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Innate immunity is not only the first line of host defense against pathogenic infection, but
also the cornerstone of adaptive immune response. Upon pathogenic infection, pattern
recognition receptors (PRRs) of host engage pathogen-associated molecular patterns
(PAMPs) of pathogens, which initiates IFN production by activating interferon regulatory
transcription factors (IRFs), nuclear factor-kappa B (NF-kB), and/or activating protein-1
(AP-1) signal transduction pathways in host cells. In order to replicate and survive,
pathogens have evolved multiple strategies to evade host innate immune responses,
including IFN-I signal transduction, autophagy, apoptosis, necrosis, inflammasome and/
or metabolic pathways. Some avian viruses may not be highly pathogenic but they have
evolved varied strategies to evade or suppress host immune response for survival,
causing huge impacts on the poultry industry worldwide. In this review, we focus on
the advances on innate immune evasion by several important avian immunosuppressive
viruses (infectious bursal disease virus (IBDV), Marek’s disease virus (MDV), avian leukosis
virus (ALV), etc.), especially their evasion of PRRs-mediated signal transduction pathways
(IFN-I signal transduction pathway) and IFNAR-JAK-STAT signal pathways. A
comprehensive understanding of the mechanism by which avian viruses evade or
suppress host immune responses will be of help to the development of novel vaccines
and therapeutic reagents for the prevention and control of infectious diseases in chickens.
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GENERAL INFORMATION ABOUT THE CHICKEN INNATE
IMMUNE RESPONSE TO VIRAL INFECTION

Innate immunity is the first line of host defense against viral infection, playing an antiviral role
through innate immune molecules (antimicrobial peptides and bacteriolytic enzymes), innate
immune cells (phagocytes and non-phagocytic innate immune cells), and complement system (1, 2).
At present, the mechanism, by which the engagement of PRRs with PAMPs activates the antiviral
signal transduction pathway in hosts, attracts wide attention. One of the most important antiviral
signal transduction pathways concerns type I interferon (IFN-I) signal transduction, regulating the
expression of IFNs-I (IFN-a, IFN-b), members of the interferon family that are involved in antiviral
immunity, anti-tumor immunity, and immunomodulation (3–6). Three types of PRRs are mainly
responsible for switching on IFNs-I signal transduction pathway upon viral infection, including
org May 2022 | Volume 13 | Article 9019131
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Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and
cytosolic DNA sensors (7, 8). Once PRRs recognize PAMPs,
the downstream adaptors will be recruited and activated, which
leads to the activation and nuclear translocation of transcription
factors, such as NF-kB, IRFs and AP-1, eventually inducing the
production of IFN-I and exerting antiviral effects (9, 10).
Secreted interferons induce the phosphorylation of Janus
kinase 1 (JAK1) and tyrosine kinases 2 (TYK2) in adjacent
cells by binding to interferon receptors on the surface of
adjacent cells and then actives the signal transducers and
activators of transcription 1 (STAT1) and STAT2 (11). The
activated STATs translocate to the nucleus and further bind to
IRF9, forming a trimer complex, which initiates the transcription
of interferon-stimulated genes (ISGs) (11–14).

