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Epstein-Barr virus (EBV) establishes a lifelong latent infection in healthy humans, kept
under immune control by cytotoxic T cells (CTLs). Following paediatric haematopoetic
stem cell transplantation (HSCT), a loss of immune surveillance leads to opportunistic
outgrowth of EBV-infected cells, resulting in EBV reactivation, which can ultimately
progress to post-transplant lymphoproliferative disorder (PTLD). The aims of this study
were to identify risk factors for EBV reactivation in children in the first 100 days post-HSCT
and to assess the suitability of a previously reported mathematical model to
mechanistically model EBV reactivation kinetics in this cohort. Retrospective electronic
data were collected from 56 children who underwent HSCT at Great Ormond Street
Hospital (GOSH) between 2005 and 2016. Using EBV viral load (VL) measurements from
weekly quantitative PCR (qPCR) monitoring post-HSCT, a multivariable Cox proportional
hazards (Cox-PH) model was developed to assess time to first EBV reactivation event in
the first 100 days post-HSCT. Sensitivity analysis of a previously reported mathematical
model was performed to identify key parameters affecting EBV VL. Cox-PH modelling
revealed EBV seropositivity of the HSCT recipient and administration of anti-thymocyte
globulin (ATG) pre-HSCT to be significantly associated with an increased risk of EBV
reactivation in the first 100 days post-HSCT (adjusted hazard ratio (AHR) = 2.32, P = 0.02;
AHR = 2.55, P = 0.04). Five parameters were found to affect EBV VL in sensitivity analysis
of the previously reported mathematical model. In conclusion, we have assessed the
effect of multiple covariates on EBV reactivation in the first 100 days post-HSCT in children
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and have identified key parameters in a previously reported mechanistic mathematical
model that affect EBV VL. Future work will aim to fit this model to patient EBV VLs, develop
the model to account for interindividual variability and model the effect of clinically relevant
covariates such as rituximab therapy and ATG on EBV VL.
Keywords: viral reactivation, viral kinetics, paediatrics, immune reconstitution, Epstein-Barr virus, haematopoietic
stem cell transplant, mathematical modelling
INTRODUCTION

Epstein-Barr virus (EBV) is a part of the Herpesviridae family of
viruses well-known for their propensity to establish lifelong
infections in the human host. To evade the host immune
response and establish persistence, EBV expresses latency-
associated genes, which allow the virus to reside in resting
memory B cells in peripheral blood and maintain a stable
long-term viral reservoir (1). In immunocompetent hosts, a
circulating pool of EBV-specific cytotoxic T cells (CTLs) is
sufficient to control the virus (2). Following allogeneic
paediatric haematopoietic stem cell transplantation (HSCT), a
loss of immune surveillance results in an opportunistic
outgrowth of proliferating EBV-infected B cells leading to EBV
reactivation. In the post-HSCT setting, EBV reactivation is the
leading cause of post-transplant lymphoproliferative disorder
(PTLD) with patients at higher risk if they receive a reduced
intensity conditioning (RIC) regimen, selective T cell depletion
with ant i - thymocyte g lobul in (ATG) or have low
histocompatibility with their donor (3–5). As a part of routine
clinical monitoring post-HSCT, quantitative PCR (qPCR) is used
to measure EBV DNA and quantify viral load (VL), especially in
the first three months when reactivation is most likely to occur.
Current treatment protocols for EBV reactivation post-HSCT
combine rituximab administration to deplete B cells and
reduction of immunosuppression to restore immunity but still
counter graft rejection. Studying the kinetics of EBV reactivation
in post-HSCT patients at a time when their immune system is
reconstituting presents an opportunity to elucidate the biological
mechanisms underlying EBV reactivation (6). In this pursuit,
mathematical models can be fitted to patients’ EBV VL
measurements to estimate biologically meaningful parameters
related to the virus, host immune response and effects of therapy
to better understand the key drivers of EBV VL (7, 8).

This study aimed to first identify risk factors for EBV
reactivation in a paediatric post-HSCT cohort in the first 100
days post-HSCT and secondly, to assess the suitability of a
previously reported mathematical model to mechanistically
model EBV reactivation kinetics in this population (9).
MATERIALS AND METHODS

Patients and Data Collection
Retrospective electronic data from routine clinical practice were
collected from 56 children who underwent HSCT at Great
Ormond Street Hospital (GOSH) between 2005 and 2016 and
org 2
had EBV reactivation post-HSCT. Data were collected by the
HSCT clinical team and were subsequently extracted by the
GOSH Digital Research Environment (DRE) team. Data
collected included patient-specific, donor-specific, and
transplant-specific variables as well as measurements of
immune cell subsets by immunophenotyping, EBV qPCR and
EBV VL, and administrations of alemtuzumab, ATG
and rituximab.

