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Organ transplantation is a lifesaving option for patients with advanced diseases. Rejection
is regarded as one of the most severe risk factors post-transplantation. A molecule that
contributes to immune tolerance and resisting rejection is human leukocyte antigen (HLA)-
G, which belongs to the non-classical major histocompatibility complex class (MHC) I
family. HLA-G was originally found to play a role during pregnancy to maintain immune
tolerance between mother and child. It is expressed in the placenta and detected in
several body fluids as soluble factor as well as different membrane isoforms on cells.
Recent findings on HLA-G show that it can also play multifaceted roles during
transplantation. This review will explain the general characteristics and biological
function of HLA-G and summarize the views supporting the tolerogenic and other roles
of HLA-G to better understand its role in solid organ transplantation (SOT) and its
complications. Finally, we will discuss potential future research on the role of HLA-G in
prevention, diagnosis, and treatment in SOT.

Keywords: organ transplantation, HLA-G, rejection, polymorphisms, immunosuppressive treatment, leukocyte
immunoglobulin-like receptor, immune regulation
INTRODUCTION

Solid organ transplantation (SOT) is a therapeutic option for terminal stage organ dysfunction of
the heart, liver, kidney, pancreas, small bowel, and lung intending to prolong the quality of life and
life expectation (1). Rejection is one of the most severe complications of SOT. Rejection occurs when
donor tissues are not recognized as self by the recipient’s immune system, which will trigger an
inflammatory response leading to rejection of the transplanted tissues. Rejection can occur at
Abbreviation: HLA-G, Human Leukocyte Antigen-G; MHC, Major histocompatibility complex; b2M, b-2-microglobulin;
UTR, Untranslated region; URR, Upstream regulatory region; PBMCs, Peripheral blood mononuclear cells; SNPs, Single-
nucleotide polymorphisms; NK, Natural killer; DC, Dendritic cells; TBBx, Systematic transbronchial biopsies; AR, Acute
rejection; ESRD, End-stage renal disease; MMF, Mycophenolate mofetil; RAD, Everolimus; BOS, Bronchiolitis obliterans
syndrome; AMR, Antibody mediated rejection; hc, Heavy chain; ILT, Ig-like transcript; KIR, Killer cell Ig-like receptor; LILR,
Leukocyte immunoglobulin-like receptor; TGF-b, Transforming growth factors; CsA, Cyclosporine; IFN, Interferon; APCs,
Antigen-presenting cells; SOT, Solid organ transplantation.
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different moments after transplantation. The highest risk for
rejection lies during the first months, but rejection can also occur
at a later stage. Acute rejection often occurs within 6 months
after transplantation. The mechanism of acute rejection involves
specific lymphocytes that react to the non-self-human leukocyte
antigens from the graft. Chronic rejection occurs months to years
after transplantation. Acute rejection is often a risk factor for
development of chronic rejection. Chronic rejection involves the
formation of matrix proteins such as collagen by smooth muscle
cells resulting in graft arteriosclerosis and fibrosis. To treat
rejection, immunosuppressive medication is used which targets
T cell responses but as a side effect severely impairs the general
immunity (2). Therefore SOT patients are at high risk for
infections. Subsequently, for the treatment of SOT patients, a
balance between the risk of rejection and the level of
immunosuppression needs to be found.

Immune regulation is important in maintaining this balance
and is relevant to lowering the chance of rejection (3). HLA-G is
a regulatory molecule, first described in fetal cytotrophoblasts
during pregnancy, and is thought to play a role in protecting the
fetus from destruction by the mother’s immune system, so-called
fetal-maternal tolerance (4). In physiological conditions, the
molecule is expressed in extra villous trophoblasts cells (5), but
also in other tissues. In pathological situations, the molecule is
observed in tumors (6) and correlated to bad prognosis, and is
associated to autoimmune diseases and viral infection
susceptibility, creating an unbalanced and pathologic
environment (7, 8). HLA-G has seven isoforms and has
different polymorphisms and biological characteristics, which
leads to different expression levels. Its inhibitory function is
conveyed through the interaction with specific receptors on a
diverse set of immune cells. HLA-G is thought to be involved in
transplantation immune tolerance by protecting the organ from
rejection (9).
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This review aims to introduce the biologic characteristics of
HLA-G, to summarize the views supporting the tolerogenic and
other roles of HLA-G, and to discuss its potential role in
protecting the transplanted organ from rejection. Finally we
discuss potential future research on the role of HLA-G in
prevention, diagnosis, and treatment in SOT.
HLA-G BIOLOGY CHARACTERISTICS

The HLA-G Gene and Polymorphisms
The HLA-G gene was first referred to as a member of the non-
classical MHC I family in 1987 (10). It is located in the MHC
region at chromosome 6p21.3 (11). The non-classical MHC-I has
fewer polymorphisms and has limited tissue distribution
compared to classical MHC-I (12). Classical MHC-I has an
important role in adaptive immunity by antigen-presentation
to CD8+T cells. Non-classical MHC-I is important in the
regulation of both adaptive and innate immune responses (13).

