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The clinical handling of chronic virus infections remains a challenge. Here we

describe recent progress in the understanding of virus - host interaction

dynamics. Based on the systems biology concept of multi-stability and the

prediction of multiplicative cooperativity between virus-specific cytotoxic T

cells and neutralising antibodies, we argue for the requirements to engage

multiple immune system components for functional cure strategies. Our

arguments are derived from LCMV model system studies and are translated

to HIV-1 infection.
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Introduction

Chronic virus infections like those with Human Immunodeficiency Viruses

(HIV) and Hepatitis B (HBV) and C (HCV) viruses continue to threaten global

health. A common feature of these infections is the persistence of virus antigen and

the associated exhaustion of virus-specific T lymphocytes (1–5). Although the latter

reduces immune-cell-mediated pathology, it is associated with a reduction of virus

control that enables antigen persistence and has per se pathological consequences.

For example, untreated HIV infection mediates CD4 T cell depletion, chronic

immune activation, lymphoid tissue destruction and dysregulation of immune

homeostasis (6, 7). Chronic hepatitis virus infections deteriorate liver functions

and can lead to liver cirrhosis and hepatocellular carcinoma (8–10). Globally these 3
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infections are carried by close to 400 million individuals and

thus are a significant burden for public health care

systems (11).

The existing approaches to treat chronic infections may be

subdivided into 2 fundamentally different categories, (i)

targeting of virus replication by antiviral drugs including

interferons or therapeutic target cell modifications, and (ii)

targeting virus-specific immune responses to improve host

control by restoration of immune functions i.e. through

therapeutic vaccination or immune checkpoint inhibitors that

reinvigorate exhausted lymphocytes. While most of these

options are still experimental, antiviral drugs are by far the

most common therapeutic modality in use and very successful.

For example, the current virus-specific anti-HCV drugs are

highly potent and enable virus clearance in around 95% of

infected individuals (12). Current antivirals against HIV can

reduce virus loads to below detectable levels however fail to

eliminate the latently infected cells (13, 14). As a consequence,

treatment interruptions lead to rapid viral rebounds from viral

reservoirs and the continuation of a high viral load infection

state (15). To overcome the need for life-long antiviral HIV

therapy with its side effects and the inherent financial burden for

health care systems, numerous concepts for curing chronic

infections have been developed and experimentally tested.

These include “shock-and-kill” strategies that aim to purge the

latent virus reservoir by latency reversal agents with subsequent

killing of infected cells (16, 17), “block-and-lock” strategies that

aim to permanently silence all HIV proviruses (18) and the

potential “rinse-and-replace” strategy that predicts a “washing-

out” of infected cells by uninfected naive and memory T cells via

sequential waves of polyclonal T cell stimulation under

combination antiretroviral therapy (19). While still being far

from clinical practice, the combined delivery of broadly

neutralising antibodies or CD8 T cell-inducing therapeutic

vaccines with latency-reversal-agents (LRAs) including TLR7

agonists showed encouraging first results in experimental SIV/

SHIV infections of rhesus monkeys (20, 21) and in humans (22).

Cure strategies for chronic virus infections can be divided

into sterilising and functional cure strategies. While the

former attempts to completely eliminate the virus from the

host e.g. by HIV-resistant hematopoietic stem cell

transplantation (23, 24) or provirus deletion approaches

(25–27), the latter solely aims to shift the dynamic virus -

host immune system balance into a state in which the virus is

sufficiently controlled without causing pathology (Figure 1A).

Given that HIV elimination was only successful in possibly 4

cases worldwide with a procedure that has a high mortality

rate (30), functional cure approaches appear more feasible.

However, is there any evidence that a shift from a high-virus-

load to a low-virus-load equilibrium is possible? And what

would the requirements be for such a shift? Here, we discuss

the evidence that indeed such a shift should be possible and

define the conditions under which it may occur.
Frontiers in Immunology 02
LCMV model system-based analyses
Many features of virus - immune system interactions within

the lymphocytic choriomeningitis virus (LCMV) mice model

system resemble those of human chronic HIV and hepatitis virus

infections (31, 32). In the early stages, LCMV infections are

mainly controlled by CTLs. Infection with a low dose of e.g.

LCMV-Docile or a high dose of LCMV-Arm leads to the

clearance of virus below the detection level and formation of

immune memory (33). In contrast, infection with high doses of

LCMV-Docile or LCMV-Cl13 results in chronic viral

persistence at high levels and exhaustion of antigen-specific

cytotoxic CD8 T cells (CTLs) (1, 34). Nonetheless, they differ

in their long-term kinetics of infections i.e. clearance of LCMV

Clone 13 by late neutralizing antibodies versus persistence of

LCMV Docile (1).

