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Natural killer (NK) cells have been demonstrated as a promising cellular therapy as they
exert potent anti-tumor immune responses. However, applications of NK cells to tumor
immunotherapy, especially in the treatment of advanced hematopoietic and solid
malignancies, are still limited due to the compromised survival and short persistence of
the transferred NK cells in vivo. Here, we observed that fucosyltransferase (FUT) 7 and 8
were highly expressed on NK cells, and the expression of CLA was positively correlated
with the accumulation of NK cells in clinical B cell lymphoma development. Via enzyme-
mediated ex vivo cell-surface fucosylation, the cytolytic effect of NK cells against B cell
lymphoma was significantly augmented. Fucosylation also promoted NK cell
accumulation in B cell lymphoma-targeted tissues by enhancing their binding to E-
selectin. Moreover, fucosylation of NK cells also facilitated stronger T cell anti-tumor
immune responses. These findings suggest that ex vivo fucosylation contributes to
enhancing the effector functions of NK cells and may serve as a novel strategy for
tumor immunotherapy.

Keywords: fucosylation, NK cells, lymphoma, tumor immunotherapy, graft-versus-tumor effect

INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most curative
therapies for malignant hematological diseases, predominantly in lymphoma and leukemia, for
their potent graft-versus-tumor (GVT) effects. B cell acute lymphoblastic leukemia (B-ALL), an
advanced B-cell malignancy, has a high relapse rate and poor prognosis after allo-HSCT (1).
Subsequently, second transplantation provides long-term overall survival for 10%-40% of patients
(2). Donor-derived T cells exhibit anti-tumor activities, whilst they can also induce graft-versus-host
disease (GVHD), which has a significant impact on patients’ morbidity and mortality. New
therapeutic strategies are needed to separate GVT and GVHD. Natural killer (NK) cells preserve
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critical GVT effects without aggravating GVHD (3). NK cells not
only play a direct role in killing viruses and tumors but also act as
a regulatory cell to mediate adaptive immune response by
interacting with T cells, macrophages, dendritic cells (DCs),
and endothelial cells (4). Although NK cell infusion has
emerged as a promising immunotherapy for the treatment of
hematologic malignancies, it is still limited due to their short
lifespan and poor infiltration in solid tumors (5). The ability of
immune cells to traffic to the tumor site usually relies on their
robust binding to selectin, especially E-selectin (CD62E)
expressed on activated endothelial cells (6). E-selection ligand,
cutaneous lymphocyte antigen (CLA) must be sialofucosylated
and presents the sialyl Lewis X (sLe¥X) epitope (7, 8). A
straightforward glycan engineering approach based on
exploiting oul,3-fucosyltransferase to transfer fucose residues
from the guanosine diphosphate-fucose (GDP-fucose) donor
onto the cell-surface o.-2,3-sialyllactosamine acceptor substrate
has been demonstrated effective and efficient to enforce sLe™
display in cell surface (9, 10). On the other hand, ex vivo
cytokines pre-activation and genetically modification have been
proven for promoting NK cell activity and infiltration (11, 12).
Efforts are enforced to exploit the proliferation and migration of
NK cells to generate potent anti-tumor properties.

Recent studies revealed that fucosylation play critical roles in the
regulation of the development, functions, and trafficking of immune
cells (13-15). For example, Diego et al. reported that ex vivo
enforced sialofucosylation enhanced E-selectin binding of the
modified CD19-CAR T cells, as well as their activity and homing
to bone marrow (16). Likewise, Wu and coworkers also
demonstrated that ex vivo fucosylation of NK-92MI cells to create
the E-selectin ligand sLe® on the cell surface promoted NK
trafficking to bone marrow (17). However, the specific role and
mechanism of fucosylation in modulating the NK cell-mediated
anti-tumor immune response remains largely unexplored.

In this study, we discovered that NK cells were highly
fucosylated and fucosylation was positively correlated with the
infiltration of NK cells into the tumor microenvironment in B
cell lymphomas. Fucosylation significantly promoted the
cytolytic effect and the accumulation of NK cells. These
findings suggest that ex vivo fucosylation contributes to
enhanced effector functions of NK cells, which could be a
novel strategy for tumor immunotherapy.

