAD (p-value = 0.044), as
depicted in Figure 4C. Furthermore, Cox regression analysis of
PFI revealed that FBXO5 acted as an unfavorable factor for
patients with ACC, LIHC, KIRP, KICH, PRAD, and LGG (p-
value < 0.001 for ACC and LIHC, p-value = 0.001 for KIRP, and
p-value < 0.01 for KICH, PRAD, and LGG), whereas a protective
factor in STAD (p-value < 0.05), as shown in Figure 4D.

Correspondingly, Kaplan-Meier survival analyses of OS, DSS,
DFI, and PFI were further investigated in the 33 forms of cancers
studied. Kaplan-Meier survival curves for OS showed that
elevated FBXO5 expression levels were evidently correlated
with an unfavorable prognosis of cancer patients suffering
from ACC, KICH, KIRP, LGG, LIHC, LUAD, and MESO (p-
value < 0.01 other than KICH in which p-value < 0.05), whereas
significantly correlated with longer survival time in patients with
READ (p-value = 0.043) (Figure 4E). Meanwhile, Kaplan-Meier
DSS survival analysis demonstrated a remarkable relationship of
high levels of FBXO5 expression and poor survival outcomes in
patients having ACC, ESCA, KICH, KIRP, LGG, LIHC, LUAD,
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FIGURE 3 | Differential analysis of FBXO5 expression in different kinds of tumors. (A) FBXO5 expression differences in tumor tissues from TCGA database
compared with normal tissues from GTEx and TCGA databases. (B) Paired differential analysis of FBXO5 expression in matched tumor and normal samples from
TCGA. (C) Differential analysis of FBXO5 expression based on cancer patient age in TCGA. (D) Differential analysis of FBXO5 expression based on tumor
pathological stages in TCGA. * p-value < 0.05, ** p-value < 0.01, and *** p-value < 0.001. “ns” indicated no significance.

MESO, and SARC (p-value < 0.01 other than ESCA and SARC in
which p-value < 0.05) (Figure 4F). Then, Kaplan-Meier survival
analysis of DFI revealed a significant connection between high
FBXO5 expression and poor prognosis in KIRP (p-value =
0.00034) and LIHC (p-value = 0.025). Nevertheless, increased
expression of FBXO5 exhibited a protective effect on THCA
patient outcomes (p-value = 0.049) (Figure 4G). Moreover,
Kaplan-Meier PFI analysis showed that patients with ACC,

KICH, KIRP, LIHC, and MESO had relatively longer survival
time probably because of low expression levels of FBXO5 (p-
value < 0.01 other than KICH and MESO in which p-value <
0.05). However, contrasting results were observed in PFI survival
of patients with GBM (p-value = 0.029) (Figure 4H). Taken
together, these results implied that high FBXO5 expression
generally contributed to unfavorable patient prognosis and
survival in a variety of tumor types.
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FIGURE 4 |

Correlation of FBXO5 expression with survival prognosis in the distinct malignancies studied. (A-D) Forest plots revealing the associations of FBXO5