HLA-G has 88 described alleles and is 3151 base pairs in
length (14). HLA-G has seven isoforms: it can be expressed as the
membrane bound isoforms HLA-G1 (complete molecule and full
length protein), HLA-G2 (minus globular a2 domain), HLA-G3
(minus a2 a3 domains), HLA-G4 (minus a3 domain) and the
soluble isoforms HLA-G5 (soluble HLA-G1), HLA-G6 (soluble
HLA-G2) and HLA-G7 (soluble HLA-G3) (17–39 kDa), which
all have immune tolerating properties (15) (Figure 1A). The
different membrane and soluble isoforms are generated through
alternative splicing (16, 17). Compared with other isoforms,
HLA-G1 and G5 molecules are more like classical HLA class I
antigens (Figure 1A). Tronik-Le Roux and colleagues detected a
novel HLA-G isoform in clear cell renal cell carcinoma cells, that
has an extended 5’-region and lacks the transmembrane and a1
domains (18).
A B

C

FIGURE 1 | the HLA-G molecule. (A): Schematic overview of the HLA-G isoforms. HLA-G1 to G4 are membrane bound isoforms and HLA-G5 to G7 are soluble
isoforms, they are generated by alternative splicing. HLA-G1 and G5 complex contain a1 (red color), a2 (yellow color), and a3 (blue color) globular domains non-
covalently associated with b2-microglobulin (black color). (B): 3D crystal structure of HLA-G (reproduced from Protein Data Bank (Gene ID: 1YDP) with permission.
The heavy chain (hc) is shown in green, b2M in red, and the peptide in blue color. (C): HLA-G gene structure. Exon 1 encodes the signal peptide. Exons 2, 3, and 4
encode the a1, a2, and a3 domains, respectively. Exons 5 and 6 for the transmembrane (TM) and cytoplasmic (CT) domains, respectively. Exon 7 and exon 8 are
not translated.
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Figure 1B shows the 3D crystal structure of HLA-G1 protein
derived from the protein data bank website (PDB) (PDB ID:
1YDP), originally shown by Clements et al. (19). Similarly to
MHC Class I, it has a heavy chain (hc) with three globular
domains a1–a2–a3 which are non-covalently bound to b2-
microglobulin (b2M) and a peptide (Figure 1). HLA-G1 and
HLA-G5 have extensively been studied over the years, because of
their similarity to classical MHC-I. Like MHC-I, HLA-G1 and
G5 contain a1, a2, and a3 that can combine to b2M, while HLA-
G1 and G5 molecules’ a1, a2 domains can form the antigen
presenting peptide binding cleft. HLA-G can exist as dimers or as
monomers. The dimers modality are linked by disulfide bonds
with two cysteine residues at position 42 on the HLA-G a1
domain (20).

Full-length HLA-G has eight exons and seven introns
(Figure 1C). Exon 1 encodes the signal peptide, exons 2, 3,
and 4 encode the a1, a2, and a3 domains, respectively. Exon 5
encodes the transmembrane domain. The appearance of a stop
codon at the second codon of exon 6 leads to a HLA-G shortened
cytoplasmic tail, and as a result exon 7 and exon 8 are not
translated (21). Soluble HLA-G5 and G6 are formed by the stop
sequence in intron 4 (22, 23).

There are two noncoding regions in the HLA-G gene: the 5’
upstream regulatory region (URR) and 3’ untranslated regions
(UTR), which have the most polymorphic sites. The 3’ UTR
polymorphisms are listed in Table S1. HLA-G has eight UTR
haplotypes and has the capacity to exist in different
polymorphisms. Castelli et al’s work based on the 1000
genomes project found that UTR-1 to UTR-8 are the more
frequent in the 3’UTRs but not the only 3’UTRs identified (24).
Specific polymorphisms such as UTR-1 have been related to
recurrent pregnancy loss and other pregnancy disorders (25, 26).

