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Basophils are the rarest granulocytes and have long been overlooked in immunological
research due to their rarity and similarities with tissue-resident mast cells. In the last two
decades, non-redundant functions of basophils have been clarified or implicated in a
broad spectrum of immune responses, particularly by virtue of the development of novel
analytical tools for basophils. Basophils infiltrate inflamed tissues of patients with various
disorders, even though they circulate in the bloodstream under homeostatic conditions.
Depletion of basophils results in the amelioration or exaggeration of inflammation,
depending on models of disease, indicating basophils can play either beneficial or
deleterious roles in a context-dependent manner. In this review, we summarize the
recent findings of basophil pathophysiology under various conditions in mice and
humans, including allergy, autoimmunity, tumors, tissue repair, fibrosis, and COVID-19.
Further mechanistic studies on basophil biology could lead to the identification of novel
biomarkers or therapeutic targets in a broad range of diseases.
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1 INTRODUCTION

Basophils are the least common granulocytes, representing ~0.5% of peripheral blood leukocytes in
both mice and humans. Basophils have long been regarded erroneously as the blood-circulating mast
cells, due to their phenotypic similarities with tissue-resident mast cells, including the surface
expression of the high-affinity IgE receptor (FceRI), and the release of histamine in response to
various stimuli. Actually, in clinical settings, basophils are frequently used as a surrogate for tissue-
resident mast cells for allergy diagnosis. Nevertheless, basophils and mast cells differ from each other
in several aspects. Basophils usually circulate in the blood, while mast cells reside in peripheral tissues.
Basophils have much shorter lifespan than mast cells. Moreover, the gene expression profile is quite
distinct between basophils and mast cells in both mice and humans (1, 2), implying that basophils
have unique roles distinct from those played by mast cells.

In the last two decades, a series of analytical tools for basophils have been developed, including
basophil-depleting antibodies (3, 4), genetically engineered mice which specifically lack basophils (5–
11), basophil-reporter mice (7, 11, 12), and basophil-specific Cre-expressing mice (7, 13, 14). Studies
using these powerful tools have identified non-redundant roles of basophils in Th2-type immune
responses, including the allergic inflammation (15–17) and protective immunity against parasitic
infections (18–20). Basophils are also shown to play important roles in other types of responses, such
as autoimmunity (21), tissue repair (22), fibrosis (23), cancer (24–26), and possibly COVID-19
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pathogenesis (27). In this review, we summarize the recent
developments on the contribution of basophils to the
pathogenesis of a variety of inflammatory disorders, based on
research findings published mainly during the past 5 years.
Regarding inflammatory responses associated with parasitic
infections, we highly recommend readers to refer recent review
articles (18–20).
2 ROLE OF BASOPHILS IN
ALLERGIC INFLAMMATION

2.1 Basophils as a Tool for Allergy
Diagnosis
Basophils isolated from patients’ blood are often used for allergy
testing in clinical settings. The basophil activation test (BAT) is a
representative assay, in which patient’s blood is incubated with
suspected allergens, and the activation of basophils in the blood
is assessed by the upregulation of CD63 and/or CD203c on their
cell surface (28, 29). BAT is useful for the diagnosis of a wide
variety of allergic disorders, including allergy to food, drug, or
venom as well as allergic rhinitis and asthma. BAT is also utilized
to monitor allergy therapeutics, such as allergen immunotherapy
and anti-IgE therapy (30–32).

Approximately 10-15% of individuals have basophils that are
non-responsive to anti-IgE antibody or allergen stimulation,
known as non-responder or non-releaser basophils (33). The
non-responder basophil phenotype is associated with
downregulation of spleen tyrosine kinase (Syk), even though
the functional significance of non-responder basophils remains
elusive. The presence of non-responder basophils is a challenge
when using BAT for allergy diagnosis.

BAT is a potential diagnostic tool for hypersensitivity
reactions against COVID-19 mRNA vaccines, but its
usefulness for predicting allergic reactions to the mRNA
vaccines remains controversial. Troelnikov et al. recruited three
patients with a history of polyethylene glycol (PEG) allergy and
found that all three patients displayed a positive skin intradermal
test and BAT for a PEG-containing mRNA vaccine, while all of
them displayed negative BAT for PEG itself (34). Basophils from
these patients were also activated by PEGylated liposomal
doxorubicin, suggesting that PEGylated lipid nanoparticles, but
not PEG itself, are the cause of their hypersensitivity reactions.
Warren et al. recruited patients with a previous history of allergic
reactions against mRNA vaccines (35). Only 1 of 11 patients
displayed a positive skin prick test for the mRNA vaccines, even
though all patients clinically underwent allergic reactions to the
mRNA vaccines. In contrast, 10 of 11 patients displayed a
positive BAT against PEG alone while all 11 patients had a
positive BAT against the mRNA vaccines, even though PEG-
specific IgE could not be detected in these patients. This suggests
a role for non-IgE-mediated allergic reactions against the
COVID-19 mRNA vaccines. Interestingly, Labella et al.
reported that 50% of persons with a history of SARS-CoV-2
infection displayed positive BAT against the mRNA vaccine,
irrespective of their vaccination status (36). Therefore, a positive
Frontiers in Immunology | www.frontiersin.org 2
BAT result against the mRNA vaccines may be attributed to
either a PEG allergy or a previous SARS-CoV2 infection.