Monitoring EBV Viraemia and
Rituximab Therapy
EBV was monitored by qPCR weekly from the start of
conditioning until the CD4+ T cell count exceeded 300 cells
per ml blood. If EBV DNA was detected in the first three months
post-HSCT, qPCR was carried out twice weekly to quantify VL
until treatment was given or VL declined. The lower and upper
limits of quantification of the assay for EBV VL measurements
were 200 and 20,000,000 copies/mL respectively. The threshold
to treat with rituximab was exceeding EBV VL of 40,000 copies/
mL whole blood on two consecutive occasions within the first
three months of HSCT, donor different from matched sibling
donor (MSD) and a CD3+ T cell count < 0.3 x 109/L. Rituximab
was dosed by body-surface area and administered via
intravenous infusion at a dose of 375 mg/m2 weekly, with
patients receiving a single dose on a conservative regimen or
four doses on a pre-emptive regimen. Patients who received four
rituximab doses were part of a historical cohort treated using a
pre-emptive strategy as part of a study by Worth et al. (10).

Analysis of Time to First EBV Reactivation
Event Using Cox Proportional
Hazards Modelling
Cox proportional hazards (Cox-PH) modelling was performed in
R version 3.5.1 using the survival (version 2.42-3) package to
assess time to first EBV reactivation event in the first 100 days
post-HSCT (11). The following covariates were considered: type
of donor, HSC source, whether the patient had a diagnosis of
primary immunodeficiency (PID), age, number of rituximab
doses, EBV serostatus of both donor and recipient, type of
conditioning regimen, administration of alemtuzumab or ATG
as serotherapy pre-HSCT, and area under the curve from
0 to 100 days post-HSCT (AUC0-100) for the following
immune cell subsets; absolute lymphocyte count (ALC), CD19+

B cells, CD4+ T cells and CD8+ T cells. Collinearity between
covariates was assessed before analysis. Variables significant
in univariate analysis (P < 0.05) were taken forward to a
multivariable analysis.
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Sensitivity Analysis of Mathematical Model
of EBV Viral Kinetics
A previously reported 9-compartment 25-parameter mechanistic
mathematical model of EBV viral kinetics was implemented in R
version 3.5.1 using the deSolve (version 1.28) package
(11) (Figure 1).

The model describes the key stages of the EBV infection cycle
based on the germinal centre theory of EBV biology. It is
comprised of nine variables related to the processes of latent
and lytic EBV infection, as well as the various types of B cell and
CTL involved in the host immune response. Free EBV virions, E,
infect naive B cells, Bn, of which a fraction transforms into
infected B cells, Bg, expressing the growth programme. The
remainder proliferate into infected B cells that undergo the
default programme in the germinal centre, Bd. Some of the
default B cells become latently infected memory B cells, Bm,
which can reactivate to become lytically infected B cells, Bl. CTLs
specific to the Bg, Bd and Bl infected B cell populations are
included by way of the Tg, Td and Tl populations respectively.
The system of nine ordinary differential equations for the model
are given below:

dE
dt

= ndlBl − deE,

dBn

dt
= ln − meEBn − dnBn,

dBg

dt
= 1 − bð ÞmeEBn + rg − wg − dg

� �
Bg − d1TgBg ,

dBd

dt
= wgBg + rd − dd − wdð ÞBd − d2TdBd ,

dBm

dt
= wdBd + rm − wm − dmð ÞBm,

dBl

dt
= wmBm − dlBl − d3TlBl ,

dTg

dt
= r1TgBg − d1Tg ,

dTd

dt
= r2TdBd − d2Td ,

dTl

dt
= r3TlBl − d3Tl :

In total, there are 25 parameters, which we fixed to published
values to obtain a reference fit of the model (Supplementary
Table 1) (12–14). The latently infected memory B cell
compartment, Bm, was taken as a proxy for EBV VL. The VL
sensitivity to each of the 25 parameters was determined by
setting each in turn through a range of values (0.00001-1000)
to simulate the EBV VL trajectory. The root mean squared
Frontiers in Immunology | www.frontiersin.org 3
distance (RMSD) was calculated for each parameter for the
range of parameter values tested to provide a comparison
between the reference fit and each of the simulated fits.
RESULTS

Patient Characteristics
Data from 56 children were included in this study, with a median
age at HSCT of 3.02 years (range, 0.3 - 14 years). The patients
were representative of a typical paediatric HSCT cohort, with a
range of HSCT indications including malignant and non-
malignant conditions, and different types of donor and
conditioning regimen. Patient characteristics are summarised
in Table 1.