HLA-G*0105N is known as a null allele and has a cytosine
deletion in exon 3 leading to a premature stop codon in exon 4
(27, 28). HLA-G*01013 and HLA-G*0105N have been related to
low HLA-G protein expression while G*01041 is related to high
expression (29). In an in vitro study it was found that HLA-
G*0105N encoded proteins could protect natural killer (NK)
cells from lysis which indicates that this is a functional HLA-G
isoform (30). The HLA-G*010101 was the first allele sequenced
and was found to be predominantly present in almost all
populations (Asian, European, and African) (27).

Regulation of HLA-G Protein Expression
During pregnancy HLA-G is primarily expressed by extravillous
trophoblast cells in the placenta at the fetal maternal interface,
which is important in maternal tolerance by inhibition of NK cell
lysis (5, 31). HLA-G also is an important player in preeclamptic
patients (32), and in patients with recurrent miscarriage (33).
Expression of HLA-G in the male reproductive system has also
been described (34, 35).

Next to its role during pregnancy soluble HLA-G (sHLA-G)
can also be found in body plasma (36), cerebrospinal fluid (37),
and even as part of extracellular vesicles (38). A study by Rebman
et al. showed that peripheral blood monocytes are the
predominant cells secreting HLA-G5 (39). In pathological
Frontiers in Immunology | www.frontiersin.org 3
situations the molecule can be observed in solid tumors (6,
40), in malignant melanocytic lesions (41), malignant ascites
(42) and pleural effusions (40). As mentioned, HLA-G
expression in malignancy is related to bad prognosis.

Furthermore, membrane bound HLA-G can be detected in
peripheral blood on different immune cells such as monocytes/
macrophages, regulatory T cells, CD4+ T cells, CD8+ cytotoxic T
cells and dendritic cells and may be implicated in the complex
mechanisms underlying the pathogenesis of these disorders as
described in the review by Contini et al. (7). In general, increased
expression of HLA-Gmay reflect an attempt to control the immune
derangement as for instance seen in autoimmune diseases.

HLA-G expression is influenced by genotype and
polymorphisms. In general, haplotype UTR-1 is associated
with increased sHLA-G levels and UTR-5 or UTR-7 are
associated with decreased sHLA-G levels, while for UTRs 2, 3,
4, 6, 8 or 10 no significant differences were found regarding
sHLA-G expression (43). The influence of UTR-5 on gene
expression show some ambiguous results, since it was
associated with both high and low expression of sHLA-G as
mentioned in the review by Dahl et al. (44). A possible
explanation to this contradictory result is that UTR-5
haplotype may vary among different populations. The variable
polymorphisms 14 bp, +3142 C/G and +3187A/G in UTR-3 can
influence HLA-G expression by modifying its mRNA stability
(27, 45). In general, the HLA-G 14 bp Ins/del, +3142 SNP and
+3187A/G seemed to have the most influence on HLA-G
expression level.

Next to this, HLA-G expression is also regulated by cytokines.
In line with its tolerogenic role there is evidence that anti-
inflammatory and immunosuppressive cytokines like
Interleukin (IL)-10 and IL-4 can upregulate HLA-G expression
on human PBMCs (46). There is enhanced HLA-G expression in
trophoblast cells when activated by IL-10 and this suggests that
IL-10 may have a role in protecting the semi-allogenic human
fetus from maternal immune responses (47). Pro-inflammatory
cytokines such as IL-2 and IL-6 are described to down regulate
HLA-G expression on the choriocarcinoma cell line JEG-3,
which is widely used as an in vitro model study of human
trophoblast cells (48). This study also showed that IFN-g and IL-
10 have a role in maintaining high expression of HLA-G and
regulation of HLA-G isoforms, respectively (48). However, these
results have not been shown in vivo yet.
HLA-G Receptors and Mechanisms of
Suppression/Regulation
HLA-G Receptors
HLA-G interacts with receptors such as Ig-like transcript (ILT)-2
expressed on T cells, B cells, monocytes, macrophages, NK cells and
dendritic cells; ILT-4 on monocytes, macrophages, NK cells
and dendritic cells; killer cell Ig-like receptor (KIR)2DL4 on mast
and NK cells; CD8 on T cells and NK cells, and CD160 on
endothelial cells (49–52). In general, interaction with these
receptors leads to inhibition of proliferation, of differentiation, of
production of cytokines and inhibition of other mechanisms (Table
June 2022 | Volume 13 | Article 902093
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S2 and Figure 2). HLA-G dimers have a higher affinity with the ILT
receptors than the monomers (20). ILT-2, ILT-4 and CD8
inhibitory receptors can all bind to sHLA-G via the HLA-G a3
domain (53). ILT-2 and ILT-4 can recognize b2-microglobulin, but
only ILT-4 can recognize HLA-G free heavy chains (54, 55) and the
isoforms HLA-G2 and G6 a1–a3 (56).