Additional allergy tests using basophils have been proposed.
McKenzie et al. established a method for detecting allergen
specific IgE on basophils, designated as CytoBas (37). Qi et al.
reported that upon activation, basophils and mast cells release
CD203c+ extracellular vesicles, and the presence of such vesicles
has strong diagnostic value in patients with drug allergies (38).

2.2 Skin Allergy
2.2.1 Cutaneous Basophils Hypersensitivity
In the 1970s, basophils attracted attention since massive
infiltration of basophils into the skin lesion was observed in
certain forms of delayed-type hypersensitivity reactions triggered
by the injection of foreign antigens (39, 40). It is called cutaneous
basophil hypersensitivity (CBH) and mainly studied in guinea
pigs. This reaction clinically and histologically resembles Jones-
Mote responses to rabbit serum proteins in humans. CBH is
hardly elicited in mice, and the functional role of basophils in
CBH remains to be clarified. Skin allergic reactions against
COVID-19 mRNA vaccination clinically resemble Jones-Mote
reactions (41) characterized by erythematous and indurated skin
reactions. Although it remains unclear whether basophils are
indeed recruited to the site of the mRNA vaccination, it would be
possible that basophils are potentially involved in the
hypersensitivity reactions against COVID-19 mRNA vaccines
since some reports indicate the IgE-independent basophil
activation by mRNA vaccines (34, 35).

2.2.2 Atopic Dermatitis
The infiltration of basophils in the skin has been described in
several inflammatory skin disorders, including atopic dermatitis
(AD), bullous pemphigoid, prurigo, Henoch-Shönlein purpura,
eosinophilic pustular folliculitis (Ofuji’s disease), and urticaria
(42, 43). Of note, peripheral blood basophils from patients with
AD display upregulated expression of activation markers such as
CD63 and CD203c on the cell surface, compared with those from
healthy controls (44, 45). This suggests a possible role for
basophils in the pathogenesis of AD. As discussed below,
studies from mouse AD models demonstrated that basophils
contribute to the allergic inflammation, pruritus, and barrier
dysfunction in AD, three key features that contribute to the
pathogenesis of AD (46) (Figure 1).

2.2.2.1 Allergic Inflammation in AD
Basophils play important roles in the induction of skin allergic
inflammation in multiple models of AD, including IgE-
dependent chronic allergic inflammation (IgE-CAI) (47, 48),
the MC903-induced model (42), the oxazolone-induced model
(49, 50), and the IL-33-transgenic mouse model (51). In IgE-
CAI, mice are first sensitized with hapten trinitrophenol-specific
IgE, followed by an intradermal challenge of corresponding
allergens in ear skin, which results in severe ear swelling and
infiltration of inflammatory cells, including eosinophils,
macrophages, neutrophils, and basophils. IgE-CAI can be
elicited even in the absence of mast cells. On the other hand,
depletion of basophils almost completely abolishes ear swelling
May 2022 | Volume 13 | Article 902494

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Miyake et al. Basophils in Various Disorders
and cellular infiltration (3, 6, 48), illustrating an essential role for
basophils in the induction of IgE-CAI. Serine proteases released
by basophils play critical roles in the development of IgE-CAI
(52). Moreover, basophil-derived interleukin (IL)-4 plays a key
role in the recruitment of eosinophils to the skin lesion, and thus
promotes cutaneous inflammation (53). In an IgE-dependent
skin allergic inflammation model similar to IgE-CAI, basophil-
derived IL-4 promotes the expression of adhesion molecules,
Frontiers in Immunology | www.frontiersin.org 3
resulting in the enhanced recruitment of eosinophils (54).
Basophil-derived IL-4 also plays an important role in the
development of AD induced by repetitive topical application of
hapten oxazolone (50). In this model, basophils are the major
source of IL-4 in the skin lesion, consistent with recent single-cell
RNA-seq data (55). Depletion of basophils ameliorates
eczematous skin inflammation with crusts and scales,
suggesting the role of basophil-derived IL-4 in the formation of
FIGURE 1 | Role of basophils in the pathogenesis of atopic dermatitis. Basophils contribute to allergic inflammation, pruritus, barrier dysfunction and
Staphylococcus aureus colonization in atopic dermatitis (AD). 1) Basophil-derived interleukin (IL)-4 stimulates group 2 innate lymphoid cells (ILC2s) to enhance the
production of IL-5 and CCL11, leading to enhanced recruitment of eosinophils to the skin lesion (upper left panel). Basophil-derived IL-4 also augments the
differentiation of naïve T cells into Th2 cells in draining lymph nodes (upper right panel). 2) Basophil-derived leukotriene C4 (LTC4) acts on CysLTR2+ sensory
neurons, inducing acute itch flares in AD (lower left panel). 3) Basophil-derived IL-4 promotes proliferation and differentiation of keratinocyte (lower middle panel).
4) Basophil-derived IL-4 suppresses the IL-1 and IL-23 production by keratinocytes, leading to reduced production of IL-17A by gd T cells and, therefore, increased
susceptibility to S. aureus infection (lower right panel).
May 2022 | Volume 13 | Article 902494
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lichenized skin lesions. Basophil-derived IL-4 also plays key roles
in other AD models. In a topical MC903 application model,
basophil-derived IL-4 acts on skin-resident group 2 innate
lymphoid cells (ILC2s), leading to enhanced proliferation of
ILC2s and AD-like skin inflammation (42). Similarly, in the
IL-33-transgenic mouse model, basophils promote the
proliferation of ILC2s, possibly through the production of IL-4
(51). Thus, basophil-derived IL-4 appears to contribute to AD
pathogenesis in the mouse models. In moderate-to-severe AD
patients, the treatment with dupilumab, a human monoclonal
antibody against IL-4Ra, rapidly improves the disease (56),
suggesting the involvement of IL-4 and IL-13 in the
pathogenesis of human AD. Given that human basophils can
produce a large amount of IL-4 in response to various stimuli
(57), it is likely that basophils contribute to the pathogenesis of
certain types of AD in humans.

