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Findings that certain infections induce immunity not only against the causing agent, but
also against an unrelated pathogen have intrigued investigators for many years. Recently,
underlying mechanisms of this phenomenon have started to come to light. It was found
that the key cells responsible for heterologous protection are innate immune cells such as
natural killer cells (NKs), dendritic cells, and monocytes/macrophages. These cells are
‘primed’ by initial infection, allowing them to provide enhanced response to subsequent
infection by the same or unrelated agent. This phenomenon of innate immune memory
was termed ‘trained immunity’. The proposed mechanism for trained immunity involves
activation by the first stimulus of metabolic pathways that lead to epigenetic changes,
which maintain the cell in a “trained” state, allowing enhanced responses to a subsequent
stimulus. Innate immune memory can lead either to enhanced responses or to
suppression of subsequent responses (‘tolerance’), depending on the strength and
length of the initial stimulation of the immune cells. In the context of HIV infection, innate
memory induced by infection is not well understood. In this Hypothesis and Theory article,
we discuss evidence for HIV-induced trained immunity in human monocytes, its possible
mechanisms, and implications for HIV-associated co-morbidities.
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INTRODUCTION

Trained immunity is an exciting new concept postulating that innate immune cells can acquire
memory to a viral, bacterial or fungal infectious agent or other stimuli, such as toll-like receptor
(TLR) agonists, oxidized LDL, and hormones, like aldosterone (1–5). This memory can influence
innate responses to subsequent infection or stimulation by the same or even a different agent. The
broad nature of trained immunity responses, similar to other functions of the innate immunity, is
strikingly different from classical highly specific immune memory of T and B cells. Mechanistically,
the innate memory is achieved by epigenetic and metabolic reprogramming that can be induced by a
variety of agents via stimulation of pattern recognition receptors (1, 4, 6–12). Two alternative
programs of trained immunity can be induced: training resulting in enhanced responses to second
stimulation, and training resulting in tolerance, where the second response is suppressed. Which
program would be engaged depends, at least in part, on the strength and length of the initial
stimulation, as well as on the properties of the stimulating agent (13). The enhancing training
program likely has evolved as an ancient mechanism to protect against pathogens, including viruses
org July 2022 | Volume 13 | Article 9038841
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(14), whereas tolerance training program has evolved to prevent
overactivation of innate immune responses upon sustained TLR
stimulation (15). Although training originated as a defense
mechanism, under certain circumstances, in particular when
increased responsiveness of innate immunity cells is
maintained for extended periods of time, it can have adverse
consequences, as described for atherosclerosis, Alzheimer’s, and
other chronic inflammatory diseases (5). In this article, we
discuss the possibility of trained immunity initiated by HIV
infection and ideas about its mechanisms and implications.
MECHANISMS OF TRAINED IMMUNITY

Mechanisms of training have been characterized by Netea’s
group for b-glucan, a yeast cell wall constituent (16). Exposure
of human monocytes to b-glucan, a TLR2 and TLR4 ligand,
during the first 24 h of ex vivo differentiation, re-programs the
cells in such a way that after a 6 day differentiation period into
macrophages they exhibit a hypersensitivity to a number of TLR
ligands. Moreover, by using genome-wide profiling of histone
and DNA modifications (H3K4me3, H3K4me1, H3K27ac, and
DNase I accessibility), the authors found that induction of the
memory program was associated with a long-term epigenetic
reprogramming of loci of the genes previously shown to be
involved in activation of the innate immune system, including
TNFa and IL-6 (17). In the case of b-glucan, the initiating event
for epigenetic remodeling was found to be activation of the Akt-
mTOR pathway, which upregulated glycolysis (18). One of the
intermediate products of glycolysis, fumarate, is a negative
regulator of the KDM5 histone demethylase, inhibition of
which promotes trimethylation of the H3 histone on the K4
residue (H3K4me3). Another product of glycolysis, citrate,
stimulates synthesis of Acetyl-CoA, which is a positive
regulator of histone acetyltransferase and promotes acetylation
of the H3 histone on the K27 residue (H3K27ac). Both
modifications are associated with transcriptionally active
chromatin. Acetyl-CoA also stimulates cholesterol biosynthesis,
one of the intermediate products of which, mevalonate, is
secreted and potently amplifies training by interacting with the
insulin-like growth factor 1 receptor (IGF1R) that further
stimulates the Akt pathway (18).