MATERIALS AND METHODS

Animals

Female BALB/c (H2-Kd) and C57BL/6 CD45.2 (H2-Kb) mice
were purchased from Shanghai Laboratory Animal Center
(Shanghai, China). C57BL/6 CD45.1 (H2-Kb) mice were
obtained from Beijing Vital River Laboratory Animal
Technology Co. Ltd (Beijing, China). All mice used were aged
6-8 weeks and housed in a specific-pathogen-free environment
and received acidified autoclaved water at Animal Facilities of
Soochow University. All animal experiments were performed in
accordance with the guidelines and approved by the Animal Care
and Use Committee of Soochow University.

Cell Line

A20 cells line (BALB/c B cell lymphoma, H2-Kd) was purchased
from American Type Culture Collection (Manassas, VA, USA).
Luciferase-expressing A20 cells were generated by lentiviral
system and sorted by flow cytometry (BD FACS Aria III, BD
Bioscience, San Jose, CA, USA). Both of these cells were cultured
with RPMI 1640 medium with 10% FBS at 37°C in a 5%
CO, incubator.

GVT Model

Murine GVT model was established as previously described (18).
Briefly, BALB/c recipients received lethal irradiation of 650cGy
(X-Ray, 325cGy per dose with 4h interval) and were injected
intravenously with 5x1076 bone marrow (BM) cells from
C57BL/6 mice together with 1x10A6 A20 lymphoma cells or
5x1076 A20-luc’/yfp cells, respectively. Survival of recipients
were monitored daily.

Fucosylation and Generation of NK Cells
NK cells were generated from bone marrow of CD45.2 C57BL/6
mice or CD45.1 C57BL/6 mice as described previously (19). T
cells in BM components were depleted by EasySepTM Mouse
CD90.2 Positive Selection Kit (STEMCELL Technologies,
Vancouver, BC, Canada). T cell depleted (TCD)-BM cells were
incubated in fucosylation solution (40ug/ml o-1,3-
fucosyltransferase and 100 pM GDP-fucose in phosphate-
buffered saline with 0.5% FBS) for 30 min at room
temperature and then cultured for 7 days in the presence of
IL-2 and Indomethacin. The success of cell-surface fucosylation
was characterized by the increased expression of sLe™ residues, as
assessed by flow cytometry, using CLA, recognized by the
monoclonal antibody HECA-452 (20). Purity of CD3~ NK1.1*
NK cells was >95%. NK cells were washed three times with PBS
before transfer.

CFSE Labeling and In Vivo

Proliferation Analysis

Donor NK cells were labeled with 5 mM CellTrace ™ Violet Cell
Proliferation kit (Invitrogen, Waltham, MA, USA) as described
previously (19) and then transferred into tumor-bearing
recipients. Four days post adoptive transfer, the proliferation of
donor NK cells was analyzed by individual CTV generations.

Cytotoxicity Assay

Control or fucosylated NK cells and A20-luc*/yfp cells were co-
cultured in 96-well plates at different effector/target (E: T) ratios.
After co-cultured for 6h, apoptosis of yfp* lymphoma cells were
detected by Annexin V/PI Apoptosis Detection Kit (Vazyme,
China). The cytotoxic activities of NK cells were represented by
the apoptotic rates.

Flow Cytometric Analysis

Single cell suspensions from the spleen and liver were acquired
according to the methods previously described (21) and analyzed
using flow cytometry. Antibodies used for flow cytometry
staining including Percp-Cy5.5-anti-mouse-CD45.1, APC-Cy7-
anti-mouse-CD11b, Percp-Cy5.5-anti-mouse-NK1.1, BV650-
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anti-mouse-H2-Kb were purchased from BD Bioscience
(SanDiego, CA, USA); purified anti-mouse-CD16/32, APC-
anti-mouseCD43, PE-anti-mouse-NKp46, APC-anti-mouse-
CD107, FITC-anti-mouse-NKG2D, PE-anti-mouse-IFN-y, PE/
Cy7-anti-mouse-TNF-o, FITC-anti-mouse-CD62E, PE-anti-
mouse-CD4, PE/Cy7-anti-mouse-CD44, APC/Cy7-anti-mouse-
CD62L, Pacific Blue-anti-mouse-CD8a, FITC-anti-mouse-CD69
were purchased from Biolegend (San Diego, CA, USA); PE-Cy7-
anti-mouse-Granzyme B, APC-anti-mouse-Perforin were
purchased from eBioscience (San Diego, CA, USA).
Recombinant Mouse E-Selectin, P-Selectin, and L-Selectin
chimera were purchased from Biolegend (San Diego, CA,
USA) for detecting the binding abilities. Samples were detected
on a NovoCyte Flow Cytometer (ACEA Biosciences, San Diego,
CA, USA) and data were analyzed by using Flowjo software
(Flowjo, Ashland, OR, USA).