Several reports indicate that basophils contribute to Th2 cell
differentiation in mouse AD models (12, 49, 58). Infiltration of
basophils into skin draining lymph nodes is observed in some AD
models, including the MC903-induced and oxazolone-induced
models (12, 49), suggesting that basophils can provide IL-4
required for the differentiation of naive CD4+ T cells into Th2
cells. Moreover, basophils are capable of presenting antigens to
naïve T cells, leading to the induction of Th2 cell differentiation
(59–61). However, this role of basophils remains controversial,
since some reports argued that basophils are incapable of
processing and presenting antigens to naïve T cells (62, 63).
Miyake et al. revisited this issue and found that basophils
acquire peptide-MHC-II complexes from dendritic cells (DCs)
through trogocytosis and can present antigens to naïve T cells,
promoting their differentiation into Th2 cells (35). Therefore, the
functional significance of basophils in Th2 cell differentiation may
differ, depending on experimental settings, determined in part by
the extent of the basophil-DC interaction in draining
lymph nodes.

2.2.2.2 Pruritus in AD
AD is characterized by chronic and intense itch, which can be
mediated by both histaminergic and non-histaminergic pathways
(64). Th2 cytokines including IL-4, IL-13, and IL-31 interact with
sensory neurons to provoke chronic itch in the context of AD (65,
66). Basophils can produce a large amount of IL-4 in response to
various stimuli (57), and are the major source of IL-4 in the skin
lesions of multiple ADmodels (48, 50, 67). Moreover, basophils can
produce IL-31 in response to anti-IgE and N-formyl-methionyl-
leucyl-phenylalanine stimulation (68). Therefore, it is probable that
basophils play a role in pruritus in AD.

Approximately 50% of patients with AD experience acute itch
flares, which is the exacerbation of intense itch, within 2 months.
Wang et al. showed that basophils contribute to acute itch flares
by interacting with sensory neurons via leukotriene C4 (LTC4)
in a mouse model. Mice were first topically sensitized with
MC903 and allergens (ovalbumin; OVA) on ear skin for 10
days, followed by an intradermal OVA challenge at a separate
skin site, leading to acute itch flares at the challenge site, and
chronic itch at the sensitization site (44). Basophil depletion
significantly reduced the occurrence of acute itch flares, whereas
Frontiers in Immunology | www.frontiersin.org 4
mast cell-deficiency had no effect. Moreover, chemogenic
activation of basophils induced acute itch flares, suggesting the
critical roles of basophils in acute itch flares. Importantly,
pharmacological inhibition of LTC4 significantly reduced the
occurrence of acute itch flares, and LTC4 levels in the skin lesion
were partly dependent on basophils. These results indicate the
possible involvement of the basophil-LTC4 axis in acute
itch flares.

2.2.2.3 Skin Barrier Dysfunction in AD
Skin barrier dysfunction is considered critical for the pathogenesis
of AD. Damaged epithelial cells produce cytokines such as thymic
stromal lymphopoietin (TSLP) and IL-33, leading to the promotion
of Th2 immunity (69). Th2 immunity in turn promotes further
disruption of the skin barrier (70). Consistent with this, the in vitro
treatment of keratinocytes with either IL-4 or IL-13 induced the
reduction of barrier-related genes (71, 72). Of note, the treatment of
AD patients with dupilumab significantly increased epidermal
barrier-related genes (73), suggesting that IL-4 and/or IL-13
promote skin barrier dysfunction in AD patients. In accordance
with this, in a MC903-induced AD model, basophil depletion
decreased the expression of IL-4 and IL-13 in skin lesion, reduced
epidermal hyperplasia and keratinocyte proliferation and
significantly reduced trans-epidermal water loss (67), indicating
the involvement of basophils in skin barrier dysfunction through the
IL-4 and IL-13 production.