EBV Reactivation, Clinical Outcomes and
Rituximab Therapy
For these 56 patients, 3547 measurements of EBV VL were
collected. Of the total patients, 38 (67.9%) had an initial EBV
reactivation in the first 100 days since HSCT, with a median time
to EBV reactivation of 40 days (range, 14-97 days) and a median
peak EBV VL of 255,000 copies/mL (range, 403-32,479,800
copies/mL). Forty-one patients received a single dose of
rituximab on a conservative regimen and 15 patients received
four doses on a pre-emptive regimen. There were no deaths due
to EBV reactivation, or any other reasons, in the study period.
Although they did not have an EBV reactivation event in the
study period, one patient did progress to PTLD 168 days post-
HSCT and started rituximab treatment the following day. This
patient had X-linked lymphoproliferative disease, was 7.83 years
FIGURE 1 | Schematic of previously reported mathematical model of EBV
viral kinetics (9).
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at HSCT and had the following features predisposing to EBV:
received RIC regimen of alemtuzumab, fludarabine and
melphalan; the HSC source was PBSC; had a mismatched
unrelated donor.

Visualisations of EBV VL, CD19+ B Cells,
CD4+ Cells and Rituximab Dosing
The combined trajectories of EBV VL, CD19+ B cells and CD4+

cells for 16 of 56 study patients have been visualised in Figure 2.
Due to patients being lymphopenic in this early post-HSCT
period of 100 days, there was a lack of observed CD19+ B cell and
CD4+ T cell counts in our dataset. Therefore, we utilised two
previously developed mathematical models to predict CD4+ T
and CD19+ B cells for the first 100 days post-HSCT. CD4+ T cell
counts were predicted using a published mathematical model for
CD4+ T cell reconstitution post-HSCT in children and CD19+ B
cell counts were predicted using a mathematical model for the
effect of rituximab on CD19+ B cell reconstitution post-HSCT in
children (15; unpublished). With respect to EBV VL, observed
measurements spanning from three weeks pre- to seven weeks
post-HSCT were plotted, and were linearly interpolated to obtain
a continuous range of data points for 0-100 days post-HSCT. In
the absence of a published mathematical model for CD8+ T cell
reconstitution post-HSCT and a sparsity of observed CD8+ T cell
counts disabling linear interpolation, CD8+ T cell counts were
not visualised. For each of the 16 patients in Figure 2, their
individual trajectories of EBV VL, CD19+ B cells and CD4+ T
Frontiers in Immunology | www.frontiersin.org 4
cells as well as rituximab dosing are shown in Figure 3.
Following administration of the first rituximab dose near the
peak EBV VL, CD19+ B cell counts rapidly decrease while EBV
VL declines simultaneously in all patients. In contrast, CD4+ T
cell counts remain stable in most patients for the duration of the
reactivation event.

Pre-HSCT ATG and Recipient EBV
Seropositivity Increased Risk of EBV
Reactivation
Univariate and multivariable Cox-PH modelling results are
shown in Table 2. In univariate analysis, a PID diagnosis,
AUC0-100 of CD8

+ cells, serotherapy with ATG, HSC source of
peripheral blood and EBV seropositivity of HSCT recipient were
significantly associated with increasing the risk of EBV
reactivation. Of these, two covariates were found to
significantly increase risk of EBV reactivation in multivariable
analysis; EBV seropositivity of the HSCT recipient and pre-
HSCT administration of ATG (adjusted hazard ratio (AHR) =
2.32, P = 0.02; AHR = 2.55, P = 0.04). Kaplan-Meier curves of the
cumulative fraction of patients with EBV reactivation stratified
by these two covariates have been visualised in Figure 4.