with OS (A), DSS (B), DFI (C), and PFI (D) in the indicated tumors, respectively. (E-H) Kaplan-Meier curves showing the relationships of FBXO5 expression with OS
(E), DSS (F), DFI (G), and PFI (H) in the indicated cancers, respectively.
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A Correlation between FBXOS Expression and Gene Promoter Methylation
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FIGURE 5 | Association between FBXO5 expression and gene promoter methylation in pan-cancer. (A) Lollipop plot and Pearson’s analyses depicting the
correlation between FBXO5 expression and DNA methylation in the indicated tumors. (B-E) Kaplan-Meier curves illustrating the relationships between FBXO5
methylation levels with OS (B), DSS (C), DFI (D), and PFI (E) in the indicated cancers, respectively.
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Correlativity of FBXO5 Expression and
DNA Methylation Modification
Next, FBXO5 promoter methylation levels accompanied by
changes in FBXO5 expression were estimated using the
cBioPortal database and the results reflected significant
correlations between FBXO5 expression and methylation in a
total of 25 tumors as indicated by the lollipop chart in Figure 5A.
Among these 25 cancer types, FBXO5 expression all showed
Pearson’s negative correlations with gene promoter methylation
levels, and the former eight malignancies with the greatest
inverse association were respectively presented in Figure 5A,
including STAD, CHOL, DLBC, ACC, LIHC, LUAD, UVM, and
ESCA (p-value < 0.001 except CHOL, DLBC, and UVM in which
p-value < 0.01). Pearson’s correlation analyses of the other
different cancers were displayed in Supplementary Figure 2.
On the other hand, for the aim of exploring the correlation
between FBXO5 promoter methylation and survival prognosis
(OS, DSS, DFI, and PFI), Kaplan-Meier analyses were performed
for the 33 forms of cancers studied. Enhanced FBXO5
methylation was demonstrated to be a protective indicator for
superior OS in patients diagnosed with ACC, KIRP, LGG,
MESO, and SARC (p-value < 0.05 except KIRP in which p-
value < 0.01), whereas a deleterious indicator that was prone to
result in low survival probability of KIRC (p-value = 0.024) and
LAML (p-value = 0.023) (Figure 5B). DSS analysis demonstrated
that FBXO5 methylation functioned as a protective marker in
patients experiencing KIRP (p-value = 0.031) and LGG (p-value
= 0.047) (Figure 5C). Besides, FBXO5 methylation levels
exhibited a significant positive correlation with DFI survival in
patients experiencing KIRC (p-value = 0.0021) although FBXO5
methylation acted as a harmful factor in patients with BLCA (p-
value = 0.038), HNSC (p-value = 0.019), and THCA (p-value =
0.0072) (Figure 5D). Moreover, as far as PFI be concerned, a
lower FBXO5 methylation level was overtly relevant with a
poorer prognosis in LIHC patients (p-value = 0.048) (Figure 5E).

Association Between FBXO5 Expression
and Tumor Microenvironment

Emerging researches have established that TME exerts a pivotal
function during the onset and progression of tumors (3, 4).
Therefore, it is essential to examine the correlation between TME
and FBXO5 expression levels. Figure 6A described a heatmap of
the correlation strength between FBXO5 expression and TME
terms, showing that DNA damage response, DNA replication,
nucleotide excision repair, mismatch repair as well as base
excision repair were highly positively connected to the
expression of FBXO5 in the indicated cancers. Subsequently,
the ESTIMATE algorithm was implemented to compute the
ImmuneScore, StromalScore, and ESTIMATEScore in the 33
distinct malignancies and analyze the Pearson’s correlations
between the expression of FBXO5 and the above three scores
in pan-cancer. The lollipop plots presented an in-depth
understanding of FBXO5 expression and TME scores in
different cancers (Figures 6B-D). In PAAD and KIRC, the
findings indicated that FBXO5 expression exhibited significant
positive correlations with the ImmuneScore (Figure 6B),

StromalScore (Figure 6C), and ESTIMATEScore (Figure 6D),
respectively. Conversely, notable inverse correlations were
discovered between FBXO5 expression and all three scores of
SARC, CESC, UCEC, LUSC, STAD, and GBM (Figures 6B-D).
Furthermore, regarding the value of Pearson’s r, the top three
cancers with predominant negative correlations and the top two
cancers with remarkable positive correlations of FBXO5
expression and TME-relevant scores included TGCT, GBM,
UCS, PAAD, and KIRC (Figure 6E, sorted by ImmuneScore);
GBM, STAD, LUSC, KIRC, and PAAD (Figure 6F, sorted by
StromalScore); GBM, TGCT, UCEC, PAAD, and KIRC
(Figure 6G, sorted by ESTIMATEScore), respectively. In
addition, the Pearson’s correlations of FBXO5 expression levels
with ImmuneScore, StromalScore, and ESTIMATEScore of the
other malignancies investigated were separately displayed in
Supplementary Figures 3, 4 and 5.