2.2.2.4 Staphylococcus aureus Infection in AD
Skin colonization of S. aureus is frequently observed in patients with
AD and is involved in the pathogenesis of AD (74, 75). In mice, the
intradermal injection of lipoteichoic acid, a principal cell wall
component of S. aureus, enhances skin recruitment of basophils
in a TSLP-dependent manner (76). Moreover, basophil-derived IL-
4 promoted cutaneous S. aureus infection in a mouse model of S.
aureus infection. The tape stripping-induced skin barrier disruption
triggered the recruitment of basophils to the skin and facilitated
cutaneous S. aureus colonization (77). Either basophil depletion or
basophil-specific IL-4/IL-13 deficiency protected mice from
enhanced S. aureus infection. Basophil-derived IL-4/IL-13
suppresses IL-1 and IL-23 production by keratinocytes. This leads
to reduced IL-17A expression by gd T cells and impaired production
of neutrophil-attracting chemokines in the skin, resulting in
enhanced S. aureus infection. Callewaert et al. reported that the
dupilumab treatment reduces S. aureus colonization in patients with
AD (78), suggesting that basophil-derived IL-4/IL-13 may also
promote cutaneous S. aureus infections in AD patients.

2.2.2.5 Resolution of AD
Basophils reportedly contribute to the resolution of allergic
inflammation through the generation of M2 macrophages. In
the IgE-CAI model, basophil-derived IL-4 promotes the
differentiation of inflammatory monocytes into anti-
inflammatory M2 macrophages, leading to the resolution of
skin allergic inflammation (48). Pellefigues et al. identified two
distinct roles for basophils during an allergic inflammation in
another AD model, in which mice were topically applied with
MC903 for 4 consecutive days only. Mice developed continual
aggravation of ear swelling and skin barrier dysfunction for
May 2022 | Volume 13 | Article 902494
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approximately 9-10 days (inflammation phase), followed by the
resolution of skin inflammation after 10 days (resolution phase).
Depletion of basophils in the inflammation phase resulted in the
improvement of barrier dysfunction, indicating the
proinflammatory role of basophils. By contrast, either
basophil-specific macrophage colony-stimulating factor (M-
CSF)-deficiency or IL-4 neutralization resulted in aggravated
ear swelling and skin barrier dysfunction in the resolution phase.
Considering that IL-4 and M-CSF are important for the
generation of anti-inflammatory M2 macrophages, basophil-
derived IL-4 and M-CSF likely cooperate together to promote
M2 macrophage differentiation, leading to the resolution of AD.
In line with this, basophil-depletion at the resolution phase
resulted in the impaired generation of CD206hi macrophages
and reduced efferocytosis (phagocytosis of apoptotic cells)
capacity in macrophages.

2.2.3 Chronic Spontaneous Urticaria
Chronic spontaneous urticaria (CSU) is characterized by itchy
hives or angioedema which lasts for at least 6 weeks. Several lines
of evidence have suggested the role of basophils in the
pathogenesis of CSU (79–81). Ito et al. demonstrated the
recruitment of basophils to skin lesions in patients with CSU
(43). Extreme basopenia in the blood is commonly observed in
patients with CSU (82, 83), and blood basopenia is associated
with disease severity (84, 85). Omalizumab, a humanized
monoclonal anti-IgE antibody, has been approved for the
treatment of CSU (86, 87). Notably, the omalizumab therapy
rapidly increases the blood basophil number (88–90), whereas
the number of FceRI+ cells in skin lesions is decreased by
omalizumab treatment (88). These results indicate the
possibility that blood basopenia mirrors the recruitment of
basophils to the skin lesion.

In some patients with CSU, IgG autoantibodies against IgE
and FceRI are detected (91–93), which is considered to be a cause
of CSU (94). A recent study revealed that blood basopenia is
strongly associated with the presence of autoantibodies against
IgE or FceRI (95). Furthermore, blood basopenia combined with
autoantibodies is a predictor for slower response to omalizumab
therapy (96). Nonetheless, how basopenia is associated with
autoantibody and poor therapeutic responses against
omalizumab remains unclear. Autoantibody-mediated
activation of basophils may promote basophil recruitment to
the skin lesion resulting in basopenia in the blood. It is also
postulated that patients bearing autoantibodies display resistance
to omalizumab therapy, possibly due to the inability of anti-IgE
antibody to interfere with IgG autoantibody-mediated
basophil activation.

2.3 Respiratory Allergy
In patients with moderate-to-severe asthma, the treatment with
dupilumab, an anti-IL-4Ra antibody, efficiently reduces severe
exacerbation and improves lung functions (97), suggesting the
involvement of IL-4 and/or IL-13 in the pathogenesis of asthma.
In line with this, several animal studies demonstrated the
therapeutic effect of IL-4 and IL-13 inhibition on type 2 lung
inflammation (98–100). Basophils are a potent source of IL-4
Frontiers in Immunology | www.frontiersin.org 5
and IL-13 (50) and therefore may contribute to the development
of lung inflammation in patients with asthma. Indeed,
histopathological analysis revealed basophil infiltration in the
lungs of asthmatic patients, especially in fatal cases (101, 102).
Sputum basophils from asthmatic patients display increased
expression of activation markers such as CD63 and CD203c,
compared with blood basophils (103). Notably, the treatment of
asthma patients with benralizumab, a human monoclonal
antibody against IL-5Ra, significantly reduces the count of not
only eosinophils but also basophils in the blood (104–106). This
suggests that the therapeutic effect of benralizumab can be
attributed in part to the basophil depletion.