Parameters Related to Latently Infected
Memory B Cells and CTLs Important for
EBV VL
Of the 25 parameters in the model, 13 parameters were found to
be sensitive on account of an RMSD value greater than zero
(Supplementary Table 2). Coupled with visual assessment of the
Bm compartment plotted by time for each of the parameters, the
following five of the 13 parameters in the model were identified
as being key determinants of EBV VL: d2, CTL killing rate of
infected B cells expressing the default programme; rm, the
proliferation rate of latently infected memory B cells; wm, the
reactivation rate of latently infected memory B cells into lytically
infected memory B cells; dm, the death rate of latently infected
memory B cells and r2, the rate of CTL activation against infected
FIGURE 2 | Combined trajectories of EBV VL, CD19+ B cell and CD4+ T cell
counts for 16 out of 56 patients.
TABLE 1 | Patient and transplant characteristics.

Total patients(n = 56)

Age (years) – median (range) 3.0 (0.3 – 14.0)
Diagnosis, n (%)
PID 19 (33.9)
NMH 12 (21.4)
MH 15 (26.8)
Other 10 (17.9)

Donor type, n (%)
MSD 6 (10.7)
MFD 4 (7.1)
MUD 28 (50.0)
MMFD 1 (1.8)
MMUD 15 (26.8)
Haplo 2 (3.6)

Stem cell source, n (%)
BM 32 (57.1)
PBSC 24 (42.9)
Conditioning, n (%)
MAC 30 (53.6)
MIC 4 (7.1)
RIC 21 (37.5)
None 1 (1.8)
Serotherapy*, n (%)

Alemtuzumab 40 (72.7)
ATG 15 (27.3)
PID, primary immunodeficiency; NMH, non-malignant haematological; MH, malignant
haematological; MSD, matched sibling donor; MFD, matched familial donor; MUD,
matched unrelated donor; MMFD, mismatched familial donor; MMUD, mismatched
unrelated donor; Haplo, haploidentical donor; BM, bone marrow; PBSC, peripheral
blood stem cell; MAC, myeloablative conditioning; MIC, minimal-intensity conditioning;
RIC, reduced-intensity conditioning; ATG, anti-thymocyte globulin. *denotes one patient
who did not receive serotherapy.
July 2022 | Volume 13 | Article 903063
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B cells expressing the default programme (Figure 5). Of these
five parameters, three are related to latently infected memory B
cells and two are related to CTLs.
DISCUSSION

In this retrospective study, we tested the effect of multiple
predictor variables for EBV reactivation in a paediatric cohort
of post-HSCT patients . We found pre-HSCT ATG
administration and EBV seropositivity of the HSCT recipient
to be significant risk factors for the first EBV reactivation event in
the 100-day period post-HSCT. In addition, for the first time, we
have identified key parameters driving EBV VL in the previously
reported mechanistic mathematical model of EBV viral kinetics
by Akinwumi, which may have potential to describe EBV VL
data from patients with EBV reactivation post-HSCT.

Pre-HSCT ATG has been widely reported to be associated
with higher incidence of EBV reactivation post-HSCT therefore
our result corroborates these previous findings (5, 16–18). Even
though it is administered as part of the conditioning regimen for
GvHD prophylaxis in the weeks pre-HSCT, ATG’s T-cell
depletive effect lasts well into the early post-HSCT period due
to its long half-life of 29.8 days (16). This may further exacerbate
the reduced CTL-mediated immune surveillance of EBV post-
HSCT when the CD8+ T cell compartment is reconstituting. In
our study, 100% (15 of 15) of patients who received ATG had
EBV reactivation in the first 100 days post-HSCT while only
57.5% (23 of 40) of patients who received alemtuzumab had EBV
reactivation, a finding comparable with previous studies, most
probably attributed to alemtuzumab’s broader lymphocyte
depletion of B cells, including those that are EBV-infected (3,
5, 19, 20).
Frontiers in Immunology | www.frontiersin.org 5
Although the historical consensus is that EBV serological
donor/recipient mismatch increases risk of EBV reactivation,
most studies ascribe EBV-associated PTLD to donor-derived
EBV, which contradicts our finding that EBV seropositivity of
the HSCT recipient is a risk factor for EBV reactivation (21, 22).
As the focus of our study was on the first EBV reactivation event
post-HSCT, we chose a study period of the first 100 days post-
HSCT when reactivation is most likely to occur. In contrast,
many studies of EBV reactivation have much longer study
periods spanning from six months to nearly five years post-
HSCT (10, 23–26). At these later timepoints post-HSCT, there
would be more donor-derived cells due to increased chimerism,
which we might not have been able to capture in our study period
of 100 days post-HSCT. This is also evident when looking at the
EBV serological donor/recipient combinations in our patients; in
EBV seropositive donors with EBV seronegative recipients,
55.2% (16 of 29) of patients had an EBV reactivation while
87.0% (20 of 23) of patients who were EBV-seropositive and had
EBV-seropositive donors experienced an EBV reactivation event.
There were only three patients who were EBV seropositive and
had EBV seronegative donors, of which two had EBV
reactivation. Having access to chimerism data at post-HSCT
timepoints for our study patients might help to shed further light
on this result.