It remains unknown what features of an infectious agent are
essential for inducing innate memory. It may well be that it is a
general response to any infection, and the difference in reaction
to different stimuli is only in the duration of the memory
phenotype. Widespread protection against multiple infections
characteristic to trained immunity was associated with several
live virus-based vaccines, such as BCG or oral polio, and lasted
from months to years (19, 20). This is consistent with an idea
that time-limited exposure to the viral components induces not
only a specific adaptive immune response, but also stimulates a
much broader training of innate immune cells. The effect of
chronic viral infection on innate immunity is unknown, but
persistent inflammation associated with chronic HCV (21) or
HIV (22) infection is consistent with an enhancing training
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rather than tolerance, and can be explained by an enhanced
response of trained innate immune cells to TLR stimulation.
Increased inflammatory responses may underlie pathogenesis of
HIV-associated co-morbidities, making characterization of
trained immunity during HIV infection a priority.
TRAINED IMMUNITY IN HIV INFECTION

In the context of HIV infection, very few targeted studies of
trained immunity have been performed so far. A recent study
demonstrated that a live attenuated SHIV (a recombinant SIV
carrying HIV envelope) induced protection against intrarectal
challenge with pathogenic SIV in the absence of anti-envelope
antibodies and independent of CD8 T cells, through a
mechanism consistent with trained innate immunity of
monocytes (23). Another study reported epigenetic
modifications associated with pro-inflammatory phenotype and
reduced anti-tuberculosis activity of monocytes from HIV-
infected subjects, both ART-treated and untreated (24),
supporting the idea of trained immunity. The viral protein
initiating the training and the mechanistic details leading to
epigenetic changes in myeloid cells were not investigated in these
studies. A study by van der Heijden et al. reported
overexpression of IL-1b by monocytes from HIV-infected
individuals, which was sustained for at least a year, consistent
with the trained immunity phenotype. The authors proposed
circulating b-glucan as a causative agent (25). However,
mechanistic conclusions in this paper relied on association
studies, and lacked analysis of circulating HIV proteins.

As discussed above, the known mechanisms of trained
immunity depend on activation of the Akt-mTOR pathway,
which upregulates aerobic glycolysis and cholesterol
biosynthesis (18). Increased glucose metabolism has been
shown for monocytes from HIV-infected individuals, including
ART-treated with undetectable HIV load (26). Among HIV-1
proteins, Nef is known to stimulate cholesterol biosynthesis (27),
and has been established as the major pathogenic factor of HIV-
1, responsible for many pathological features associated with
HIV and SIV infection (28–33). Moreover, Nef, both
endogenously expressed and exogenously added, has been
shown to activate the Akt-mTOR pathway (34–37). We
therefore hypothesize that Nef may initiate immune training in
HIV-infected individuals. We propose that exposure of
monocytes to extracellular Nef, either free or incorporated into
extracellular vesicles (exNef), significantly increases production
of inflammatory cytokines by monocyte-derived macrophages
differentiated from these monocytes. This hypothesis implies
that exNef induces immune training in monocytes, likely via the
effects on target cell signaling pathways (35, 38, 39). Although the
life span of circulating monocytes is relatively short (less than a
week), upon migration into the tissues these cells acquire the
phenotype of resident tissue macrophages with life span in
months (40, 41). In addition, training of myeloid progenitor
cells in the bone marrow would lead to a long-term production of
trained monocytes, so if the same effect of exNef is demonstrated
July 2022 | Volume 13 | Article 903884
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for bone marrow progenitor cells, it would provide a mechanism
for persistent presence of trained monocytes in HIV-infected
individuals. Access of exosomes to bone marrow progenitor cells
via blood has been shown for melanoma-derived exosomes (42).

Interaction of exNef with macrophages impairs cholesterol
efflux and elevates abundance of lipid rafts, promoting
inflammatory responses (43 , 44) . There fore , over
responsiveness of exNef-treated monocytes mentioned above
could be caused by a classical trained phenotype, i.e. epigenetic
changes promoting expression of inflammatory genes, but also
by sustained changes in the lipid rafts (Figure 1). Lipid rafts are
considered highly dynamic and transient (45, 46). Upon cell
activation, lipid rafts cluster and become more stable to
accommodate agonist-induced receptors' assembly, such as
homodimerization of TLR4, and initiation of signaling (47).
These changes are usually transient. For example, in LPS-
stimulated macrophages, TLR4 dimer-hosting lipid rafts last
for 15 min and then disappear due to internalization of the
LPS-TLR4 complex (48). A surprising discovery was that TLR4
dimers and increased lipid raft levels were found in spinal
microglia for as long as 21 days after a chemotherapeutic
intervention in mice (49). These results showing a long-term if
not permanent maintenance of TLR4 dimers in microglia and
macrophages under conditions of chronic neuroinflammation
suggest that lipid rafts in these cells undergo reprogramming to
Frontiers in Immunology | www.frontiersin.org 3
condition for a fast and disproportionately strong inflammatory
response. This may represent another form of trained immunity,
which may be accomplished by epigenetic reprogramming of
cholesterol metabolism genes involved in regulation of lipid rafts,
rather than pro-inflammatory genes. Of course, these two
possible mechanisms do not exclude each other.