The engagement of viral PAMPs by chicken PRRs, which
include TLRs, RLRs, and cytosolic DNA sensor cGAMP
synthase-stimulator of interferon genes (cGAS-STING),
activates IFN-I signal transduction pathway (7, 15). Ten types
of TLRs exist in chicken (16), including ChTLR1A, chTLR1B,
chTLR2A, chTLR2B, chTLR3, chTLR4, chTLR5, chTLR7,
chTLR15 and chTLR21, which are primarily expressed in
epithelial cells and immune cells (17). TLR3 and TLR7 mainly
recognize viral RNA in endosomes, and the activated Toll
interleukin-1 receptor (TIR) domain recruits and activates
several adaptors including MyD88, TRIF, PI3K, etc, which lead
to the phosphorylation of interleukin 1 receptor-associated
kinase (IRAK) and the activation of TGF-b-activated kinase 1
(TAK1) and Tank-binding kinase 1 (TBK1) (18–20). Finally, the
activated TAK1/TBK1 triggers the downstream NF-kB and IRFs
signaling pathways to initiate the expression of IFN-I (18, 21). In
addition, the activated TAK1 also activates JNK and P38, which
initiate the AP-1 signal transduction pathway and induce the
expression of IFN-g (22). Although TLR8 and TLR9 are naturally
absent in chicken, chTLR21, a homolog of TLR9 in chicken, can
recognize viral single-stranded RNA (ssRNA) and double-
stranded RNA (dsRNA) instead, further activating the
downstream antiviral signal transduction pathway (23).
Retinoic-acid-inducible gene 1 (RIG-I) and melanoma-
differentiation-associated gene 5 (MDA5), two members of
RIG-I-like helicase receptors (RLRs) family, sense viral dsRNA
in cytosolic through helicase domain, leading to the production
of IFNs in host cells (10, 24). Due to the genetic deficiency of
RIG-I and IRF3 in chicken, chicken MDA5 is mainly responsible
for sensing viral RNA and activating downstream mitochondrial
antiviral signaling protein (MAVS)-NF-kB/IRF7 signal
transduction pathway to initiate the expression of IFN-I
(25, 26). Of note, chicken laboratory of genetics and
physiology 2 (chLGP2), another member of RLRs, cannot
activate MAVS independently without caspase activation and
recruiting domains (CARD) but promote nucleation of MDA5
oligomerization on dsRNA through chLGP2 end-binding (27).
chMDA5 and chLGP2 sense viral RNA effectively and initiate
antiviral signal transduction pathways, which compensate for the
genetic deficiency of RIG-I. cGAS-STING, an important
intracellular DNA receptor, can recognize intracellular viral
dsDNA, catalyze 2’3’-cGAMP synthesis to activate STING
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located in the endoplasmic reticulum (28, 29). TBK1 and
inhibitor of NF-kB kinase (IKK), recruited by activated
STING, phosphorylates IRF7 or NF-kB to initiate the
production of IFNs (30–33). chSTING can also act as an
adaptor of chMDA5 to initiate chMDA5-chSTING signal
transduction pathway, activating IRF7 and NF-kB, and
inducing the production of IFNs (30). In addition, it was
found that DEAD (Asp-Glu-Ala-Asp) box polypeptide 41
(DDX41), an important DNA sensor in human and mouse,
can also sense viral DNA in chicken and trigger chDDX41-
chSTING-IFN-b axis (34).

In order to survive and replicate in host, viruses have evolved
varied strategies to evade host innate immunity. On the one hand,
viruses evade type I interferon-mediated innate immune response
via expressing viral proteins to target host proteins. On the other
hand, viruses may express viral miRNAs or regulate host miRNAs
expression to target host proteins, inhibiting host anti-viral response.
In general, the immune evasion strategies of viruses include
interfering with PAMPs recognition by host PRRs, inhibiting the
activation of signal transducers MAVS and TBK1, affecting the
phosphorylation of IRF, NF-kB and AP-1, ultimately suppressing
IFN-I expression. In comparison with mammals, chickens have a
special immune system. This review is mainly focused on the
mechanism by which avian immunosuppressive viruses evade host
PRRs-mediated signal transduction pathways, including IRF7/
NF-kB signal transduction pathways and interferon-a/b receptor
(IFNAR)-JAK-STAT signal transduction pathway.
INNATE IMMUNE EVASION BY
INFECTIOUS BURSAL DISEASE
VIRUS (IBDV)

Brief Introduction to IBDV
IBDV is the causative agent responsible for infectious bursal disease
(IBD) in chickens. IBD, originally called Gumboro disease, is an
acute, highly contagious and immunosuppressive poultry disease
reported by Cosgrave as early as 1962 (35, 36). IBDV infection
mainly causes severe apoptosis of proliferating B lymphocytes in the
bursa of Fabricius (BF), eventually leading to immunosuppression
(37). The immunosuppression in IBDV-infected chicken increases
the risk of secondary infection or immune failure of subsequent
vaccinations against other pathogens. Thus, IBD remains a big
threat to the poultry industry across the globe. IBDV is a non-
enveloped dsRNA virus, belonging to the genus Avibirnavirus in
the family of Birnaviridae (35, 38). The viral genome is composed of
two segments (segment A and segment B) of RNAs (39). In
segment A, two overlapping open reading frames (ORFs) encode
the non-structural viral protein 5 (VP5) and polymeric proteins that
are hydrolyzed and processed into viral proteins VP2, VP3, and
VP4 (40–42). Segment B encodes VP1, an RNA-dependent RNA
polymerase (RdRp) (43, 44). Two serotypes of IBDV are identified
based on virus neutralization test, including serotype I and serotype
II, of which only serotype I can cause clinical diseases in
chickens (45).
May 2022 | Volume 13 | Article 901913
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IBDV Evades Innate Immune Response via
Targeting Host Protein
Based on the experimental evidence available so far, RIG-I is
naturally absent in chickens, thus viral dsRNA in the cytoplasm
is mainly recognized through chMDA5 (25, 46). Upon IBDV
infection, viral dsRNA is recognized by chMDA5, which triggers
the downstream signal transduction pathway and induces the
production of IFN-I (47). To avoid being recognized by
chMDA5, IBDV has evolved with varied strategies to promote
its survival and spread in host (Figure 1). It was reported that
IBDV VP3 inhibited the expression of IFN-b by competitively
binding to chMDA5 with virus dsRNA, achieving immune
evasion (48). Similarly, IBDV VP3 also indirectly attenuates
the chMDA5-mediated type I interferon signal transduction
by regulating the modifications of host protein. It was found
that apoptosis inhibitor 5 (API5) is a nuclear protein with anti-
apoptosis function, which plays a role in regulating cell apoptosis
(49). Recently, API5 was found to be a UBC9-dependent
SUMOylated protein and was deSUMOylated upon IBDV
infection, inhibiting chMDA5-dependent IFN-b induction.
Specifically, IBDV VP3 inhibited the SUMOylation of API5 by
targeting API5 and promoting UBC9-dependent proteasome
degradation by binding to the ubiquitin E3 ligase TRAF3,
ultimately leading to the reduction of chMDA5-dependent
IFN-b production (49, 50). In addition to intervening the
recognition of viral dsRNA genome by chMDA5, IBDV also
employs other strategies to escape the innate immune response.
Frontiers in Immunology | www.frontiersin.org 3
It was reported that VP3 blocked the formation of TRAF3-TBK1
complex by reducing K33-linked poly-ubiquitination of Lysine-
155 on TRAF3, inhibiting the production of IFN-I and
facilitating viral replication (51). Interestingly, our previous
study indicated that VP3 could interact with chicken
Ribosomal Protein L18 (chRPL18) and chicken double-
stranded RNA-activated protein kinase (chPKR), which
enhanced IFN-I expression and inhibited viral replication (52).
It seems that the interaction between IBDV and the host could be
very complex during IBDV infection, and other viral
components may also play dual roles similar to that of VP3 (53).