The frequency of basophils in the sputum of patients is higher
in eosinophilic asthma than in non-eosinophilic asthma and
healthy controls (103, 107) and positively correlated with that of
sputum eosinophils, implying a possible role of basophils in
eosinophil recruitment to inflamed lungs. In accordance with
this, the expression of basophil/mast cell-related genes in sputum
is associated with lung eosinophilic inflammation (108). In a
papain-induced asthma model, activated basophils produce IL-4
which promotes the proliferation of ILC2, enhances the
production of IL-5 and CCL11 from TSLP-activated ILC2s,
and facilitates recruitment of eosinophils into the lungs (109,
110). Matsuyama et al. reported that the long-acting muscarinic
antagonist acts on muscarinic M3 receptor expressed by
basophils to suppress IL-4 production. Therefore, it inhibits
activation and proliferation of ILC2s, leading to the reduced
eosinophil infiltration and airway inflammation. Unlike
basophils, mast cells rather suppress papain-induced lung
allergic inflammation by promoting regulatory T cell
expansion (111).

Infiltration of basophils is observed in nasal polyps in patients
with chronic rhinosinusitis (112–114). Recent study suggested the
role of basophils in aspirin-exacerbated respiratory disease (AERD)
(114), which is characterized by the triad of chronic rhinosinusitis,
namely nasal polyps (CRSwNP), asthma and intolerance to
cyclooxygenase-1 inhibitors. Patients with AERD displayed
increased basophil numbers in nasal polyps and peripheral blood,
compared to patients with CRSwNP alone. Basophils from nasal
polyps of AERD patients displayed an activated phenotype and
increased rates of degranulation, as assessed by the loss of staining
with 2D7, a basophil granule-specific antibody. Frequency of
basophil degranulation was positively correlated with disease
severity, suggesting the possible contribution of basophils to the
pathogenesis of AERD.

2.4 Gastrointestinal Allergy
As mentioned earlier, basophils are extensively utilized for the
diagnosis of food allergies. Besides their usefulness in the
diagnosis, basophils are implicated in the pathogenesis of peanut
allergy in a human study (115). In mouse models of epicutaneous
allergen sensitization, basophils promote the production of allergen-
specific IgE, leading to the development of food allergies (116–119).
Basophils also play a key role in the effector phase of food allergies
(120). After repeated intragastric challenge with allergens, basophils
infiltrated the jejunum, and the depletion of basophils reduced the
incidence of diarrhea, concurrent with the reduction of mMCP-1+
May 2022 | Volume 13 | Article 902494
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mast cells in the jejunum. In this model, IL-4 produced by basophils
plays a key role in the food allergy pathogenesis. Given that IL-4Ra
on mast cells plays a critical role in this model (121), it can be
assumed that basophil-derived IL-4 acts on mast cells to aggravate
food allergies.

Recent studies have identified the role of basophils in the
pathogenesis of eosinophilic esophagitis (EoE), a food allergy-
related chronic and inflammatory esophageal disorder (122,
123). Infiltration of basophils into the esophagus is observed in
patients with active EoE, and the frequency of basophils in the
esophagus is positively correlated with eosinophil infiltration in
the esophagus (122). In mice, EoE-like esophageal inflammation
can be triggered by epicutaneous sensitization and subsequent
challenge with food allergens (122, 123). Basophil depletion or
TSLP neutralization significantly reduces the esophageal
infiltration of eosinophils, highlighting the roles of TSLP and
basophils in the pathogenesis of the mouse EoE model. In
another mouse model of EoE, the IL-33 receptor on basophils
plays a key role in the recruitment of basophils to the esophagus
and esophageal eosinophilic inflammation (123).

2.5 Systemic Anaphylaxis
Basophils reportedly contribute to IgG1-mediated anaphylaxis
through the release of the platelet-activating factor (PAF) in a
mouse model (124). In a food allergy model, mice deficient for
the inhibitory receptor Allergin-1 showed systemic anaphylaxis
in a basophil-dependent manner (125). Human studies also
indicated the possible involvement of basophils in systemic
anaphylaxis. In patients with acute anaphylaxis, blood basophil
numbers decreased in the acute phase and recovered in the
convalescent phase (126–128). Concurrently, the intracellular
histamine content of basophils significantly decreased in patients
with anaphylaxis (128). Serum levels of CCL2 significantly
increased in the acute phase, as compared with healthy
controls or with the convalescent phase (126, 127). Further in
vitro experiments revealed that the serum from patients with
acute phase anaphylaxis promoted basophil chemotaxis in a
CCL2-depedent manner, suggesting the role of CCL2-mediated
basophil chemotaxis during systemic anaphylaxis (127).