Other HIV proteins may also contribute to HIV-induced
trained immunity. Gp120 has been shown to activate signaling
from TLR2 and TLR4 (50), suggesting that it may mimic the
effects of b-glucan. Moreover, HIV-1 structural proteins p17, p24
and gp41 were found to function as pathogen-associated
molecular patterns (PAMPs) for cellular TLR2 heterodimers
(51). The HIV Tat protein activates a number of cellular
signaling pathways, including the MyD88 and TRIF pathways
originating from TLR4 (52). Out of these potential inducers of
trained immunity, besides exNef, gp120 is the most likely
candidate, as, in contrast to other mentioned proteins and
similar to exNef, it can engage TLR receptors on an uninfected
cell. Indeed, trained immunity in an infected myeloid cell is
unlikely to have much of biological or pathological impact,
simply because the number of such cells is very small (53).
While gp120-induced trained immunity represents an
interesting topic for investigation, we believe that it is unlikely
to play a role in HIV co-morbidities as gp120 does not circulate
in blood of ART-treated HIV-infected individuals.
FIGURE 1 | Proposed model of trained immunity induced by exNef. The figure shows suggested sequence of events occurring when monocyte encounters Nef-
containing extracellular vesicle (exNef). ExNef induces proteasomal degradation of plasma membrane ABCA1, modifying lipid rafts and increasing their abundance.
Lipid raft changes promote dimerization and activation of TLR4 (TLR4* in the figure), which sends activating signal to inflammatory genes. Additionally, exNef
stimulates glycolysis and cholesterol biosynthesis. One of the intermediate products of glycolysis, fumarate, is a negative regulator of the KDM5 histone demethylase,
inhibition of which promotes trimethylation of the H3 histone on the K4 residue (H3K4me3). Another product of glycolysis, citrate, stimulates synthesis of Acetyl-CoA,
which is a positive regulator of histone acetyltransferase and promotes acetylation of the H3 histone on the K27 residue (H3K27ac). Both modifications are
associated with transcriptionally active chromatin. These events lead to epigenetic modifications resulting in sustained changes in lipid rafts and inflammatory
cytokine production. ExNef also suppress ABCA1 maturation and delivery to plasma membrane, resulting in decreased ABCA1 and suppressed cholesterol efflux.
The cell becomes enriched in cholesterol, and the abundance of lipid rafts further increases, exacerbating events described above. An intermediate product of
cholesterol biosynthesis, mevalonate, is secreted from the cell and stimulates the IGF1R, whose representation is increased on overabundant lipid rafts. Signaling
from IGF1R stimulates the Akt-mTOR pathway, which further potentiates epigenetic remodeling. Histone modifications alter expression of lipid raft regulating proteins
(ABCA1 is shown as an example, switching from active to suppressed state) and pro-inflammatory cytokines (IL-6 and TNF switch from suppressed to active state).
Epigenetic changes in lipid raft regulating genes ensure persistent ‘activation’ of the lipid rafts, whereas epigenetic modifications of cytokine genes lead to
overreaction to inflammatory stimuli. Together, these two mechanisms synergize to promote inflammation.
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TRAINED IMMUNITY AND HIV CO-
MORBIDITIES

Current antiretroviral therapy (ART) efficiently stops HIV
replication eliminating viral particles from the blood and
abol i sh ing pr imary e ff ec t s o f the in fec t ion (e .g . ,
immunodeficiency). Paradoxically, multiple co-morbidities of
HIV infection, from neurological to cardiovascular and
metabolic, persist (54). Risk of these co-morbidities in the
HIV-infected population, although reduced compared to
untreated HIV infection, is nonetheless increased 2-5-fold over
the general population, making them the predominant cause of
morbidity and mortality in people living with HIV. How a virus
with a limited genome exerts such a profound and incessant
effect on so many organs and systems, especially when the virus
is not there? We believe that two explanations, which are not
mutually exclusive, can be proposed.