Correlation of FBXO5 Expression With
Pan-Cancer Immune Cell Infiltration

Growing researches have suggested that tumor-infiltrating
immunocytes could have a critical impact on the survival
status of patients (20). From this point of view, the
correlations between the expression levels of FBXO5 and the
infiltration abundance of 24 distinct immune cell subtypes were
analyzed at a pan-cancer level using the ImmueCellAI database.
It was revealed that immune cell infiltration degree was strongly
related to FBXO5 expression in most cancers (Figure 7A). For
instance, the expression of FBXOS5 exhibited a remarkable
positive correlation with regulatory T (Treg) cells and central
memory T (Tcm) cells. In comparison, the FBXO5 expression
exhibited a substantial negative correlation with natural killer
(NK) cells, CD8" T cells, and T-helper 2 (Th2) cells.
Interestingly, various relationships between FBXO5 expression
and distinct T cell subsets were further discovered, as illustrated
in Supplementary Figure 6A. For example, the expression of
FBXO5 presented an inverse association with the infiltrating
levels of CD4" Tem cells, CD4™" effector memory T (Tem) cells,
and natural killer T (NKT) cells in most tumors based upon the
XCELL algorithm. Besides, a close positive correlation between
FBXO5 expression and infiltrating macrophages was observed in
PRAD (p-value < 0.0001), whereas a notable negative correlation
was identified in GBM, THCA, and THYM (p-value < 0.0001 for
the three cancers) (Figure 7A). By use of the TIMER2.0 database,
similar results about FBXO5 expression-related macrophage
infiltration were also found in PRAD based upon the TIMER
algorithm, and GBM, THCA, and THYM based upon the XCELL
algorithm (Supplementary Figure 6A).

Afterwards, the correlations of expression levels between
FBXO5 and immune-related genes that encode immune-
activating, immunosuppressive, chemokine, chemokine-
receptor proteins as well as MHC were investigated across
cancers (Figures 7B-E and Supplementary Figure 6B). The
heatmaps demonstrated that FBXO5 exhibited a significant co-
expression relationship with most immune activation and
immunosuppressive genes in various cancers, particularly in
KICH, PAAD, UVM, LIHC, KIRC, DLBC, OV, READ, HNSC,
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PRAD, and KIRP (Figures 7B, C). Furthermore, both
chemokine and chemokine-receptor genes were strongly co-
expressed with FBXO5 in pan-cancer (Figures 7D, E). For
example, in KICH and PAAD, there was a positive connection
of the expression levels of FBXO5 with most chemokine and
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chemokine-receptor genes. Concurrently, Supplementary
Figure 6B elucidated that FBXO5 expression was positively
associated with almost all MHC genes in KIRC, UVM, PAAD,
KICH, and OV, while inversely correlated in THYM, TGCT, and
GBM. To conclude, these data inferred that FBXO5 might
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contribute to regulating immune cell infiltration and the
biological functions of various immune-related genes in the
tumor immune microenvironment of most tumor types.

Associations of FBXO5 Expression With
Immune Checkpoints, Tumor Mutation
Burden, Microsatellite Instability, and DNA
Mismatch Repair
Immune checkpoints that are responsible for regulating the degree
of immune activation and play a crucial role in autoimmunity and
immune surveillance of tumor cells, have already been identified as
the inhibitory targets of cancer immunotherapy (5, 6).
Subsequently, the correlations were studied between FBXO5 and
five major immune checkpoint genes, namely CTLA4, CD274,
TIGIT, PDCD1, and LAG3. In most cancers, FBXO5 expression
was highly related with the levels of immune checkpoint gene
expression (Supplementary Figure 7).

Additionally, considering the essential roles of TMB and MSI
in the prediction of the response to immune therapy across
cancers, the link between FBXO5 expression and the values of

TMB or MSI was also explored. Overall, these two metrics varied
remarkably among different cancer types (Figures 8A, C).
FBXOS5 expression showed to be positively relevant to TMB in
KICH, LUAD, ACC, STAD, TGCT, SKCM, COAD, and OV
(Figure 8B). In contrast, FBXO5 expression inversely correlated
to TMB in THCA and KIRP (Figure 8B). Furthermore, FBXO5
expression had a positive correlation with MSI in STAD, TGCT,
and SARC (Figure 8D). Nonetheless, FBXO5 expression
inversely correlated to MSI in PRAD and DLBC (Figure 8D).
On balance, the aforementioned results strongly indicated that
FBXO5 was well associated with tumor immunity. Thus, FBXO5
might be taken as a viable biomarker for indicating the
immunotherapy response in these tumor types.

Furthermore, deficient mismatch repair (dMMR) is an
unneglected mechanism of tumorigenesis and development,
which suggests that the potential relationship between FBXO5
and MMR needs to be studied in pan-cancer. The results
displayed that FBXO5 expression was significantly positively
associated with almost each of the five MMR genes (MSH2,
MSHS6, PMS2, MLH1, and EPCAM) in most tumors (Figure 8E).
Specially, FBXO5 expression was negatively correlated with
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EPCAM in LGG (Figure 8E). These data indicated that FBXO5
might regulate the tumor progression by mediating the
repairment of DNA mismatch across cancers.