ILT-2 (also known as CD85j and LILRB1) is a receptor that
consists of 4 structural domains (D1-4), and is the main ligand
for the HLA-G dimer, since HLA-G dimers have greater avidity
for ILT-2 than ILT-4 (57). HLA-G inhibiting receptor ILT-4
(also known as CD85d and LILRB2) can regulate HLA-G
function in dendritic cells, as ILT-4 expression is limited to
monocytes, macrophages and dendritic cells (58–60). Interferon
(IFN)-g can induce expression of ILT4 and other HLA-G
inhibitory receptor molecules, thereby indirectly acting on
HLA-G expression (48, 61). Since ILT-2 and ILT-4 are known
inhibitors of the immune system, understanding its regulation by
HLA-G, is relevant in the context of organ transplantation
disease (see below).

The KIR2DL4 (CD158d) receptor which belongs to the KIR
receptors is induced on decidual NK cells or on systemic NK cells
(62–64). However, one study showed that binding of KIR2DL4
to HLA-G monomers and dimers was absent (65). Therefore the
interaction between HLA-G and KIR2DL4 is not clear and may
need further investigation.

Altogether, HLA-G can upregulate the ILT2, ILT4 and
KIR2DL4 expression in antigen-presenting cells, NK cells, and
T cells (66–68). HLA-G and cells expressing its receptors were
found to be related, suggesting an autocrine or paracrine
regulation mechanism. These inhibitory receptors show more
affinity for HLA-G than the classical HLA class I molecules,
suggesting that HLA-G is important in regulating NK cell, T cell,
and myelomonocytic cell activation.
Frontiers in Immunology | www.frontiersin.org 4
CD8 is a receptor for MHC-class I molecules, which can
induce apoptosis under certain conditions such as sHLA-G
concentrations below 100 ng/ml, or in vitro when cells secrete
HLA-G5, but this still needs further confirmation in a
physiological context (69). HLA-G may increase the expression
and secretion of FasL and may induce apoptosis of CD8+ T cells
through the Fas–FasL mediated mechanism (39, 47).

HLA-G-CD160 interaction has a direct inhibitory role on
vessel formation (70). Also, the interaction between sHLA-G and
CD160 on endothelial cells was shown to cause apoptosis.
Because CD160 is very often strongly expressed in the
vasculature of tumors, future research is recommended to
explore the interaction of HLA-G and CD160 in different tumors.

In addition, NKG2A/CD94 was found as a possible new
receptor for HLA-G on NK cells, but this needs further
research to better understand the role of binding of HLA-G to
this receptor (71).

HLA-G Direct Suppressive Effects on
Immune Cells
The HLA-G immunomodulatory role is based on the inhibitory
effect on T cells and NK cells through the above mentioned
receptors by inhibition of proliferation and cytotoxic functions,
regulatory T cell generation, differentiation of antigen-presenting
cells (APC), and cytokine secretion. During these processes,
HLA-G enhances the expression of Th2 anti-inflammatory
cytokines, including IL-4, IL-10, and IL-13, and decreases Th1
pro-inflammatory cytokines, including IL- 2, TNF-a, and IFN-g.

A flow cytometry study found that HLA-G can exert
inhibition of proliferation of CD4+ T cells (72). In a mixed
lymphocyte cultures experiment, it was found that sHLA-G5
from the responder CD4+ T cells can inhibit the allogeneic
proliferative T cells response (73). It was also shown that HLA-G
FIGURE 2 | HLA-G immune inhibition by interaction with receptors on effector cells. sHLA-G and membrane bound HLA-G molecules interact with the ILT-2 and
ILT-4 receptor on T, NK, B cells and macrophages resulting in the inhibition of cytotoxicity, proliferation, or antibody production. The interaction of HLA-G with CD8
coreceptor on certain T and NK cell population leads to the deletion of these cells. Long-term tolerance will be achieved by the induction of different types of
regulatory T (Treg) cells. HLA-G and KIR2DL4 interaction on mast cells suppresses mediation of allergic reactions.
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expression on APCs could inhibit CD4+ T cell activation directly
(74–76).

During pregnancy HLA-G may play a critical role in
regulating CD8+ T cell function by eliminating alloreactive T
cells (23).

Studies have demonstrated that HLA-G can inhibit
migration, proliferation, lytic activity of NK cells, production
of IFN-g or other NK T cells cytokines through binding to ILT-2
and KIR2DL4 receptors (17, 49, 71, 77–79).