The incidence of EBV reactivation in our study of 67.9% is
high but similar to that observed in some previous studies
(27, 28). This may be expected as the first 100 days post-HSCT
is when EBV reactivation is most likely to occur due to
insufficient T cell reconstitution of the patient’s immune
system to control EBV. In addition, it is recognised that the
incidence of EBV reactivation post-HSCT varies depending on
the transplant type, sensitivity of the EBV quantification assay,
definitions of thresholds of EBV viraemia and timing of
reactivation (29).

EBV reactivation in patients post-HSCT occurs in the same
timeframe that patients’ immune systems are reconstituting
presenting an opportunity to elucidate the biological
mechanisms underlying EBV reactivation in this setting. The
visualised trajectories of EBV VL, CD19+ B cells and CD4+ T
cells in response to EBV and rituximab for individual patients
give an insight into the pattern of EBV reactivation for each
patient, demonstrating the complexity in the dynamics of post-
HSCT EBV reactivation and its variability between patients. The
decrease in B cell count occurs shortly after the first rituximab
dose is administered, as per the B-cell depleting mechanism of
action of rituximab and is coupled with a contemporaneous
decrease in EBV VL in all patients. Conversely, CD4+ T cell
counts remain stable in most patients during the reactivation,
which aligns with a previous study which reported no increase in
CD4+ T cell counts after viral reactivation (23). In addition, we
can infer from Figure 3 that subsequent rituximab doses in
patients may not further decrease B cell count and consequently
EBV VL, as suggested by patients 45, 52 and 54. In producing
these figures, we demonstrate the ability of mathematical models
to predict immune reconstitution after insult to the immune
system, such as viral reactivation post-HSCT. Mathematical
modelling is a suitable approach to study this, as it can capture
FIGURE 3 | Individual trajectories of EBV VL, CD19+ B cell and CD4+ T cell
counts and rituximab dosing for 16 patients. Dotted black line represents the
lower limit of detection of the EBV VL assay (200 copies/mL).
July 2022 | Volume 13 | Article 903063
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the non-linearity of the underlying biological processes and the
heterogeneity observed in EBV reactivation due to the influence
of patient-, donor- transplant-, disease- and drug-related factors
(30). Our main finding from performing sensitivity analysis of
the model of Akinwumi, that parameters related to latent
memory B cells and CTLs determine changes in EBV VL, is
aligned with the key role that these two cell types have in the
biological mechanism of EBV reactivation. This corroborates the
usefulness of a mathematical modelling approach to further
Frontiers in Immunology | www.frontiersin.org 6
quantify the kinetics of EBV reactivation in patients. Further,
this finding aligns with a study by Burns et al., who observed an
increase in number and proportion of CD27+ memory B cells in
peripheral blood samples of post-HSCT patients that were
preferentially infected by EBV in a latent form and expressed
the cell proliferation marker Ki-67 (6).

We acknowledge the limitations of our work. The small
sample size of 56 patients is characteristic of the study being
retrospective and based at a single centre as well as the outcome
TABLE 2 | Univariate and multivariable Cox proportional hazards models for time to first EBV reactivation in first 100 days post-HSCT.

Univariable Model

Covariates Term (Reference) P value HR 95% CI

PID diagnosis Yes (No) 0.01 0.37 0.17 - 0.82
HSC source PBSC (BM) 0.02 0.44 0.22 - 0.87
Age – 0.41 1.03 0.95 - 1.12
Number of rituximab doses – 0.25 0.86 0.67 - 1.11
Donor EBV serostatus Seropositive (Seronegative) 0.83 1.17 0.28 - 4.87
Recipient EBV serostatus Seropositive (Seronegative) 0.003 2.67 1.39 - 5.12
AUC0-100 ALC – 0.90 0.99 0.83 - 1.18
AUC0-100 CD19 – 0.65 0.99 0.95 - 1.03
AUC0-100 CD4 – 0.77 0.99 0.96 - 1.03
AUC0-100 CD8 – 0.005 1.02 1.01 - 1.04
Donor type MMFD/MMUD/Haplo (MFD/MSD)