While production of HIV particles is mostly supressed by
ART, anti-retroviral drugs do not affect viral transcription and
translation, allowing continued low-level expression of viral
genes in the infected cells (55). In addition, viral proteins can
be expressed from integrated ‘defective’ genomes, which
represent majority of integrated HIV copies (56). These
proteins are secreted into the bloodstream and surrounding
tissues mainly in extracellular vesicles (EVs) (38, 57, 58). Nef
may be the only or the major such protein produced in ART-
suppressed individuals, as only Nef-specific T cells could be
detected in people with HIV replication suppressed for several
years (59). A recent study demonstrated that Nef at the
concentrations of 5-10 ng/ml can be detected in blood of at
least half of HIV-infected individuals with undetectable viral
load (60). Using exNef at similar Nef concentration, we have
recently showed that these vesicles are taken up by macrophages
and neurons, modify their cholesterol metabolism, elevate
abundance of lipid rafts and activate a number of
inflammatory pathways (44, 61). This mechanism, together
with slow recovery of the damaged mucosal tissue in the gut
associated with leakage of bacterial products into the blood, may
explain persistent inflammatory response (62). Leakage of
bacterial products and LPS may also contribute to trained
immunity (see below).

In the cited above study (44), we also tested if the effect of
exNef on cholesterol metabolism disappears when Nef was
removed after initial exposure. Contrary to our expectations,
we found that the effects 48 h after removal of exNef were even
stronger than in the presence of Nef. Further studies
demonstrated that the effects of exNef on cholesterol
metabolism and inflammation last for several weeks, far too
long to be explained by residual Nef. Another explanation to this
finding is that Nef triggers trained immunity, which is the second
possible mechanism of persistent inflammation, consistent with
findings discussed in the previous section. A recent paper
invoked trained immunity to explain overexpression of IL-1b
by monocytes from HIV-infected individuals, which was
sustained for at least a year (25). In fact, this finding is
consistent with both explanations discussed above, though Nef
Frontiers in Immunology | www.frontiersin.org 4
expression and epigenetic modifications were not tested in the
study (25).

Most likely, the two mechanisms described above work
together to establish the persistent inflammation observed in
HIV-infected individuals. Indeed, hyperreactivity of myeloid
cells due to exNef-induced changes in lipid rafts and trained
immunity needs additional stimulation to accomplish the
inflammatory response. This stimulation can be provided by
bacterial and fungal products migrating from the gut.

Inflammation is an essential pathogenic element of many co-
morbidities of HIV infection, and potentiation of inflammation
by trained immunity should elevate the risk of these co-
morbidities. Therefore, trained immunity in this case seems to
play a pathogenic, rather than its usual protective role. The
reasons for these unexpected and unorthodox properties of
trained immunity in HIV infection deserve careful analysis, but
it is clear that unique features of HIV infection, including rapid
initial replication of the virus followed by low-level infection and
latency, play the key role. The concept of trained immunity is not
necessarily limited to inflammation. As discussed in the previous
section, broader application of this concept, e.g. by including re-
programming of lipid metabolism, allows to hypothesize that
epigenetic modifications of genes for ABC transporters or
sphingomyelin metabolism would result in chronic elevation of
the abundance and modified properties of the lipid rafts, a key
pathogenic element in many cardiovascular, metabolic and
neurological disorders (63–66). Consistent with this idea,
monocytes from virologically suppressed HIV-infected
individuals were shown to have decreased expression of
ABCA1 and reduced cholesterol efflux (67). Given dependence
of trained immunity on the duration of the exposure and the
concentration of the stimulating agent, it is possible that two
different forms of trained immunity may be formed, the first one
during initial HIV replication associated with strong
inflammatory response , and the second one af ter
commencement of ART, when time of exposure is much
longer, but levels of exNef are much lower and only a low-
grade inflammation is present. The first form of training may be
caused by changes in inflammatory epigenome, while the second
– by epigenetic changes affecting lipid rafts. Characterization of
these two forms of innate memory training, their mechanisms,
interaction and contribution to pathogenesis of different co-
morbidities awaits further studies.
FINAL CONSIDERATIONS

In this Hypothesis and Theory article, we present a new
perspective on the pathophysiologic and translational relevance
of trained immunity in HIV-associated co-morbidities. To the
best of our knowledge, very few, if any, studies have explored this
issue. We believe that myeloid cells respond to HIV-1 protein
Nef, expressed intracellularly by the infecting virus or delivered
by EVs, by becoming primed to increased responses to
subsequent activation by inflammatory factors (Figure 1).
These hyper-responsive cells may be the cause for sustained
July 2022 | Volume 13 | Article 903884
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inflammation, which underlies most co-morbidities associated
with HIV infection, even if successfully managed by ART. Future
studies will define the molecular details of the underlying
mechanisms and may identify therapeutic targets, e.g., lipid
rafts, for reversing this effect.
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