Single Cell RNA Sequencing Analysis

Single cell RNA sequencing (scRNA-seq) data were available in a
previous study that deposited in the GEO database (NCBI)
repository, accession number GSE182434 and normalized by R
package “Seurat”. After filtering cells with low numbers of total
UMI counts, detected genes and low proportion of
mitochondrial gene counts per cell, poor-quality cells were
removed. Differential gene expression (DEG) testing was
performed using the “FindMarkers” function in Seurat with a
Wilcoxon test, and p-values were adjusted using Bonferroni
correction. DEGs were filtered using a maximum adjusted p-
value of 0.05. Enrichment analysis for the functions of the DEGs
was conducted using the clusterProfiler (v3.12.0) R package and
GSEApy (0.10.2) in Python3. Metascape (http://metascape.org/
gp/index.html#/main/stepl) was used to create gene ontology
and cell type enrichment barplots using DGE of relevant groups.
The gene sets were based on Gene Ontology terms in MSigDB,
and all the gene sets with NESscores higher than 1 and a p-value
less than 0.05 were included. scRNA-seq plots were generated
using ggplot2 (v3.3.5). Cell interactions were performed by
Cellphone DB.

Morphology and Immunohistochemistry

The tissue wax obtained from the Department of Pathology, The
First Affiliated Hospital of Soochow University. Formalin-fixed,
paraffin-embedded (FFPE) tissues was used for morphological
examination via hematoxylin-eosin (H&E) staining. The
following antibodies were applied on BenchMark XT
automated immunostainer (Ventana Medical Systems, Tucson,
AZ, USA) with Cell Conditioning 1 heat retrieval solution
(Ventana Medical Systems, Tucson, AZ, USA): CD56 antibody
(clone number: 123C3, Gene Tech, China; Ready-to-use), CD8
antibody (clone number: SP16, Gene Tech, China; Ready-to-use)
and CLA (clone number: HECA-452, BioLegend, USA). IHC
results of CD8, CD56 and CLA were calculated as IHC score by
multiplying the percentage of positive cells (0 to 100, recorded in
the increment by 5%) with mean intensity (0, no staining; 1,
weak staining; 2, moderate staining; 3, strong staining), and given
a range from 0 to 300. Two pathologists (Xing Tong and
Lingchuan Guo) were independently responsible for evaluating

the morphological and immunohistochemistry (IHC) results.
The use of human samples was approved by the Ethical
Committee of The First Affiliated Hospital of Soochow
University and all patients provided signed informed consents.

Statistical Analysis

Data were analyzed using GraphPad Prism 9 software for Mac
(GraphPad Software, San Diego, CA, USA). Unpaired Student’s
t-test was used to investigate statistical significance. The Kaplan-
Meier curve was used to analyze the survival of allo-HSCT. p <
0.05 was considered statistically significant (*), less than 0.01 or
0.001 was shown as ** or ***, respectively. Data are presented as
means * SD.

RESULTS

Fucosylation Promoted Effector Functions
of NK Cells in B Cell Lymphoma

To explore the role of immune cell fucosylation in B cell
lymphomas pathophysiology, we first analyzed the expressions
of individual fucosyltransferases in publicly available scRNA-seq
database of 14 patients with diffuse large B cell lymphoma
(DLBCL) and follicular lymphoma (FL) (22). We found that
fucosyltransferases, including FUTI, 2, 3, 5, 6, 9, and 10 had
extremely low expression levels on different immune cell subsets.
FUT4 was restrictedly expressed on monocytes and
macrophages. Notably, FUT7 was predominantly expressed on
NK cells and plasma cells, which was responsible for o1,3
fucosylation to produce sLe®. Similarly, we observed FUTS, a
specific fucosyltransferase for o-1,6 core fucose, was highly
expressed on NK cells (Figure 1A). These results indicated
that fucosylation may have a potential function in anti-tumor
immune responses regulated by NK cells during the pathogenesis
of B cell lymphoma. We next performed gene-set enrichment
analysis (GSEA) with KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway analysis to investigate the functions of
fucosylated NK cells. Interestingly, the expression patterns of
genes known to be involved in ‘nature killer cell mediated
cytotoxicity’ and ‘regulation of leukocyte mediated immunity’
were increased with fucosylation of NK cells (Figure 1B). Cell
type analysis further enriched NK cell signatures (Figure 1C).
Moreover, we also observed an elevated expression of NK
effector genes including KLRCI, KLRC3, KLRKI, BHLHE40,
CD27 and down regulation of inhibitory molecules including
KLRB, KLRGI, and TIGIT (Figure 1D). Interactions between
different cell subsets played critical roles in anti-tumor responses.
Given that NK cells and CD8" T cells are fundamental in anti-
tumor immunity, we then performed cell-cell interaction analysis
and calculated the numbers of receptor-ligand parings based on
Cellphone DB to elucidate the redistribution of each kind of
ligand-receptor interactions of fucosylated NK cells and T cells in
B cell lymphoma (23). We observed interactions of cytokine
receptors, immune checkpoints, and adhesion molecules
between fucosylated NK cells and CD8" T cells in B cell
lymphoma (Figure 1E). Thus, these results suggest that
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fucosylation promotes NK cell effector functions and may have a
potential regulatory role in facilitating T cell anti-
tumor responses.