MUD (MFD/MSD)
0.11
0.27

0.43
1.58

0.16 - 1.21
0.71 - 3.56

Conditioning regimen RIC (MIC/MAC/None) 0.46 0.78 0.41 - 1.50
Serotherapy ATG (Alemtuzumab) 0.0001 3.74 1.90 - 7.36

Multivariable Model

Covariates Term (Reference) P value HR 95% CI

PID diagnosis Yes (No) 0.10 0.48 0.20 - 1.14
HSC source PBSC (BM) 0.48 0.74 0.32 - 1.70
Recipient EBV serostatus Seropositive (Seronegative) 0.02 2.33 1.15 - 4.73
AUC0-100 CD8 – 0.20 1.01 0.99 - 1.03
Serotherapy ATG (Alemtuzumab) 0.04 2.55 1.07 - 6.11
July 2022 | Volume 13 | Art
PID, primary immunodeficiency; HSC, haematopoietic stem cell; PBSC, peripheral blood stem cell; EBV, Epstein-Barr virus; AUC0-100, area under the curve from day of HSCT to 100 days
post-HSCT; ALC, absolute lymphocyte count; MSD, matched sibling donor; MFD, matched familial donor; MUD, matched unrelated donor; MMFD, mismatched familial donor; MMUD,
mismatched unrelated donor; Haplo, haploidentical donor; MAC, myeloablative conditioning; MIC, minimal-intensity conditioning; RIC, reduced-intensity conditioning; ATG, anti-
thymocyte globulin. HR, hazard ratio; CI, confidence interval. – denotes a continuous variable.
A B

FIGURE 4 | Kaplan-Meier curves of cumulative fraction of patients with EBV reactivation in first 100 days post-HSCT stratified by: (A) type of serotherapy (ATG or
alemtuzumab) (B) EBV serostatus of recipient (negative or positive). P values were calculated using the log-rank test and denote the difference between the two
subgroups. Shaded regions show 95% confidence interval.
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of interest, EBV reactivation in children post-HSCT, being
uncommon. Nevertheless, other authors have also conducted
multivariable analysis on data from a comparable number or
fewer patients in the context of EBV reactivation (19, 31, 32).
Another limitation is the lack of observed immune cell counts for
the early post-HSCT period studied, which we were partly able to
circumvent by leveraging previously developed mathematical
models by our group. In addition, while our data did represent
a typical HSCT cohort, there were no patients who underwent
HSCT using cord blood. The pattern of EBV reactivation for
such patients may differ considerably to patients transplanted
using PBSCs or BM, as their T cell reconstitution has been
reported to be much faster, attributed to cord blood HSCT
patients receiving ATG-free pre-HSCT conditioning regimens
and being of younger age at HSCT (15, 33, 34). The prognostic
value of the mathematical model of Akinwumi, or indeed any
other mathematical model of EBV kinetics, can only be
determined after it is fit to clinical data from patients with
EBV reactivation. Therefore, future work will aim to fit the
previously reported model to the observed EBV VL
measurements of the paediatric patients in this study cohort.
With respect to the mathematical model of Akinwumi, it may be
unfeasible to fit such a complex model to estimate parameters
from patient EBV VLs therefore a simplified version of the model
may be more appropriate. As we move forward, it will be
important to include the covariates from the Cox-PH model
into the mechanistic model-building process. At this stage prior
biological knowledge related to B cell maturation can be used to
scale for age-related effects, helping to account for the variability
seen in the EBV VL trajectories of individual patients.

In conclusion, we have consolidated previous findings by
assessing the effect of multiple risk factors on EBV reactivation in
the first 100 days post-HSCT in children. In addition, we
demonstrate the applicability of a mathematical modelling
approach to describe patient’s EBV VL trajectories by
Frontiers in Immunology | www.frontiersin.org 7
identifying key determinants of EBV VL in a previously
reported mechanistic mathematical model. Mechanistically
modelling patient EBV VL data will allow us to delineate and
quantify the viral, drug and immune mechanisms at play in this
cohort of patients. Ultimately, this would inform the clinical
management of this cohort of patients, as a mathematical model
can be used to make inferences on treatment, such as the timing
of rituximab therapy, to improve outcomes of patients with EBV
reactivation post-HSCT.
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