To explore the necessary conditions for the co-existence of

virus-host equilibria that differ in viral loads as well as the

possibilities for transferring a high-viral load state to a more

favourable equilibrium, one can utilise the analytical power of

existing mathematical models that have been calibrated using

experimental data. Our previously developed mathematical

model of LCMV infection considers the population dynamics

of viruses, precursor and effector CTLs (35), and utilises LCMV

data assimilation procedures and bifurcation analysis (36). The

results suggested that the reduction in the net viral growth rate b
is a necessary condition for a stable low level LCMV infection

state within an immunocompetent host (Figure 1B). Specifically,

the existence of replication competent LCMV below the

detection limit of about 100 FFU per spleen in immune mice

requires a more than 2-times reduction of the exponential virus

growth rate of the acute infection phase. Given that LCMV-

specific neutralising antibodies (nAbs) can block free virus

particles and thus reduce the net virus growth rate, it was

hypothesised that such antibodies could be decisive for virus

control. And indeed, subsequent experimental work by

Greczmiel et al. demonstrated that it is the late appearance of

nAbs that finally controls a chronic LCMV infection to below

detectable levels (37) (Figure 1C).

A conceptual dynamic view of the above observations is

summarized in Figure 2A which considers the outcome of virus-

host interactions as a ‘numbers game’ between the rate of infection

growth and the activation of the immune system (38). If the virus

outcompetes the CTL response, a high virus load state is established

that is characterised by T cell exhaustion and maintained through

the interaction of inhibitory receptors on T cells with their ligands

on antigen-presenting cells (APCs) (5). However, this harmful

equilibrium can be shifted in favour of the host by inducing a

virus-specific neutralising antibody response or by providing

antibodies as a therapeutic intervention (37, 39). Since the

cooperativity of remaining CTLs and the newly induced antibody

response can be considered as multiplicative rather than just

additive, the demand for both specific immune response

components is less stringent in absolute numbers (40).
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FIGURE 1

High and low virus load (VL) equilibrium states in persistent chronic virus infections. (A) Schematic presentation of a high and low virus load
state, and the associated pathology. (B) Mathematical model predictions of multiple virus equilibrium states (I to IV) in LCMV infections of mice
as a function of the net virus growth rate b. Data are from (28). The four virus equilibrium states differ in their values of the virus load from the
highest (state I) to the lowest (state IV). Stability of an equilibrium state or steady state means that the system returns back after some
perturbation. Only stable equilibrium states are biologically observable. State I is always stable while state III is stable for a certain range of b
(solid lines). States II and IV are unstable (broken lines) and cannot be observed biologically. A possible reduction of b by neutralising antibodies
is indicated below. It represents the natural occurrence of a late, specific neutralizing antibody response during chronic LCMV infection that
reduces the net virus growth rate represented by b. (C) Evolution of virus neutralising capacity of mouse sera during an experimental LCMV
infection of mice. Experimental data are from (29) and converted into this presentation. Medians of viral loads at days 30 and 70 and their
interquartile ranges are indicated in red. Solid line, sera from chronic infection; broken line, sera from acute infection.
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FIGURE 2

Dynamic views of virus-host interactions. Lines with an arrow or T end represent expansion or reduction/suppression of the corresponding virus
or cell populations, respectively. The specific processes by which this occurs are specified above the lines. (A) Conceptual dynamic view of a
high and a low virus load state within an infected host. The underlying processes are indicated. A high VL state drives CTL exhaustion (grey cells)
and reduces the population of effector CTL (green cells). B cells (blue cells) produce antibodies that eliminate infectious viruses. Both, effector
CTL and antibodies from B cells, depending on their strength, contribute to the control of the virus load. (B) Cooperative engagement of
individual immune components for functional cure strategies in HIV-1 infection. The combination of immune checkpoint inhibitors with CTL-
based immunotherapy and neutralising antibody responses is indicated. aPDL1, anti-PDL1 antibodies; CTL, cytotoxic T cells; CTLex, exhausted
CTL; CD4i, infected CD4 T cells; VL, virus load. The figure was created with BioRender.com.
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Extrapolation to HIV infections

To translate these results and considerations from the LCMV

mouse model system to human infections like HIV infections and

functional cure strategies, two fundamental questions arise: Is

there evidence for different dynamic steady states in HIV

infection? How can one reduce viral growth rate b and restore

functional immune control in a therapeutic setting? Answer to the

first question is yes. There are several different dynamic states that

can be defined by viral loads and disease progression rates (41).

These are related to the virus set point, the dynamic equilibrium

state at which the virus settles after the primary infection phase

(42–44). For example, from the infected individuals in which the

virus load settles to above 36,000 virions/ml blood, more than 62%

will develop AIDS within 5 years. In contrast, only 8% of

individuals with a virus set point below 4,500 virions/ml blood

will develop AIDS in this time frame. Thus, at least in HIV-1

infection, virus loads are directly linked to pathology and the low

virus load stage, as observed in so-called “elite controllers” (EC)

(45, 46), may be regarded as a non-pathogenic virus infection state

that should be the target for functional cure strategies (Figure 1A).