IBDV proteins can also target transcription factors NF-kB
and AP-1 to suppress the expression of type I interferon (54)
(Figure 1). Our previous study showed that IBDV VP4 could
interact with glucocorticoid-induced leucine zipper (GILZ), a
member of the glucocorticoid-responsive molecule with a
proline-rich region (PER) at C-terminus that binds to the P65
subunit to inhibit the activity of NF-kB, thereby inhibiting the
innate immune response in host (55). Furthermore, our data
show that IBDV VP4 interacted with GILZ to inhibit its K48-
Linked ubiquitylation, thereby inhibiting GILZ degradation. As a
consequence, the accumulation of GILZ suppressed the NF-kB
signal transduction pathway, leading to the inhibition of IFN-I
production and promoting viral replication (54, 56). In addition,
the accumulation of GILZ may also prevent AP-1 from activating
the transcription of antiviral genes, leading to innate
immunosuppression (57).
FIGURE 1 | Schematic diagram of avian immunosuppressive viruses evading innate immune response in chicken. Evasion of the PRRs-mediated type I interferon signaling
pathway and IFNAR-JAK-STAT signaling pathway by IBDV, MDV, ALV etc. IBDV, MDV and ALV exploit both viral and host proteins to evade innate immune response. IBDV
and ALV mainly evade the innate immunity by inhibiting MDA5-mediated signaling pathway, while MDV evades the innate immunity by inhibiting cGAS-STING signaling
pathway. IFNa/b promote the expression of ISGs by autocrine and paracrine action. MDA5, melanoma-differentiation-associated gene 5; API5, apoptosis inhibitor 5; TRAF3,
tumor necrosis factor receptor associated factor 3; STAU1, staufen1; MAVS, mitochondrial antiviral signaling protein; NF-kB, nuclear factor-kappa B; NEMO, nuclear factor
(NF)-kappaB essential modulator; IKKa, NF-kappaB kinase subunit alpha; IKKb, nuclear factor kappa-B kinase beta; IkBa/b, nuclear factor kappa-B-a/b; IKKz, nuclear factor
kappa-B kinase zeta; IKKϵ, nuclear factor kappa-B kinase epsilon; AP-1, activating protein-1; GILZ, glucocorticoid-induced leucine zipper; DOT1L, disruptor of Telomeric
silencing 1-like; cGAMP, cyclic GMP-AMP; cGAS, cyclic GMP-AMP synthase; STING, stimulator of interferon genes; TBK1, TANK-binding kinase 1; IRF, interferon regulatory
transcription factor; IFNAR, interferon-a/b receptor; JAK1, Janus kinase 1; TYK2, tyrosine kinases 2; STAT, signal transducers and activators of transcription; SOCS,
suppressor of cytokine signaling; SH2-CIS, Cytokine-inducible Src homology 2 -containing protein; ISGs, interferon-stimulated genes; P, phosphate; SUMO, SUMOylation.
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Regulation of host protein expression by IBDV to escape the
innate immune response is also an important strategy for viral
survival. IBDV can interfere with PRR recognition of viral dsRNA
by targeting host proteins. Staufen1, a member of dsRNA binding
proteins in host, was found to bind to viral RNA of certain viruses
to facilitate viral replication such as human immunodeficiency
virus (HIV-1), Influenza A virus (IAV), and hepatitis C virus
(HCV) (58–61). Recently, it was reported that Staufen1 could
competitively bind to viral dsRNA with chMDA5 upon IBDV
infection, which inhibits chMDA5-mediated IFN-b production
(62) (Figure 1), suggesting that host protein Staufen1 and IBDV
VP3 may play a synergistic role in preventing chMDA5 from
recognizing viral dsRNA upon IBDV infection, suppressing host
response and favoring IBDV replication.