Fucosylation Was Relevant to Infiltration
of NK Cells in DLBCL

It is reported that CLA is mainly expressed on memory/eftector T
cells and NK cells (24). With H&E staining, we observed that
tumor cells were numerous on moderate to large lymphocytes
proliferating diffusely, featured with marked heteromorphy, and
large and deeply stained nuclei which distinguished from those
small lymphocytes in backgrounds in DLBCL (Figure 2A). To
further investigate the role of fucosylation in B cell lymphoma,
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FIGURE 1 | Fucosylation promoted effector functions of NK cells in B cell ymphoma. (A) Heatmap of relative expressions of different fucosyltransferases in each cluster defined
by scRNA-seq analysis. The dot size represented the relative percentage of expressions. The color scale represented the expression level. (B) GSEA of the upregulated gene set
in fucosylated NK cells versus normal NK cells. (C) Enrichment of cell type signatures in fucosylated NK cells versus normal NK cells. (D) Heatmap of relative expressions of NK
effector genes. The dot size represented the relative percentage of expressions. The color scale represented the expression level. (E) The GO annotation of ligand-receptor pairs
between NK cells and T cells. The dot size represented the adjusted p-value. The color scale represented number of genes.

we performed immunohistochemical staining to detect the
correlations between fucosylation and CD8 or CD56. Our
results showed that compared to normal control, CD8
expression in DLBCL remained strong and diffuse positive
(Figure 2B), while CD56 expression decreased significantly
amidst reactive backgrounds (Figure 2C). Moreover, weak and
scattered expression of CLA was observed only on small
lymphocytes in normal control, and further decreased in
DLBCL (Figure 2A), which was in accordance with CD56
expression (Figure 2E). By contrast, there existed no
correlations between the expression of CD8 and CLA
(Figure 2D). These results implied the role of NK cells in
DLBCL, which was potentially related to fucosylation.
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Ex Vivo Fucosylation Augmented Cytotoxic
Activities of NK Cells

Fucosylation is regulated by fucosyltransferases and GDP-fucose as
the substrate (25). In order to investigate the function of
fucosylation of NK cells, we incubated TCD-BM progenitors with
H. pylori a-1,3-fucosyltransferases (26) and GDP-fucose for 30 min
at room temperature. BM progenitors only expressed a relatively
low level of fucosylation. Ex vivo fucosylation significantly promoted
the CLA expression on cell surface as increased from 527% to
87.71% (Figure 3A). The purity of generated NK cells was high
(more than 95%) (Figure 3B). There was no significant difference of
CD11b and CD43 expression between the fucosylated and
untreated groups, suggesting that fucosylation had no impact on
the maturation of NK cells. Likewise, the activation markers
NKG2D and NKp46 were not substantially altered by
fucosylation (Figure 3C). However, production of IFN-v,
granzyme B as well as perforin were markedly increased in
fucosylated NK cells as compared to those of the untreated
controls (Figures 3D-F). We also observed an elevated IFN-y
secretion in the supernatant of fucosylated NK cells (Figure 3G).
Collectively, these results demonstrated that ex vivo fucosylation
promoted the cytotoxic abilities of NK cells.