Enrichment Analysis of FBXO5

in Pan-Cancer

Further, GSEA and GSVA were carried out to explore the
underlying biological relevance of FBXO5 in tumor tissues. GO
analysis indicated that FBXO5 was significantly linked to the
functions of cell division and cell cycle regulation, including
sister chromatid segregation, telomere maintenance, nuclear
division, cell cycle checkpoint, RNA splicing, and DNA
damage checkpoint in malignancies of various types, such as
BLCA, BRCA, LIHC, LUAD, OV, and STAD (Figures 9A-F).
KEGG-enriched terms revealed that the major associations of
FBXO5 with the above six cancers existed in the processes of
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FIGURE 9 | GO annotations of FBXO5 in the indicated six types of tumors using GSEA, including (A) BLCA, (B) BRCA, (C) LIHC, (D) LUAD, (E) OV, and (F) STAD.

nucleocytoplasmic transport, cell cycle, cellular senescence,
ubiquitin-mediated proteolysis, and microRNAs in cancer
(Figures 10A-F). Of note, FBXO5 was found to be critically
involved in immune-associated tumorigenic virus infectious
diseases, including hepatitis B, hepatitis C, human T-cell
leukemia virus 1 infection, and Epstein-Barr virus infection
(Figures 10A-F).

Meanwhile, the GSVA data reinforced that FBXO5
expression was positively correlated with mitotic spindle, G2/
M checkpoint, mTORC1 signaling, PI3K/Akt signaling, and
protein secretion in the above six malignancies, as well as
inflammatory response of cell immune factors in BLCA,
BRCA, and LIHC such as interferon-alpha, interferon-gamma,
IL6, and TGF-beta, but in general it was inversely associated with
K-ras signaling DN, myogenesis, bile acid metabolism,
xenobiotic metabolism, and p53 pathway (Supplementary
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Figures 8A-F). These results together implied that FBXO5
played a key role in regulating the tumor occurrence and
progression and immune microenvironment.

Correlation of FBXO5 Expression With
Drug Resistance

At present, in clinical practice, multidrug resistance (MDR) of
cancer cells is an unneglected link leading to recurrent tumor and
affecting prognosis and survival. Hence, for evaluating the
potential of FBXO5 in guiding clinical treatment, the
correlation between FBXO5 and drug resistance of tumor cells
was computed based upon IC50 values of drugs along with
FBXO5 expression levels. The results suggested that FBXO5
exhibited a significant positive association with IC50 values of
seven compounds but a notable negative correlation with IC50
values of 153 compounds (Table S1). Besides, there were no
significant relevance between FBXO5 and IC50 in a total of 32
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FIGURE 10 | KEGG annotations of FBXO5 in the indicated six types of tumors using GSEA, including (A) BLCA, (B) BRCA, (C) LIHC, (D) LUAD, (E) OV, and (F) STAD.

compounds (Table S1). Therefore, increased expression of
FBXO5 can make tumor cells more sensitive to most kinds of
compounds, which implies that the therapies of most
compounds become effective in cancer patients with high
FBXO5 expression. From the perspective of translational
medicine, detection of FBXO5 expression may be used to guide
the efficacy prediction of drug clinical treatment in tumors, and
also contribute to the accurate selection of antitumor drugs.

DISCUSSION

APC is well known to be a critical ubiquitin ligase that governs
the cell cycle progression through mitosis to Gl-phase (21).
FBXO5-encoded protein is a significant regulator of APC activity
and it functions in cell cycle modulation through effectively
stabilizing the ubiquitination substrates of APC after preventing
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ubiquitin chain elongation (22). Recently, several bioinformatics
researches proved that FBXO5 could specifically regulate
multiple tumor behaviors and exhibited a crucial role in the
tumorigenesis and prognosis of several cancers, including
squamous cell lung carcinoma (23), breast cancer (24),
hepatocellular carcinoma (25), and HPV-positive cervical
cancer (26). Above all, these studies speculated that FBXO5
could be regarded as a potential oncogenic factor or therapeutic
target among the above tumor types.