In comparison with IBDV VP3 and VP4, there are no reports
currently available regarding the direct regulation of type 1
interferon signaling pathway by other IBDV viral proteins such
as VP1, VP2 and VP5. It was found that VP2 and VP5 played
important roles in assisting virus release by inducing apoptosis
(63–67). As IBDV is a non-enveloped virus, it induces apoptosis
and/or autophagy in host cell to promote its release and spread
(68). It was reported that VP2 could interact with heat shock
protein 90 (HSP90AA1) to activate autophagy at the immediately
early stage upon infection, affecting IBDV replication, and then
this autophagic response was inhibited thereafter (63). It should be
noted that VP3 links PIK3C3-PDPK1 complex to AKT-MTOR
pathway and inhibits autophagy, regulating viral replication (69).
Thus, IBDV has developed some strategies to modulate autophagy
to facilitate its survival and replication. In addition to inducing
host autophagy, IBDV VP2 degrades the oral cancer
overexpressed protein 1 (ORAOV1), an anti-apoptotic protein
in host cells, inducing apoptosis and promoting virus release (64).
Interestingly, IBDV VP5 has been established as a protein of both
pro-apoptotic and anti-apoptotic functions, playing a dual role in
IBDV-induced apoptosis. In the early stage of IBDV infection,
Frontiers in Immunology | www.frontiersin.org 4
VP5 inhibits apoptosis by interacting with PI3K P85a to facilitate
viral replication (66), while in the late stage of IBDV infection,
VP5 interacts with VDAC2 and RACK1 to form the VDAC2-
VP5-Rack1 complex, resulting in apoptosis with cytochrome C
release, promoting the release of virus (65, 67). Thus, IBDV-
induced apoptosis might be an important strategy for IBDV to
escape the host innate immunity. IBDV VP1, an RNA-dependent
RNA polymerase (RdRp) of IBDV (44), has not been reported as a
viral component involved in innate immune evasion by IBDV.

IBDV Evades Innate Immune Response by
Regulating Host miRNA Expressions
MicroRNAs (miRNAs) are a family of small non-coding RNAs
composed of 20-24 nucleotides, which play an important role in
many biological processes by affecting the degradation and
translation of target mRNAs (70, 71). Lines of evidence
indicate that some miRNAs are involved in innate immune
evasion of viruses (72, 73). Our previous data showed that 296
miRNAs were differentially expressed during IBDV infection
(74). It was found that several miRNAs were closely related to
immune evasion upon IBDV infection, such as gga-miR-9 (75),
gga-miR-2127 (76), and gga-miR-142-5p (77) (Figure 2).
Specifically, gga-miR-9 targeted IRF2 to inhibit the production
of IFN upon IBDV infection, causing innate immune evasion
(75). Since IRF2 was originally described as a transcriptional
repressor (78), it may play a dual role in genes transcription (79,
80). P53, a tumor suppressor, plays an important role in innate
immune regulation (81, 82). During IBDV infection, the
expression and activity of chicken P53 (chp53) significantly
increased, which upregulated the expression of a number of
antiviral genes (IPS-1, IRF3, PKR, OAS and Mx), leading to the
inhibition of IBDV replication (76). However, gga-miR-2127
down-regulates chp53 mRNA translation and inhibits innate
immune response by targeting chp53 3’UTR (76), suggesting that
IBDVmight evade host response by manipulating the expression
FIGURE 2 | Schematic diagram of avian immunosuppressive viruses expressing viral miRNAs or regulating host miRNAs expression to suppress host innate
immune response. TLR3, Toll-like receptors 3; TRIF, TIR domain-containing adapter-inducing interferon-b; RIP-1, receptor interacting protein-1.
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of chp53. In addition, it was reported that gga-miR-142-5p
directly targeted the 3 ‘untranslated region of chMDA5 to
attenuate IRF7-mediated innate signal transduction and
facilitated IBDV replication (77). Thus, it seems that IBDV
escapes the innate immune response not only at a protein level
but also at an RNA level, which favors its survival and replication
in host cells. No doubt, elucidation of the mechanisms will be of
help to the development of novel vaccines and therapeutic
reagents for the prevention and control of IBD.
INNATE IMMUNE EVASION BY MAREK’S
DISEASE VIRUS (MDV)