Fucosylated Donor NK Cells Enhanced
GVT Effect Against B Cell Lymphoma

To evaluate the potential GVT effect of fucosylation on NK cells,
we performed cytotoxicity assay to detect the direct killing
abilities of NK cells against B cell lymphoma cells (A20 cells).
We found that fucosylation significantly promoted the cytotoxic

activities of NK cells at different E: T ratios compared to control
NK cells (Figure 4A). Results of murine GVT model showed that
compared to recipients without NK cells infusion, recipients
receiving control NK cells have a trend of prolonged survival, but
without statistical significance. By contrast, recipients that
received the transfer of fucosylated NK cells exhibited
prolonged survival and profound therapeutic effects compared
to recipients receiving control NK cells (Figure 4B). The
proportions of A20 cells were significantly decreased both in
the spleen and liver in mice infused fucosylated NK cells
compared with those in controls (Figures 4C, D). Thus, our
results demonstrated that fucosylation of NK cells displayed
enhanced anti-tumor responses both in vitro and in vivo.

Fucosylation Promoted Donor NK Cells
Accumulation After Allo-HSCT

To investigate the mechanisms of promoting GVT effect with ex
vivo fucosylation of NK cells, we assessed the properties of NK
cells 7 days post transplantation. We found that neither the
expressions of maturation markers (CD11b and CD43) nor the
expressions of activation markers (NKG2D and NKp46) differed
between the fucosylated and the control NK cells isolated from
the recipient mice (Figure 5A). In addition, we also found
similar levels of CD107a expressed on NK cells between these
two groups. Consistent with our in vitro results, the production
of IFN-y and perforin was elevated in the fucosylated NK cells
(Figures 5B, C). Significantly, we found the frequency of NK
cells in the spleen and the liver was substantially increased in the
recipient mice that received fucosylated NK cells when compared
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to those receiving control NK cells (Figure 5D). To determine
the origin of NK cells increased in these organs, we then labeled
donor NK cells with CTV before transfer. The fucosylated NK
cells exhibited a similar rate of apoptosis and proliferation to that
of the control NK cells (Figures 5E, F). However, the fucosylated
NK cells had increased affinity to E-selectin rather than P-
selectin or L-selectin, which hinted at superior accumulation
ability of the fucosylated NK cells compared to the controls
(Figure 5G). These results suggested that, instead of enhanced
proliferation or hindered apoptosis, fucosylation promoted the
accumulation of NK cells in lymphoma-involved organs by
enhanced binding to E-selectin in vivo.

Fucosylation of NK Cells Triggered T Cell
Anti-Tumor Immune Responses

Results of scRNA-seq indicated that engagements of fucosylated
NK cells and T cells might facilitate the anti-tumor immunity.
Hereby, we assessed the early T cell response 7 days post adoptive
transfer. We found that the percentage of CD8" T cells was
significantly increased in recipients with fucosylated NK cells,
whereas the population of CD4" T cells was not altered
(Figures 6A, B). Compared to mice with control NK cells,
CD8" T cells of mice with fucosylated NK cells also exhibited a
more activated phenotype with elevated expression of CD69
(Figures 6C-E). Accordingly, we observed a decrease of naive
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CD8" T cells and an increase of effector memory CD8" T cells in
recipient mice that received fucosylated NK cells compared with
those receiving control NK cells (Figure 6F). However, similar
alterations were not observed in CD4" T cells. Thus, fucosylation
of NK cells probably contributed to the activation of CD8" T
cells, which further promoted the anti-tumor immune response.

DISCUSSION

NK cells were defined as a distinct lymphocyte subset in 1975,
which are capable of directly recognizing and killing tumor cells
without previous sensitization (27). It has been demonstrated
that NK cells play critical roles in GVT responses without
aggravating GVHD (3, 28). NK cells can directly eliminate
tumor cells by cytotoxic effect through releasing perforin and
granzymes. In addition, by producing IFN-y, NK cells also
facilitate the activation and differentiation of cytotoxic T
lymphocytes to restrict tumor growth (29). Apart from these
direct manners, NK cells can assist in indirect regulation of T cell
responses, such as interactions with B cells, triggering DC
maturation and antigen cross presentation (30). Indeed, we
observed an increased activation of CD8" T cells in recipient
mice infused with fucosylated NK cells as compared with those
infused with the control, untreated NK cells. However, clinical
applications of NK cells infusion in tumor immunotherapy,
especially in the treatment of advanced hematopoietic and
solid malignancies, are still challenging due to their limited

ability for survival or accumulation. It is supposed that ex vivo
modification may provide potentials to ameliorate their ability
and enhance their anti-tumor properties.