On the premise of existing evidence, the current work
performed a thorough investigation for pan-cancer analysis of
FBXO5 across malignancies. This study constructed a detailed
exploration of FBXOS5 expression differences, underlying
functions, and prognostic significance in 33 human cancers.
Rising FBXO5 expression was confirmed to be remarkably
correlated with unfavorable clinical outcomes in a variety of
cancers. Further demonstration revealed that abnormal FBXO5
expression in most cancers was significantly correlated with TME,
immune infiltration, DNA methylation, immune checkpoints,
TMB, MSI, and MMR. Collectively, FBXO5 might confer an
instrumental function in indicating tumorigenesis, prognosis, as
well as tumor immunity, which is briefly summarized in Table S2.

Our data first showed a significant increase of FBXO5
expression in 24 cancers, while decrease in KICH, LAML, and
THCA in contrast to the corresponding normal tissues. These
findings were in agreement with earlier research reports on
ovarian clear cell carcinoma (9), esophageal squamous cell
carcinoma (10), squamous cell lung carcinoma (23), breast
cancer (11, 24), hepatocellular carcinoma (12, 25), and cervical
cancer (26). Meanwhile, FBXO5 expression was analyzed to be
correlated with the tumor stage. In patients having UCEC, LIHC,
KICH, and ACC, FBXO5 expression was higher at stage IIT or IV
than stage I or II. Hence, the current data provided a hint that
FBXO5 could serve as an oncogene in most tumors.

The present research also discovered that FBXO5 expression
was related to tumor prognosis, which suggested that the
overexpression of FBXO5 was a hazard factor of cancers and
could cause a poorer prognosis in terms of OS, DSS, PFI, and
DFI. Similarly, existing researches also demonstrated that
FBXO5 upregulation was critically correlated to the poor
prognosis of esophageal squamous cell carcinoma (10),
hepatocellular carcinoma (12), squamous cell lung carcinoma
(23), and breast cancer (11, 24). Notably, highly expressed
FBXO5 in STAD (stomach adenocarcinoma) was a protective
factor for DFI and PFI survival, and this was different from most
cancers in which increased FBXOS5 acted as an unfavorable
prognostic factor, implying that FBXO5 may have specific
functions in STAD. A previous study on the role of CRIP1 can
well explain the protective role of FBXO5 in gastric cancer (27).
Simply put, CRIP1 is overexpressed in gastric cancer and CRIP1
deficiency inhibits the process of homologous recombination
and increases susceptibility to chemotherapy in gastric cancer
cells. FBXO5 can block CRIP1-promoted homologous
recombination repair by preventing nuclear enrichment of
RAD51, thereby restoring chemotherapy sensitivity of gastric
cancer cells with high CRIP1 expression. Due to the negative

correlation between CRIP1 expression and survival time in
gastric cancer patients, FBXO5 may exhibit a potential
protective role in the prognosis of gastric cancer through
inhibiting the identified function of CRIP1 in this report.

DNA methylation is a type of DNA chemical modification
that functions as a crucial regulator of gene transcription.
Abnormalities of DNA methylation levels perform an
indispensable function in the onset and progression of many
tumors (28). Pan-cancer survival analysis showed that FBXO5
promoter methylation levels were obviously correlated with
better OS in patients diagnosed as ACC, KIRP, LGG, MESO,
and SARC, which was opposite in KIRC and LAML patients.
These results uncovered that FBXO5 could be developed as a
promising predictive biomarker for clinical prognosis of
various malignancies.

TME comprising various infiltrating immune and stromal
cells confers instrumental functions in the pathogenesis and
development of cancer (3, 4) and meanwhile it can also
prominently affect therapeutic response and clinical outcomes
(29). The findings of the present research elucidated that FBXO5
expression in 33 malignancies positively correlated to TME
involving DNA damage and repair. Of note, DNA damage
response (DDR) genes are frequently mutated in almost all
cancer types (30). Consequently, deficiency of DDR/DNA
repair can lead to accumulative somatic mutations and
increased susceptibility to cancer (31). This study suggested
that FBXO5 might affect DNA damage and repair and induce
carcinogenesis. Typically, the function of ESTIMATEScore is its
ability to determine the purity of tumor. The higher the
ESTIMATEscore, the lower the tumor purity, and a low purity
denotes an advanced cancer stage with a poor prognosis (32, 33).
In terms of the ESTIMATEscore, a positive correlation with
FBXOS5 expression was found only in PAAD and KIRC. On the
contrary, a negative relationship with FBXO5 expression existed
in diverse cancers.