Brief Introduction to MDV
Marek’s disease virus (MDV) is a highly oncogenic alpha-
herpesvirus that causes lymphoid hyperplasia and lymphoma,
eventually leading to death or immunosuppression in infected
chickens (83, 84). MDV belongs to the genus Mardivirus in the
family of Herpesviridae, which includes three serotypes, MDV
serotype 1, 2 and 3. MDV serotype 1 (Gallid Herpesvirus 2,
GAHV-2) was pathogenic to the chickens, while neither MDV
serotype 2 (Gallid Herpesvirus 3, GAHV-3) nor MDV serotype 3
(Herpesvirus of Turkeys, HVT) was pathogenic to poultry (85).
MDV genome is composed of a single linear dsDNA molecule
with a length of about 180kb (86, 87). The structure of MDV
virion is similar to that of other alpha-herpesviruses consisting of
envelope, tegument, capsid and core. The viral core (viral DNA)
is surrounded by an icosahedral symmetric capsid, and further
surrounded by tegument and envelope (88).

MDV Evades Innate Immune Response by
Targeting Host Proteins
Current evidence suggests that the viral evasion of host innate
immune response is the basis of viral survival and replication (89,
90). It was reported that the mRNA and protein expressions of
IFN-a and IFN-b in the thymus and bursa of Fabricius of SPF
chickens infected with virulent MDV decreased significantly in the
lytic infection stage compared with that of the control group,
indicating that MDV can inhibit IFN-I expression in host,
resulting in immunosuppression (91). cGAS-STING, known as
an important cytosolic DNA sensor for recognizing pathogenic
DNA, undoubtedly plays an important role in host response to
MDV infection (29). However, in order to survive and replicate
better, MDV has evolved with varied strategies to antagonize
cGAS-STING-mediated innate immune response in host
(Figure 1). It was reported that five MDV proteins (Meq,
RLORF4, US3, UL46 and VP23) had been identified to inhibit
the production of IFN-I by regulating the cGAS-STING signal
pathway (89). Meq, a major oncogenic protein of MDV, is
involved in lytic infection, and is essential for the transformation
of lymphocyte in vivo (92, 93). It was found that Meq bound to
STING and IRF7, and then interrupted the formation of STING-
TBK1-IRF7 complex, which inhibited the expression of IFN-b in
chicken embryo fibroblast (CEF) with MDV infection (89).
RLORF4, another viral protein encoded by MDV, is closely
Frontiers in Immunology | www.frontiersin.org 5
related to the pathogenicity of MDV (94, 95). It was found that
RLORF4 could significantly inhibit cGAS-STING-mediated IFN-b
production in host. Specifically, RLORF4 inhibited the
translocation of NF-kB from cytoplasm to nucleus by binding to
the Rel homology domains (RHD) of P65 and P50 subunits,
ultimately inhibiting the expression of IFN-b. In addition,
RLORF4 was also found to suppress tumor necrosis factor a
(TNF-a)-induced activation of NF-kB, further inhibiting the
production of IFN-I and promoting viral replication (96).
Furthermore, it was reported that VP23 could interact with
IRF7 to block the binding of TBK1 to IRF7, inhibiting the
phosphorylation of IRF7, resulting in immunosuppression (90).
Up to now, the specific role of US3 and UL46 expressed by MDV
in escaping the innate immune response has not been clarified, but
a recent publication provided a detailed review on the mechanism
by which US3 and UL46 expressed by HSV-1, another member of
the Alphaherpesviridae, inhibited the production of IFN-I and
achieved innate immune evasion (97), which may provide some
reference for exploring the mechanism of innate immune evasion
of MDV. Of note, it is not clear whether MDV inhibits the innate
immune response in host by suppressing the expression or
function of TLRs via viral components.

Similar to IBDV, MDV can also inhibit innate immune
response by hijacking host proteins (Figure 1). Dead-box
Helicase 5 (DDX5), a member of DEAD Box family of RNA
helicase, is involved in many physiological processes such as
RNA metabolism, cell proliferation, apoptosis, and has also been
found to be highly expressed in malignant tumor tissues (98–
100). It was shown that DDX5 could be hijacked by viruses to
promote viral replication (101, 102), and a similar phenomenon
was found in MDV-infected host cells (103). It was reported that
DDX5 could be hijacked by MDV in CEFs, resulting in increased
expression and aggregation of DDX5 in the nucleus, which led to
the downregulation of IRF1 and inhibited the IRF-1-mediated
innate immunity (103, 104). It seems that DDX5 can be
employed by virus for its survival and replication, providing a
new insight into the mechanism by which viruses hijack host
proteins to achieve innate immune evasion.