A mechanistic study showed that dendritic cells (DCs)
exposed to IFN-g have low expression of costimulatory
molecules and enhanced expression of HLA-G and ILT-4
molecules (61). Another mechanism is the upregulation of
ILT-4 receptors on DCs by CD8+CD28+ Tregs, without
inducing apoptosis or maturation of DCs (80). DC-10 is a new
subset of DCs characterized by IL-10 production, which can
express membrane bound HLA-G when differentiated and
thereby induce T regulatory type 1(Tr1) cells (81).
TRANSPLANTATION

HLA-G in Solid Organ Transplantation
Since it was found that HLA-G has a role in protecting the fetus
from attack by the maternal immune system, similar functions
can be envisioned for allogeneic organ transplantation (82, 83).
Acceptance of paternal antigens on the fetus during pregnancy
can be considered as a successful allograft in the maternal host.
Transplantation can be regarded as a similar allograft placement.
Therefore, it is hypothesized that HLA-G has a tolerogenic role
which can diminish the risk of rejection and can help to improve
the survival of the allograft.

HLA-G expression was first investigated in heart transplantation
in 2000 (9). Since then, its expression was detected in different solid
organs after transplantation such as in heart, kidney, liver, lung,
liver-kidney, kidney-pancreas transplantations. HLA-G was
detected using immunohistochemistry in tissue biopsies or by
ELISA in serum or plasma, by flow cytometry on specific cell
subsets and by real-time PCR on isolated DNA and RNA. As shown
in Table 1, most of the clinical studies showed that tissue or blood
expression of HLA-G with any of the above mentioned techniques
has a protective role, induction of immune tolerance and
subsequent graft acceptance in transplantation. In some studies
however, the relation with graft acceptance was not so clear and in
these studies expression of HLA-G was determined by time
after transplantation (96), inflammatory processes, or specific
genotypes associated with diabetes (110, 123) (see Table 1).
The study by Moroso et al. for instance showed that HLA-G did
not have a protective role after liver transplantation, but that end-
stage liver disease was associated with HLA-G expression on
hepatocytes (116). The study by White et al. (111) showed
contrary to their expectations that increased soluble HLA-G
concentrations in bronchoalveolar lavage but not in serum
was associated with a higher grade of AR prior to a clinical
diagnosis of BOS.
Frontiers in Immunology | www.frontiersin.org 5
Since specific polymorphisms influence HLA-G expression,
these polymorphisms can be associated with rejection or
acceptance. In most studies genomic DNA of the recipient is
used so studies are looking at recipient HLA-G polymorphisms.
HLA-G 14bp ins/del and 3142 SNP are most strongly associated
with rejection (Table 1). The +3003C variant specific for UTR-4
provides a protective role in rejection while the +3196G variant
specific for UTR-2 promotes rejection (97). Especially in kidney
transplant studies, HLA-G UTR-2, 3, 4, 6 polymorphisms were
found more frequently in acute rejection groups while UTR-1, 5,
7 expression was seen mostly in stable cohorts (105).

A study by Lazarte et al. (112) investigated the association of
donor and recipient HLA-G SNPs with chronic lung allograft
dysfunction (CLAD) and mortality after lung transplantation.
Specific donor SNPs were associated with mortality risk after
lung transplantation, while certain donor-recipient SNP pairings
modulated CLAD risk. Janssen et al. also investigated both
kidney transplant recipient- and donor- HLA-G -14bp ins/del
and 3142C > G polymorphisms (99). A higher frequency of these
genotypes in the donors was seen in no-rejection patients, so
these genotypes are protective against transplant rejection. These
studies shows that it is relevant whether donor and/or recipient
HLA genotypes were determined. While donor genotypes could
influence the local HLA-G expression in the transplanted organ,
recipient genotypes will likely represent the activity of the host
immune system.

Inhibitory and Regulatory Effects of HLA-G
on Immune Cells After Transplantation
As shown above, both HLA-G expression in grafts and sHLA-G
levels have often been shown to be associated with improved
graft acceptance. T cells exert an important tolerogenic role in
organ transplantation, but the relation between T cell function
and HLA-G expression is not completely clear. Some studies
have shown that HLA-G molecules and HLA-G+ T cells are
associated with acceptance in heart and kidney transplantation
(84, 124). In 66 kidney transplantation patients measuring HLA-
G expression by flow cytometry on CD4+ T cells, it was found
that decreasing number of CD4+HLA-G+ cells compared to
stable patients could predict AR (125).

Data suggested that occurrence of T follicular helper cells
(Tfhs) is related to acute rejection after kidney transplantation
(126). However, a single center study with 42 kidney
transplantation patients showed no difference in HLA-G
expression on Tfhs derived from extracellular vesicles released
by cells between rejection and non-rejection groups, suggesting
that Tfhs contribute little to allograft transplantation (127).