2.6 Functional Significance of CD15s
Expressed on Human Basophils in
Allergic Inflammation
Puan et al. reported that single nucleotide polymorphisms
(SNPs) in the fucosyltransferase 6 (FUT6) gene locus are
associated with the surface expression of CD15s (sialyl Lewis
x) in human basophils (129). In vitro experiments showed that
CD15s on basophils is functionally important for the rolling on
E-selectin-coated surfaces. Indeed, patients with FUT6 null
mutations had higher basophil numbers in the blood and
lower itch sensitivity against mosquito bites. Furthermore,
FUT6-deficiency significantly reduced serum concentration of
total IgE and house dust mite (HDM)-specific IgE and decreased
skin prick responses against HDM antigens. These results
highlight the role of basophils in HDM-induced allergy and
itch sensitivity against insect bites.
Frontiers in Immunology | www.frontiersin.org 6
3 ROLE OF BASOPHILS IN TISSUE
REPAIR AND FIBROSIS

3.1 Resolution of Inflammation and
Tissue Repair
Following acute and chronic inflammation, an integrated resolution
process takes place, which results in the reduction of cellular
infiltration and tissue damage repair (130). As mentioned earlier,
basophils promote the generation of anti-inflammatory M2
macrophages, leading to the resolution of allergic inflammation
(48, 67). This beneficial role of basophils was also demonstrated in
liver tissue repair after Listeria monocytogenes (Lm) infection (131).
Lm infection induced necroptosis of liver-resident Kupffer cells,
which triggered IL-33 production from hepatocytes and IL-4
production from recruited basophils. Recruited monocytes were
alternatively activated by basophil-derived IL-4, leading to the
replacement of ablated Kupffer cells with monocyte-derived
macrophages. This was also the case when healing after
myocardial infarction (MI) (22). In an animal model of MI,
basophils infiltrated heart tissue, and basophil depletion or
basophil-specific IL-4/IL-13-deficiency resulted in the
deterioration of cardiac functions and increased the infarct region.
Moreover, basophil-specific IL-4/IL-13-deficiency increased the
infiltration of inflammatory Ly6Chi monocytes and reduced
Ly6Clo reparative macrophage numbers, suggesting the
involvement of basophil-derived IL-4/IL-13 in the phenotypic
transition from inflammatory monocytes to reparative
macrophages (22, 132). Stimulation of basophils by IPSE/a-1
significantly enhanced cardiac functions, demonstrating the
important role of activated basophils in post-MI tissue repair. In
patients with acute MI, low blood basophil counts were associated
with increased scar size and poor outcomes, which raises the
possibility that basophils contribute to the tissue repair process.
Thus, basophil-derived IL-4 and IL-13 contributes to a variety of
tissue repair responses (Figure 2 upper panel).

Basophil-derived amphiregulin is also involved in UVB-induced
suppression of cutaneous inflammation (133). Inclan-Rico et al.
revealed that basophils contributed to the resolution of lung
inflammation by inhibiting ILC2 activation in a helminth
infection model (134). Lung-infiltrated basophils stimulate ILC2s
to enhance the expression of the receptor for the neuropeptide
neuromedin B, and neuromedin B-mediated signals inhibit
exaggerated activation of ILC2s and prevent excess
lung inflammation.

3.2 Tissue Fibrosis and Emphysema
Type 2 immunity promotes tissue repair whereas the dysregulated
or chronic tissue repair program leads to tissue fibrosis (135). In an
allograft heart transplantation model, basophil-derived IL-4 was
involved in tissue fibrosis (23). Donor-derived basophils infiltrated
allograft heart and produced IL-4, while basophil depletion reduced
the number of a-SMA+ myofibroblasts and hence inhibits allograft
fibrosis. In accordance with this, an IL-4 receptor-deficient graft
heart was resistant to tissue fibrosis. In this model, IL-3 played a role
in the recruitment and activation of basophils (136). Therefore, it
can be assumed that IL-3-activated basophils produce IL-4 which in
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turn acts on heart-resident macrophages and fibroblasts to promote
the generation of myofibroblasts and deposition of collagens
(Figure 2 middle panel).

A recent report implicated basophils in IgG4-related diseases
(IgG4-RD) (137). IgG4-RD is characterized by elevated IgG4 levels in
serum, storiform fibrosis, and marked infiltration of IgG4-producing
plasma cells in multiple organs, including the pancreas, kidney,
and salivary glands. Basophils expressing both TLR2 and TLR4
infiltrated pancreatic tissues in patients with type 1 autoimmune
pancreatitis, a pancreatic manifestation of IgG4-RD (138).
Frontiers in Immunology | www.frontiersin.org 7
Furthermore, LPS-stimulated basophils produced IL-13 and B cell-
activating factor (BAFF), which induced IgG4 production by B cells
(139), suggesting that basophils may contribute to IgG4 production
in patients with IgG4-RD.