Involvement of miRNAs in Innate Immune
Evasion by MDV
MDV, a DNA virus, not only expresses its own microRNA against
the innate immune response, but also utilizes host miRNAs to
achieve immune evasion (Figure 2). It was reported that the
expression of TLR3 in CEFs was upregulated post MDV infection,
which further activated the innate immunity (105), but MDV
appeared to employ special strategies to escape the innate
immunity (106). MDV1-miR-m4-5p, a homolog of host miR-
155, encoded by MDV genome, could target TLR3 and inhibit
TLR3-mediated innate immune response, favoring viral
replication (107, 108). It was reported that the chicken gga-miR-
155-5p and MDV1-miR-m4-5p activate the JAK/STAT signal
pathway by targeting suppressor of cytokine signaling 1
(SOCS1), increasing the expression of Adenosine deaminase
acting on RNA1 (ADAR1), which hyperedited the edited repeat-
long, long noncoding RNA (ERL lncRNA), a natural antisense
May 2022 | Volume 13 | Article 901913
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transcript (NAT) of MDV protein meq (109, 110). The
hyperedited ERL lncRNA further binds to MDA5, inhibiting the
activity of MDA5 and resulting in immunosuppression (109). It
was reported that MDV1-miR-M3 suppressed cisplatin-induced
apoptosis by targeting SMAD2, a critical component in the
transforming growth factor (TGF) b signal pathway, thus
creating a cellular environment favorable to virus replication
(111). Similarly, virus-encoded miR-M2-5p promotes cell
viability and inhibits cell apoptosis through RBM24 and
MYOD1-mediated signaling pathways (112). It seems that MDV
modulates host response by self-encoded miRNAs targeting
cellular proteins to favor viral survival and replication during
viral infection.
INNATE IMMUNE EVASION BY AVIAN
LEUKOSIS VIRUS (ALV)

Brief Introduction to ALV
ALV, an enveloped RNA virus belonging to the genus
Alpharetrovirus in the family of Retroviridae, causes neoplastic
diseases in chicken such as lymphoblastic leukemia, myeloblastic
leukemia and erythroblastic leukemia, leading to the decline of
egg production or even death (113). According to the
characteristics of viral envelope proteins, ALVs isolated from
chickens were divided into seven subgroups, A, B, C, D, E, J and
K. Among them, ALV-E belongs to endogenous retroviruses and
the others are exogenous retroviruses (114, 115). ALV genome is
composed of two copies of ssRNA, harboring three genes
encoding important structural proteins, gag, pol and env. Gag
gene encodes several non-glycosylated proteins, including viral
capsid protein P27, matrix protein P19 and nucleocapsid protein
P12, pol gene encodes reverse transcriptase and integrase p32,
and env gene encodes surface protein GP85 and transmembrane
protein GP37 (116, 117).