In human heart transplant recipients, it was shown that
CD8+CD28- alloantigen-specific suppressor T cells were
associated with non-rejections by inducing upregulation of
ILT4 on monocytes and dendritic cells, which suggest that the
mechanism of tolerance maybe related to engagement of HLA-G
to the ILT4 receptor (59).

DCs have been reported to express high levels of HLA-G in
peripheral blood in tolerant liver transplant recipients (7, 128).
June 2022 | Volume 13 | Article 902093
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TABLE 1 | The association between HLA-G expression and organ transplantation graft acceptance in clinical studies.

Organ HLA protein
expression on
graft tissue

(s)HLA-G in blood
(mRNA or protein)

HLA genotypes and gene expression Graft
Acceptance

Reference

Heart Endomyocardial
cells (IHC)

sHLA-G5 and -G6
(IP and WB)

ND Yes (9, 84)

ND sHLA-G (ELISA) ND Yes (83, 85)
Endomyocardial
cells
Myocardial
biopsies (IHC)

ND ND Yes (86)

ND sHLA-G (ELISA), HLA-G 14bp ins/del (PCR)
-14bp/-14bp is related to higher sHLA-G

Yes (87, 88)

ND ND HLA-G +3196 polymorphism (PCR) is risk factor for cell-mediated rejection ND (89)
Kidney Glomerular and

tubular epithelial
cells(IHC)

ND ND Yes (90)

ND HLA-G mRNA
(semiq. PCR)

Yes (91)

ND ND HLA-G 14bp ins/del (PCR) is related to post-Tx weight gain and
complications

No (92, 93)

ND ND HLA-G 14bp ins/del (PCR)
-14bp/-14bp is related to stable disease

Yes (94, 95)

ND sHLA-G (ELISA) ND No (94)
Yes (95)

ND ND HLA-G 3’UTR region (DNA sequencing) several associations among different
polymorphic sites

ND (96, 97)

ND sHLA-G (ELISA) HLA-G 14bp ins/del (PCR)
-14bp/-14bp is related to CKD

Yes (98)

ND sHLA-G (ELISA HLA-G 14bp ins/del (PCR)
Donor HLA-G polymorphism important for AR

Yes (99)

ND sHLA-G (ELISA) HLA-G 14bp ins/del (PCR)
Higher AR in +14bp/+14bp, higher s-HLA-G in non-AR

Yes (100)

ND sHLA-G (ELISA)
HLA-G mRNA (rt-
PCR)

5’UTR and 3’UTR (PCR) UTR-haplotypes are involved in different HLA-G
expression patterns at transcriptional and translational levels

Yes (101)

ND sHLA-G (ELISA kit)
(IP and WB)(Flow
Cytometry)

ND Yes (102)

ND sHLA-G1 and G5
(ELISA)
HLA-G mRNA (RT-
PCR)

ND Yes (103)

tubular epithelial
cells (IHC)

HLA-G m RNA (RT-
PCR)

ND ND (104)

ND sHLA-G1 and G5
(ELISA)

HLA-G 3’UTR region (PCR) higher sHLA-G in homozygous +3010GG,
+3142CC, +3187GG, and +3196CC carriers in non-AR patients

Yes (105)

ND sHLA-G1 and G5
(ELISA)

HLA-G 3’UTR region (PCR) No relation between sHLA-G levels and
genotypes, relation between HLA-G 14bp ins/ins and +3142G/G and obesity
and diabetes mellitus post-transplant

No (106)

ND sHLA-G1 and G5
(ELISA)

HLA-G 3’UTR region (PCR) several associations among different polymorphic
sites

ND (107)

ND sHLA-G (ELISA) HLA-G +3142 C>G SNP (PCR) relation to CMV infection ND (108)
tubular epithelial
cells (pTECs) (IF)

sHLA-G1 and G5
(ELISA)

ND Yes (109)

Lung bronchial epithelial
cells (IHC)

sHLA-G in vitro
(ELISA)
mRNA in vitro (RT-
PCR)

ND Yes (110)

ND sHLA-G1 and G5 in
plasma and BAL
(ELISA)

ND No (111)

bronchiolar and
bronchial epithelial
cells (IHC)

sHLA-G in plasma
ELISA)

ND Yes (31)

(Continued)
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Similar to NK cells, DCs were described in organ transplantation
with a double-edged role, since they can contribute both to
rejection and tolerance. HLA-G molecules are known to exert
immunosuppressive action on DC maturation and on NK cells,
and can in consequence inhibit respectively T cell responses and
NK cytolysis. Gros et al. showed HLA-G molecules impair NK/
DC crosstalk via inhibition of dendritic cells (129).