In addition, tumor-infiltrating immunocytes can promote or
antagonize the tumorigenesis and progression in a two-way
manner (34). In order to truly comprehend the implications of
the tumor immune microenvironment, the correlation between
FBXO5 expression and the abundance of infiltrating immune
cells in the 33 malignancies described was evaluated in the
present study, which highlighted that FBXOS5 expression
showed a positive correlation with tumor-infiltrating Treg and
Tem cells, and contrastingly a negative correlation with the
infiltration degree of NK/NKT cells, CD8" T cells, and Th2
cells. Furthermore, there was a positive relationship between
FBXO5 expression and infiltrating macrophages in BLCA,
KICH, KIRC, LUAD, and PRAD. Thus, FBXO5 was likely to
interact with immunocytes across many malignancies, exhibiting
a wide range of applicability. Subsequently, the co-expression
correlations of FBXO5 and the genes encoding immune
activating and suppressive factors, chemokines, chemokine
receptors, as well as MHC were examined, and the findings
together illustrated that FBXO5 expression was widely correlated
with different immune factors and immunocytes infiltrating
into tumors.
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MSI and TMB are two valuable indexes both having essential
connections with the sensitivity of immune checkpoint inhibitors
(35-37). Gastroesophageal cancer patients manifested as high-
frequency MSI (MSI-H) present an increased response rate and
favorable outcomes to immunotherapy (16). Of note, MSI-H in
colorectal cancer is proved to be an independent predictor for
clinical features and prognosis (17). Moreover, recent clinical
studies also revealed that survival prognosis was effectively
improved across cancers with high somatic TMB levels
following immune checkpoint inhibitor therapy (38, 39). The
present data uncovered that FBXO5 expression had a general
relationship with multiple immune checkpoint genes and MMR
genes in most cancers. Further, FBXO5 expression was also
significantly correlated with MSI or TMB in multiple cancer
types. Summarily, the results mentioned above suggested that
aberrant FBXO5 expression affected the values of TMB and MSI,
thus impacting the treatment effects on patients receiving
immunotherapy. Hence, FBXO5 could become a potential
immunotherapeutic target for tumors.

Regarding possible regulatory mechanisms, both GO and
KEGG enrichment analyses indicated that FBXO5 was closely
related to the functions of cell division and cell cycle regulation.
Notably, FBXO5 was reported to promote the proliferation of
breast cancer cells through PI3K/Akt signaling pathway, leading
to a grim prognosis, whereas PI3K inhibitor LY294002 repressed
FBXOS5 expression and cell proliferative capacity (11).
Interestingly, in mammalian cells, FBXOS5 initiated the
progress of cell cycle via the mechanism of converting from an
APC/CCPH! substrate to an APC/CPH! inhibitor (40). In line
with previous studies (9-13, 23-26), GSEA and GSVA analyses
obtained herein demonstrated that FBXO5 might influence the
pathogenesis or immunity of cancer by participating in the
processes of DNA damage checkpoint, cellular senescence,
inflammatory response, PI3K/Akt/mTOR signaling pathway,
and p53 signaling pathway. In brief, these results offered a
theoretical basis for interpreting the oncogenic role and
immunological function of FBXO5 in pan-cancer.

However, the current study has several limitations. First,
systematic bias exists due to multiple information sources
retrieved from different databases for analysis. Second, there
are only a few molecular studies on FBXO5 in cancers, including
ovarian clear cell carcinoma (9), esophageal squamous cell
carcinoma (10), breast carcinoma (11), and hepatocellular
carcinoma (12), and thus the findings on FBXO5 in this
research need to be further validated in other tumor types.
Third, only bioinformatic analyses were conducted to access
the correlations between FBXO5 expression and prognostic and
immunological features based upon public databases. Therefore,
the experimental verification should be performed in the future
to overcome this issue.

CONCLUSION

In conclusion, the present research demonstrated that FBXO5
was a potential oncogene that could serve as an independent
prognostic biomarker in various cancer types. FBXO5 expression

was also correlated with DNA methylation modification, TME,
infiltration of immune cells, immune-related genes, immune
checkpoints, MSI, TMB, and MMR. These discoveries
expanded the knowledge about the roles of FBXO5 in
tumorigenesis and progression, proposing new insights for
personalized cancer immunotherapy. Prospective studies
focusing on tumor immunity and FBXO5 expression may be
beneficial in providing a definite answer, thereby facilitating the
development of an immunotherapy approach targeting FBXO5
for tumor in the future.
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