ALV Evades Innate Immune Response by
Targeting Host Proteins
It was reported that the viral RNA of ALV could be recognized by
TLR7 and MDA5 in host cells with ALV infection, inducing the
expression of ISGs and cytokines (118). However, the information
regarding the mechanism by which ALV evades the host innate
immune response is quite limited (Figure 1). Cytokine-inducible
Src homology2 (SH2)-containing protein (CIS), a member of the
SOCS family, can negatively regulate innate immune response and
promote viral replication (119). Recently, it was found that the
expression of CIS was up-regulated in DF-1 cells with ALV-J
infection, inhibiting the expression of IFN-I and ISGs, while the
expressions of IFN-I and ISGs significantly increased in CIS-/- DF-
1 cells with ALV-J infection (120). Thus, CIS may be an important
factor that helps ALV-J evade the innate immune response in host.
Similarly, it has recently been shown that ALV-J infection could
inhibit the phosphorylation of the JAK2/STAT3 signaling pathway
by upregulating the expression of SOCS3, which represses host
innate immunity and facilitates viral replication (121). In addition
to directly targeting negative regulators for interferon signal
Frontiers in Immunology | www.frontiersin.org 6
transduction pathways to achieve innate immune evasion, ALV-
J can also suppress the expression of IFN by targeting host protein
indirectly (122, 123). Disruptor of Telomeric silencing 1-like
(DOT1L), a histone methyltransferase, has been proven to
catalyze the methylation of histone H3 lysine79 and plays a role
in the development of malignant tumors including pancreatic
cancer, leukemia and breast cancer (124–126). Recently, it was
proposed that DOT1L was also involved in innate immune
response and acted as an antiviral regulator during ALV-J
infection (127, 128). Interestingly, it was found that the
expression of DOT1L was up-regulated in HD-11 cells with
ALV-J infection, inhibiting the expression of MDA5 and
impairing the activation of type I interferon signal transduction
pathway, which indicates that DOT1L plays a positive role in viral
replication (129). It seems that the antiviral effect of DOT1L may
vary according to the types of viruses. Meanwhile, in view of the
facts that DOT1L knockout does not affect IFN-I expression after
poly(I:C) stimulation (129), DOT1L may be involved in the innate
immune evasion by ALV via affecting the recognition of ALV
RNA by host PRRs, but direct experimental evidence needs to be
obtained. In addition, it was found that ALV-J attenuated IFN-I
production by blocking phosphorylation of IkB and inhibiting the
expression of NF-kB (123), but it was unclear which viral protein
affected IkB phosphorylation. Furthermore, p53 is also involved in
host response to ALV infection. It was found that p53 could
prevent ALV-J from resisting antiviral innate immunity,
indicating the importance of p53 in host response against ALV-J
(130). Although some studies suggest that p53 inhibits viral
replication by affecting innate immune factors, the potential
association between chp53 and those innate immune factors
remains unclear (76, 130). However, a recent study indicates
that p53 recruits the histone deacetylase 1 and 2 (HDAC1/2)
complex to the ALV-J long terminal repeat (LTR) region which
regulates viral replication to switch off gene expression (131, 132),
suggesting that p53 inhibits ALV replication not only by activating
innate immune response but also by inhibiting ALV-J LTR
activity. Current information is still insufficient to determine the
proportion of chp53 effect on suppression of ALV-J replication via
innate immunity or regulating LTR of ALV. Up to now, it is still
unclear whether ALV suppresses host response by affecting p53-
mediated signaling pathways via interaction with host cells at a
protein level. More studies will be required to determine the
crucial viral proteins of ALV that target cellular proteins
involved in signaling pathways of host innate immune response.

Involvement of miRNAs in Innate Immune
Evasion by ALV
In addition to interference with the expression of MDA5 by
DOT1L, ALV also impairs the activation of MDA5-mediated
IFN-I signal transduction pathway by regulating the expression
of host microRNAs (Figure 2). It was reported that the expression
of miR-34b-5p significantly increased in the spleen and thymus of
ALV-J-infected chickens, which inhibited the expression and
activation of MDA5, facilitating ALV-J replication (133).
Similarly, the expression of miR-23b also increased upon ALV
infection, and miR-23b directly targeted IRF1, thereby reducing
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the expression of IFN-b (134). In comparison with IBDV orMDV,
few reports are currently available regarding innate immune
evasion by ALV. Considering the unique genomic structure of
ALV as a retrovirus and its persistent infection in host cells, it is
highly possible that ALV achieves innate immune evasion bymore
than just blocking signal transduction pathway for type I IFN
expression. More efforts will be required to elucidate the
mechanism of innate immune evasion by ALV.
INNATE IMMUNE EVASION BY OTHER
AVIAN IMMUNOSUPPRESSIVE VIRUSES

Avian reovirus (ARV) belongs to the genus of Reoviridae in the
family of Reoviridae, and the viral genome is composed of dsRNA
(135–137). Previous studies demonstrated that ARV could cause
damages to lymphatic organs such as bursa of Fabricius, thymus
and spleen, resulting in immunosuppression and reduced immune
response to other secondary infections (138, 139), but the research
on the mechanism by which ARV evades innate immune response
is lacking. It was found that sA could bind to dsRNA irreversibly,
which inhibited the activation of dsRNA-dependent protein kinases,
reducing the production of IFNs to resist the antiviral response in
host (140, 141). Recently, it was reported that MDA5 and TLR3
were involved in the recognition of ARV (142–144), but it remains
unclear whether ARV evades innate immune response by affecting
this recognition. In addition, the role of miRNAs in innate immune
evasion by ARV remains unclear.

Reticuloendotheliosis virus (REV), a member of the genus g-
retrovirus in the family of Retroviridae, can cause the atrophy of
thymus and bursa of Fabricius in chickens, resulting in
immunosuppression (145). Some viruses have evolved strategies
to hijack the exosomes for immune evasion (146, 147). It was
recently reported that the exosomes were more efficiently employed
by REV to inhibit the expression of innate immune factors
compared with the infection by free REV virions (148).It was
reported that expressions of TLR4 and TLR7 significantly
decreased during REV infection (149), suggesting that REV may
evade innate immune response by inhibiting the expression of PRRs
in host, but the specific mechanism remains to be investigated.