So far, allograft rejection is a complex process involving both
innate and adaptive immunity. Inflammation can contribute to
rejection, and regulation of inflammation can reduce the
incidence of rejection. Several studies refer to the role of HLA-
G in inhibiting inflammation (130). Furthermore, rejection may
be caused by antibodies against allo-antigens produced by B cells.
HLA-G may have an inhibitory effect on B cells proliferation and
differentiation thereby contributing to the graft acceptance post
transplantation (131).

Figure 3 shows a schematic overview of the possible roles of
HLA-G in mediating effects by direct and indirect pathways on T
cells, B cells and DCs, which can contribute to immune tolerance.
The complex process involves both innate and adaptive
immunity. HLA-G interaction on macrophages, monocytes,
and NK cells can inhibit the production of cytokines, that are
Frontiers in Immunology | www.frontiersin.org 7
involved in inflammation and rejection. The direct pathway is
the interaction with ILT-2 and ILT-4 receptors on T cells, B cells
and NK cells leading to inhibitory processes such as inhibition of
proliferation, and inducing apoptosis of cytotoxic cells. Indirect
effects of HLA-G may affect DCs, CD4+ and CD8+ T cells
leading to induction of regulatory and suppressor T cells that will
further act on effector cells. Although the role of the Fas/FasL
system in allograft tolerance is not entirely clear, apoptosis of
cytotoxic cells is an essential requirement for tolerance in
transplantation (132). As discussed above HLA-G can induce
CD8+ T cells apoptosis by interaction with FasL, but further
research on this topic is needed.

Relation of HLA-G With
Immunosuppression Drugs or Other Risk
Factors Post Transplantation
Immunosuppression is used to prevent rejection. Therefore it is
appropriate to investigate the role of HLA-G regarding allograft
status, and whether HLA-G can be used as a surrogate marker for
monitoring rejection during immunosuppressive treatment.

Levels of sHLA-G in 17 heart transplantation recipients
showed no relation to an immunosuppressive regimen treatment
TABLE 1 | Continued

Organ HLA protein
expression on
graft tissue

(s)HLA-G in blood
(mRNA or protein)

HLA genotypes and gene expression Graft
Acceptance

Reference

Transbronchial
biopsies (IF)

sHLA-G in BAL
(ELISA)

Donor HLA-G SNPs (PCR) Specific donor SNPs are associated with mortality
risk after lung transplantation, while certain donor-recipient SNP-pairings
modulated CLAD risk

No (112)

Liver ND sHLA-G (ELISA)(flow
cytometry)

ND Yes (113)

ND sHLA-G1 and G5
(ELISA)

ND Yes (114)

Liver tissues (IHC) sHLA-G (ELISA) ND Yes (115)
No (116)

ND ND HLA-G 14-bp ins/del (PCR) no relations between 14-bp ins/del and acute
rejection

No (117)

ND ND HLA-G 14-bp ins/del (PCR), 3142C>G SNP: 14-bp ins/ins and +3142GG
genotypes are of importance AR prediction

Yes (118)

Kidney, liver
and kidney liver
combined

Biliary epithelial
cells
tubular epithelial
cells(IHC)

sHLA-G1 and G5
(ELISA)

ND Yes (119)

Biliary epithelial
cells
mononuclear cells
glomerular cells
tubular epithelial
cells(IHC)

sHLA-G1 and G5
(ELISA)

ND Yes (120)

ND sHLA-G (ELISA)
HLA-G1 and G5
mRNA (RT-PCR)

ND Yes (74)

ND sHLA-G1 and G5
(ELISA) mRNA(RT-
PCR)

ND Yes (121)

Kidney kidney/
pancreas

ND sHLA-G (ELISA) ND Yes (122)

Pancreas ND ND HLA-G 14-bp ins/del (Genotyping) 14bp ins/ins genotype is risk factor for
susceptibility to type 1 diabetes mellitus