Dysregulated tissue repair responses can cause pulmonary
emphysema (140). Shibata et al. revealed that basophils
contribute to the pathogenesis of pulmonary emphysema in an
elastase-induced mouse model of chronic obstructive lung disease
(COPD) (13). Basophil-derived IL-4 promoted the generation of
emphysema-prone MMP12+ interstitial macrophages,
FIGURE 2 | Role of basophils in tissue repair responses, tissue fibrosis and emphysema formation. 1) In skin allergy, basophil-derived interleukin (IL)-4 promotes the
differentiation of inflammatory monocytes into anti-inflammatory M2 macrophages, leading to the resolution of allergic inflammation. In the liver infected with Listeria
monocytogenes, basophil-derived IL-4 promotes monocyte differentiation into M2 macrophages which replace damaged Kupffer cells, promoting healing of liver
damage. In myocardial infarction, basophil-derived IL-4 and/or IL-13 promotes the generation of reparative Ly6Clo macrophages which enhances post-infarction
tissue repair. 2) In allograft heart transplantation, basophil-derived IL-4 promotes tissue fibrosis, possibly by acting on tissue-resident macrophages or fibroblasts,
leading to the generation of myofibroblasts and deposition of collagen fibers. 3) In a chronic obstructive lung disease (COPD) model, basophil-derived IL-4 promotes
the generation of MMP-12+ interstitial macrophages which promote the destruction of alveolar walls and emphysema formation.
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contributing to lung emphysema formation (Figure 2 lower
panel). On the other hand, genetically engineered mast cell-
deficient mice (Cpa3Cre/+ mice) developed pulmonary
emphysema as much as observed in mast cell-sufficient mice,
even though these mice showed partial reduction of basophils
(141). A recent report showed basophil infiltration in the inflamed
lung tissue of patients with COPD, especially in severe cases (142),
suggesting the possible contribution of basophils for COPD
development in humans.
4 ROLE OF BASOPHILS IN
AUTOIMMUNE DISEASES

4.1 Systemic Lupus Erythematosus
Autoreactive IgE antibodies are frequently detected in patients
with systemic lupus erythematosus (SLE), and the serum level of
autoreactive IgE is associated with disease activity and active
nephritis (143–147). In phase Ib clinical trial, omalizumab
therapy showed some efficacy on disease activity in SLE patients
with elevated level of serum autoreactive IgE antibody (148),
which indicates the role of autoreactive IgE in the pathogenesis
of SLE. Moreover, patients with SLE displayed blood basopenia,
and their basophils had upregulated expression of activation
markers such as CD63 and CD203c, compared with basophils
from healthy controls (144, 149). Additionally, patient serum
induced basophil activation in an IgE-dependent manner (149).
These observations suggest the role of autoreactive IgE antibodies
and basophils in SLE. In line with this, basophils play critical roles
in animal models of lupus nephritis, including Lyn-deficient mice,
MRL-lpr/lpr lupus prone mice, and a pristane-induced SLE model
(144, 149, 150). The presence of a feedback-loop is proposed for
the pathogenesis of mouse SLE models and patients (149, 151)
(Figure 3). In SLE models, basophils are recruited to secondary
lymphoid organs, display an activated phenotype, and produce IL-
4, IL-13, and BAFF to promote autoantibody production. The
formation of immune complexes of IgE autoantibodies and
autoantigens further activates blood-circulating basophils to
enhance the expression of CD62L, which in turn facilitates the
homing of basophils into secondary lymphoid organs.
Prostaglandin D2 (PGD2) is involved in the recruitment of
basophils to secondary lymphoid organs (152). PGD2, possibly
produced by activated basophils, enhances surface expression of
CXCR4 in basophils, promoting the migration of basophils into
secondary lymphoid organs. In accordance with this, basophils
from patients with SLE display high CXCR4 expression on their
cell surface, which is positively correlated with disease activity.

4.2 Other Autoimmune Diseases
Lamri et al. reported that basophils contributed to the
pathogenesis of mixed connective tissue disease (MCTD) (153).
Patients with MCTD displayed blood basopenia and upregulated
expression of CD203c, CD63 and CXCR4 on the surface of
basophils. In a mouse MCTD-like lung inflammation model, the
infiltration of activated basophils was observed in lung draining
Frontiers in Immunology | www.frontiersin.org 8
lymph nodes. Depletion of basophils or IgE-deficiency prevented
the development of lung MCTD-like inflammation. Yuk et al.
showed that basophil-derived IL-6 potentiated T cell
differentiation into Th17 cells, thus promoting the development
of experimental autoimmune encephalomyelitis (154).
5 ROLE OF BASOPHILS IN CANCER

Several lines of evidence have indicated the possible role of basophils
in the development of cancer (24). In pancreatic ductal
adenocarcinoma (PDAC), basophils infiltrate tumor draining
lymph nodes and express IL4. A higher number of infiltrating
basophils is associated with reduced PDAC patient survival. In a
mouse model of pancreatic cancer, basophils recruited to tumor
draining lymph nodes were activated by T cell-derived IL-3 to
produce IL-4, promoting Th2 cell and M2 macrophage
differentiation which favors pancreatic cancer development.
Similarly, basophil infiltration in the tumor microenvironment
was a predictor for poor human gastric cancer prognosis (155).