As for chicken infectious anemia virus (CIAV), another
important avian immunosuppressive virus widely distributed in
flocks across the globe, there are only few reports regarding the
decreased number and activity of NK cells and macrophages in
chickens (150, 151). More studies are encouraged to investigate the
mechanism by which CIAV evades innate immune response.
THE DIFFERENCES BETWEEN AVIAN
INFLUENZA VIRUS (AIV) AND IBDV IN
INNATE IMMUNE EVASION

Innate immune evasion is not only the tactics employed by
immunosuppressive virus for persistent infection but also the
strategy used by non-immunosuppressive virus to survive early
during infection. It would be intriguing to compare the
Frontiers in Immunology | www.frontiersin.org 7
differences between IBDV, a typical avian immunosuppressive
virus, and AIV, an important avian non-immunosuppression
virus, in innate immune evasion. AIV belongs to the genus of
influenza A virus in the family of orthomyxoviridae (53). The
viral genome of AIV is composed of negative-stranded RNA,
which encodes glycoproteins HA and NA, matrix proteins M1
and transmembrane proteins M2, polymerase proteins PB1, PB2
and PA, and nucleoprotein NP (152).

Similar to IBDV, AIV has also developed the immune escape
strategy by inhibiting the activation of the chMDA5-chMAVS
pathway (27, 153, 154). It was reported that AIV NS1 and PB1
acted in concert to antagonize chicken type I IFN secretion in HD-
11 cells (153, 155–157), and NS1 could interact with TRIM25, a
member of E3 ubiquitin ligase, to inhibit IFN-b expression by
regulating ubiquitin-proteasome degradation pathway (158). It
seems that the ubiquitin-proteasome degradation pathway could
be utilized by both avian immunosuppressive viruses and non-
immunosuppressive viruses to escape the innate immunity. In
addition, it was found that IBDV could induce autophagy and
destroy autophagosomes to promote viral maturation and release
(159), which suggests that IBDV-induced autophagy might be
related to the innate immune evasion by IBDV. In comparison,
AIV PB1 can induce mitophagy, thus affecting the innate immune
response mediated by chMAVS to achieve innate immune evasion
to favor its replication (160–162). Taken together, IBDV infection is
characterized by the damages to the bursa of Fabricius where B
lymphocytes develop and mature, leading to significant
immunosuppression, which greatly increases the risk of secondary
infection with other pathogens, whereas AIV infection evades innate
immunity early during infection and subsequently causes a strong
innate immune response in host, eliciting severe inflammatory
responses (163–165). Further investigation into the mechanism of
innate immune evasion by avian immunosuppressive virus and
non-immunosuppressive virus will provide valuable reference to the
understandings of pathogenesis of viral infection.
CONCLUSION

Viruses can evade detection or clearance by both innate and
adaptive immune responses, while their strategies of evading
innate immune responses are extraordinarily complex. Although
there is a considerable advance in the understandings of the
innate immune evasion by avian viruses that was mainly
attributable to the results from those studies on host PRRs, the
IRF7/NF-kB signal transduction pathway and the IFNAR-JAK-
STAT signal transduction pathway during viral infection, little
information is available regarding the innate immune evasion by
avian viruses via pyroptosis, necroptosis, epigenetic regulation
and other apparent metabolic pathways. Thus, studies on these
aspects will be highly encouraged.

Infections of flocks by avian immunosuppressive viruses not
only cause death in chickens, but also increase the susceptibility of
the survivals to subsequent pathogenic infections due to the
compromised immune response in infected chickens. The
immunosuppressive viruses might directly attack immune organs
and cells. For instance, IBDV induces chicken immune organ
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atrophy and apoptosis by targeting proliferating B cells in the bursa
of Fabricius, MDV infection leads to early cytolytic infection of B
cells and transformation of T cells and then induces proliferative
lesion in chicken immune organs, and ALV induces several types of
cellular tumors, such as lymphocytoma and intravascular lymphoid
leucosis involving lymphoidocytes. These viruses cause damages to
the immune system, leading to immunosuppression in the survivals
of the infected chickens. Obviously, these avian immunosuppressive
viruses (IBDV,MDV, ALV, etc.) suppress host immune response by
either interaction of viral proteins with host cellular proteins or by
regulating microRNAs expression. Thus, the immune suppressive
state of virus-infected chickens is the consequence of virus-host
interaction at both protein and RNA levels. Further investigation
into the strategies by which avian immunosuppressive viruses evade
the innate immune response will help to better understand the
pathogenesis of avian immunosuppressive virus infection and lay a
foundation in future studies, eventually contributing to the
development of effective measures for the prevention and control
of avian immunosuppressive virus.
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