Fucose is a natural 6-deoxy hexose, characterized by the form of
L-configuration and lacks a hydroxyl group on the carbon at the 6-
position (C-6). There exists a variety of fucose types in mammal
tissues, including skin and nervous system. Fucose can be
incorporated into the terminal portions of N-, O-, or lipid-linked
oligosaccharide chains as a terminal modification of glycan
structures (31). Besides, levels of L-fucose in serum and urine can
be a valuable biomarker of alcoholic liver disease, hepatocarcinoma,
cirrhosis, and gastric ulcers (32, 33). Fucosylation is an enzymatic
process catalyzed by fucosyltransferase (FUTs). FUT family,
including FUT1 to FUT11, are fucosylation synthases which are
responsible for forming glycosidic linkages between saccharides
and other saccharides, peptides, and lipids (34). They are involved
in proliferating cancer cells and play an important role in tumor
metastasis (35, 36). It was reported that expression of FUT3/6/7 was
a poor prognostic indicator, but higher FUT4 expression was a
favorable prognostic factor in AML patients who received
chemotherapy alone (37). FUT7 promoted the proliferation,
migration, invasion, and EMT of bladder cancer cells, and
positively correlated with immune cell infiltration levels (CD8" T
cells, CD4"T cells, macrophage, neutrophil, and DCs) (38). In our
study, we found that FUT genes wereassociated with immune
infiltration in B cell lymphoma. FUT4 was restrictedly expressed
on monocytes and macrophages, while FUT7 and FUT8 were
predominantly expressed on NK cells through scRNA-seq analysis.
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Interestingly, we found that there was scarcely any expression of CLA
on the lymphoma cells by immunohistochemical staining.
Fucosylation is involved in the formation of ABO blood group H
antigen, Lewis blood group antigen, selectin-mediated leukocyte
extravasation or homing, host pathogen interaction, and signal
pathway modification (39). Ex vivo fucosylation has emerged as an
enabling way to facilitate the trafficking and tumor infiltration of
adoptively transferred immune cells. In the pioneering work of Xia,
Shpall, and coworkers, cord blood hematopoietic cells fucosylation
mediated fucosyltransferase-VI effectively accelerated neutrophil

and platelet engraftment after transplantation both in animal
models and clinic trials. Likewise, Sackstein applied similar
strategies to create sLe® on human multipotent mesenchymal
stromal cells to enhance their trafficking and bone marrow
engraftment. In the scenarios of adoptive T cell transfer, ex vivo
fucosylation was effective to enhance anti-GVHD potency of
human regulatory T cells (13, 14, 40, 41). It also reported that
fucosylated CD19-CAR T-cell acquired improved activity and
prolonged persistence in vivo (16). However, little is known about
fucosylation in NK cell immunity.
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In the current study, we discovered that in clinical B cell
lymphoma FUT?7 responsible for creating sLeX was highly
expressed on NK cells and CLA that presented sLeX was
positively correlated with the accumulation of NK cells in
tumor bed. By employing recombinant H. pylori ol,3-
fucosyltransferase for ex vivo fucosylation, we successfully
introduced sLeX onto murine NK cells. Ex vivo fucosylation
significantly enhanced the cytolytic activity of the treated NK
cells as well as their infiltration into lymphoma-involved organs
such as the spleen and the liver. Moreover, fucosylated NK cells
exhibited superior activities to restrict tumor growth by
facilitating CD8" T cell activation. However, we observed that
fucosylation on the cell surface persisted less than 2 weeks in our
study (data not shown). How to prolong the persistence of
fucosylation needs to be explored in further studies. Besides,
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the molecular mechanism through which cell-surface
fucosylation enhances NK effector function remains to be
explored. There is a possibility that fucosylation enforces
stronger interactions between NK cells and target cells, which
results in the formation of a stronger immunological synapse and
thereby better tumor cell killing. Because H. pylori ol,3-
fucosyltransferase possesses unprecedented donor substrate
promiscuity—even fucose residues conjugated with antibodies
can be transferred onto the cell surface (42) - it is also possible
to use this enzyme to incorporate other functional molecules,
e.g., cytokines and growth factors, onto NK cells to further boost
their in vivo properties. Recently, PDGFD-PDGFR signal was
proven to promote IL-15 mediated NK cell survival (43). We
observed no significant change of PDGFRB-PDGEFD interactions
in scRNA-seq analysis by Cellphone DB, which was consistent
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with our results that fucosylation would not affect the apoptosis
and proliferation of NK cells in GVT model. In conclusion, one
of the key factors that govern the success of NK cell-based cancer
immunotherapy is achieving efficient early trafficking of an
adequate number of activated NK cells into the tumor
microenvironment for mounting an effective immune
response. Ex vivo cell-surface fucosylation certainly serves as a
promising strategy to realize this goal.
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