Basophils reportedly contribute to the pathogenesis of chronic
myeloid leukemia (CML) (25). Blood basophilia is frequently
observed in patients with CML and is associated with poor
prognosis of CML. In a mouse model of CML, basophils
produced large amount of CCL3 in the bone marrow, which
inhibits the functions of normal hematopoietic stem cells and
supports the proliferation of leukemia cells (156).

Intriguingly, basophils played a rather protective role in a mouse
melanoma model. The depletion of regulatory T cells resulted in
substantial infiltration of basophils and CD8+ T cells in the tumor
microenvironment achieving complete rejection of transplanted
melanoma (157). Tumor-infiltrating basophils produce CCL3 and
CCL4 to promote the recruitment of CD8+ T cells into the tumor
microenvironment enhancing tumor rejection. In patients with
ovarian cancer, the activated basophil phenotype was predicative
of better prognosis (158).

Taken together, these data show that basophils play either
deleterious or protective roles in a context-dependent manner. In
accordance with this, the opposite roles of basophils were reported
in mutagen-induced skin carcinogenesis in mice. On one hand,
Crawford et al. demonstrated the protective role of basophils (159).
Repetitive application of DNA-damaging xenobiotics DMBA
resulted in the production of autoreactive IgE and accumulation
of IgE+ basophils in the skin. Deficiency of IgE or FceRIa promotes
tumorigenesis and tumor growth, suggesting the contribution of
basophils in the inhibition of epithelial carcinogenesis. On the other
hand, Hayes et al. showed that basophils and IgE rather enhanced
tumor growth in an inflammation-induced skin carcinogenesis
model (160) in which mice were first topically treated with
DMBA and subsequently with TPA (protein kinase C activator).
This led to the production of natural IgE and the accumulation of
IgE+ basophils in the skin. IgE-deficiency or basophil depletion
abolished epithelial hyperplasia. Basophil-derived histamine is
thought to promote epithelial hyperplasia, thus promoting TPA-
induced tumor growth.
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6 POSSIBLE ROLES OF BASOPHILS IN
COVID-19

Emerging evidence suggests a possible role for basophils in COVID-
19 (27). Mass-cytometry analysis revealed that the blood basophil
number decreases during the acute phase and is restored in the
recovery phase (161). In line with this, several studies demonstrated
that the blood basophil number is significantly lower in severe
COVID-19 patients, compared with less-severe patients or non-
COVID-19 patients (162–167). Therefore, lower blood basophil
counts would be a risk factor predicting a poor COVID-19
prognosis (162, 168). Notably, the plasma level of anti-SARS-
CoV2 IgG correlated positively with the number of blood-
circulating basophils (161), suggesting the possible role for
basophils in IgG responses against SARS-CoV2.

Surface expression profiles of blood basophils are also altered in
COVID-19 patients, especially in severe cases (164, 167). Basophils
showed upregulated expression of activation markers such as CD63
and CD11b in severe cases (167). In line with this, in vitro co-culture
of basophils with SARS-CoV2 led to the production of IL-4 and IL-
13 by basophils (169). Further mechanistic studies will be required
Frontiers in Immunology | www.frontiersin.org 9
to identify whether basophils play protective or deleterious roles in
COVID-19.
7 CONCLUSION AND PERSPECTIVES

Basophils have long been neglected from immunological studies,
partly due to their similarity to tissue-resident mast cells, even
though they have been evolutionally conserved in many animal
species. We now appreciate that basophils have non-redundant
roles distinct from those played by mast cells in a variety of
immune and inflammatory responses, including IgE-CAI,
papain-induced asthma, and elastase-induced COPD models.
Studies of animal models identified that basophils infiltrate either
the sites of inflammation or the draining lymph nodes and
regulate immune responses by interacting with various types of
cells, including macrophages, T cells, ILCs and sensory neurons.
Recent human studies, including the treatments of patients with
therapeutic antibodies (e.g. omalizumab, benralizumab and
dupilumab), have advanced our understanding of human
basophil pathophysiology. Further mechanistic studies would
FIGURE 3 | Feedback loop for the exacerbation of systemic lupus erythematosus. In the mouse model of systemic lupus erythematosus (SLE) and in patients with
SLE, autoreactive IgE antibodies can be detected in the blood. Autoreactive IgE antibodies form immune complexes with corresponding autoantigens and activate
blood-circulating basophils. Activated basophils upregulate the surface expression of CD62L and CXCR4 and infiltrate into lymph nodes. They produce interleukin
(IL)-4, IL-13, and B cell-activating factor (BAFF) which in turn induces autoantibody production from B cells, resulting in the deposit of immune complexes in the
kidney and in disease progression.
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identify novel roles for basophils in an even broader range of
disorders and promote the development of novel strategies for
the treatment of such diseases by targeting basophils and
their products.
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