Indeed, elite controllers are exceptional HIV-infected individuals

that control virus replication without the requirement of

antiretroviral therapy. Based on studies during their chronic

steady state, many potential immunological and virological

factors have been linked to this. It includes virus-specific CTLs

and CD4 T cells, innate immune responses like NK cells and

plasmacytoid dendritic cells as well as virus attenuation and

provirus integration into repressed chromatin sites (47–49).

Since the EC state is associated with certain HLA types, and the

antiviral functionality of CTLs from EC against HIV-infected

autologous CD4 T cells is superior to those of HIV non-

controllers (50), HIV-specific CTL seem to be a prime

component in achieving virus control. The role of virus-specific

neutralizing antibody responses in EC is less clear as high titres of

these are often lacking in respective individuals (47).

The answer to the second question is much more demanding

because one needs to consider the state of the whole immune

system and virus population at the time the functional cure strategy

is to be initiated. In the chronic infection state in which T cells are

exhausted (5) and the virus is a complex quasispecies population

(51, 52) and partially hiding within latently infected cells (53, 54),

the simple reduction of the virus growth rate by antiviral drugs is

not sufficient to self-maintain a stable low virus load state. Likewise,

it is not sufficient to invigorate exhausted T and B cells by

checkpoint inhibitors in the presence of antiviral drugs because

only a fraction of HIV disease phenotypes would benefit. This was

demonstrated in our modelling study of anti-PD-L1 blockage in

HIV-1 infection (55). In this we showed that a favourable effect in

terms of viral load reduction and restoration of functional T cells

strongly depends on the antibody-mediated elimination rate of

infectious virus in a threshold dependent manner. Furthermore,
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within lymphatic tissue and CTL motility, we estimated that the

minimum frequency of HIV-specific effector CTLs should be above

5% to ensure localisation and elimination of an infected cell within a

virus life cycle time (56). Recent vaccine studies against simian–

human immunodeficiency virus (SHIV) infection in macaques

demonstrated that the threshold requirements for virus infection

control were much lower when neutralizing antibodies and CTLs

were induced (57) suggesting multiplicative cooperation between

both arms of the adaptive immune system (40). Taken together and

considering the multiplicative cooperativity between cellular and

humoral responses, it would appear that only a multi-modal

empowerment of antiviral immunity could enable a permanent

shift from a high virus load to a low virus load state in HIV-1

infection. This would require invigoration of exhausted T cells by

checkpoint inhibitors in the presence of antiviral drugs (58) and

induction of novel CTLs together with neutralising antibodies that

cover a broad spectrum of viral epitopes (Figure 2B).

Discussion

Here we summarise the evidence for multiple stable virus

load states in persistent chronic virus infections and provide a

perspective for a functional cure.

Multi-stability is a relevant property of complex biological

systems with normal feedback regulation (59) to which virus

infections belong to. It provides the possibility of switching

between different virus load states. Computational models are

helpful in this context as they can identify the required

parameter values for the multiple steady states (28). For

example, a 2-times reduction of the net virus growth rate b is

the necessary condition for the existence of the low virus load

state in persistent LCMV infection (Figure 1B). Once this

condition is identified, the challenge becomes to define the

required manipulations for shifting the whole system to that

favourable state. Again, computational approaches can provide

useful insight. Amongst them is the recently developed optimal

disturbance approach which can predict multi-modal impacts

(combination therapies) with maximal effects on the immune

system (60). When applied to LCMV infection, the results

demonstrated that a systems shift is possible and requires a

combination of different initial state perturbations like virus load

and functional T cell state. While this will translate to a

combination therapy e.g. of checkpoint inhibitors and

neutralising antibodies, the respective quantities and time lines

are not yet determined and await experimental elaboration.

Nonetheless, these mathematically-driven experimental LCMV

system-based studies provide a proof-of-concept for a possible

system shift to a favourable virus-host interaction dynamics.

Respective analyses of multi-stability and optimal disturbances

for HIV-1 or other persistent chronic infections in humans are

still lacking and clearly represent a challenge and direction for
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further interdisciplinary research. The recent progress of

immunotherapies to induce and boost antiviral immunity are

encouraging but also highlight the need to cooperatively engage

individual immune system components that may eventually

allow moving from a drug-based virus containment to a long-

term immune system-based functional cure.

In summary, the currently explored strategies for functionally

curing an HIV infection are “shock-and-kill”, “block-and-lock”

and “rinse-and-replace”. None of them considers and explores the

concept of multiplicative cooperativity between individual

immune system components that is proposed here. A proof of

concept in a clinical setting is eagerly waited for.
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