No (123)
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with cyclosporine (CsA). This study has the limitation of using
serum samples and not plasma samples, while measuring sHLA-G
was shown to be more accurate in plasma samples (133).
Therefore, it is highly recommended to measure HLA-G in
plasma because HLA-G maybe trapped in blood clots in serum
(36). Higher sHLA-G expression was related to Everolimus (Eve)
treatment but not to mycophenolate mofetil (MMF) treatment
(133). Other investigations in kidney transplantation patients
showed tacrolimus but not CsA to be associated with
increased expression of HLA-G (90). In vitro studies showed
that immunosuppressive drugs including everolimus,
tacrolimus, cyclosporin, and dexamethasone could not induce
HLA-G expression in human tubular epithelial cells (109).
Lastly, no differences in sHLA-G levels were detected in
liver transplantation patients without rejection after regular
immunosuppressive therapy (116, 134). CTLA4-Ig (Belatacept)
is a new recombinant molecule used for preventing acute rejection
in kidney transplanted patients, and patients treated with CTLA4-
Ig had higher sHLA-G plasma levels than patients treated with
calcineurin inhibitors or healthy donors (135). Overall, these
studies suggest that current immunosuppressive therapies may
enhance expression of donor or recipient HLA-G or its receptors.
These findings suggest that immunosuppressive therapy may
affect sHLA-G concentrations post–transplant and that the
expression of HLA-G confers protection against rejection.

Prediction of Transplant Success by HLA-
G Polymorphisms
In studies concerning the HLA-G polymorphisms, it has been
shown that HLA-G polymorphism can act as a risk factor for
Frontiers in Immunology | www.frontiersin.org 8
diabetes mellitus in both kidney and pancreas transplantation
(106, 123). Both HLA-G 14bp and +3142G/G show associations
with obesity post kidney transplantation (92, 106). Low
expression of HLA-G in patients with HLA-G 14bp was
associated with dyslipidemia (93). HLA-G 14bp and 3187SNP
were risk factors of cancer development post heart
transplantation (136, 137). The frequency of HLA-G SNP -201
(CC) was increased in patients with cardiac allograft vasculopathy
(CAV) after heart transplantation (138). In general, prediction of
outcome can be based on polymorphism with changed expression
of either sHLA-G or membrane HLA-G.

Infection is one of the main causes of death post
transplantation. Renal transplant recipients with HLA-G +3142
CC genotypes had more CMV infections (108). A higher sHLA-
G pretransplant was associated with more infections in heart
transplantation (139). Also patients with CAV and high HLA-G
expression were at risk for CMV post heart transplantation
(140). Therefore HLA-G polymorphisms might also be a
predictive marker in infection risks.
CONCLUSION

In conclusion, the primary biological role of HLA-G to prevent the
embryo from being rejected shows similarities to the process of
transplantation. In this review we describe the roles of HLA-G
during solid organ transplantation. In general we believe that the
level of expression of HLA-G in donor tissues is positively
correlated with graft acceptance by down regulation of the host
immune response. Furthermore, it is clear that binding of HLA-G
FIGURE 3 | The role of HLA-G in controlling rejection in organ transplantation. The complex process involves both innate and adaptive immunity. HLA-G interaction
on macrophages, monocytes, and NK cells can trigger the production of cytokines leading the inflammation contributes to rejection. Another interaction work on
adaptive immunity involved direct and indirect pathways. The direct pathway is HLA-G directly inhibiting immune effectors such as T cells, B cells, and Natural Killer
(NK) cells. The indirect pathway involves HLA-G acting on dendritic cells (DC) and CD8+/CD4+ T cells. Subsequently acting on T regulatory cell (T reg) formation,
then continue acting on the direct pathway with inhibiting the functional cells.
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to its receptors on immune cells has a downregulatory effect on
those immune cells. Measurement of soluble HLA-G in different
compartments as an indirect measurement of immune activity is
more difficult to interpret since it depends on the time line after
transplantation and the dynamics of the involved immune cells in
either acute or chronic rejection. Therefore, usage of sHLA-G as
biomarker for evaluation of the course of transplantation or as
predictor for acute or chronic rejection should be done with
caution. HLA-G can also exert influence by inducing production
of cytokines and by inducing differentiation to regulatory T cells. A
few studies cannot confirm a role in graft acceptance, but show
other associations between HLA-G and transplantation, such as a
role in inducing inflammatory processes. Of note, some studies
show that immunosuppressive treatment such as the use of
everolimus, tacrolimus and belatacept could upregulate HLA-G
expression, thereby inducing a more stable environment for the
graft. It is important to keep in mind that polymorphisms in HLA-
G can predict variation in HLA-G expression and therefore can
play a role in transplantation rejection. Recent findings indicate
also a relation between HLA-G expression and inflammation,
which is another risk factor for rejection post transplantation.
Future studies may focus on the multiple working mechanisms of
HLA-G in immune regulation and how that knowledge can best be
used in maintaining a balance between prevention of rejection and
maintaining a adequate immune system after transplantation.
Frontiers in Immunology | www.frontiersin.org 9
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