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in Prostate Cancer
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and Delin Yang”

Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China

Prostate cancer (PCa) is one of the most prevalent cancers of the urinary system. In previous
research, Kinesin family member 2C (KIF2C), as an oncogene, has been demonstrated to
have a key role in the incidence and progression of different cancers. However, KIF2C has
not been reported in PCa. We combined data from different databases, including The
Cancer Genome Atlas, the Cancer Cell Line Encyclopedia, Genotype Tissue-Expression,
cBioPortal, and the Genomics of Drug Sensitivity in Cancer database, to explore the potential
oncogenic role of KIF2C in PCa through a series of bioinformatics approaches, including
analysis of the association between KIF2C and prognosis, clinicopathological features, gene
mutations, DNA methylation, immune cell infiltration, and drug resistance. The results
showed that KIF2C was significantly up-regulated in PCa. High KIF2C expression was
associated with age, pathological stage, lymph node metastases, prostate-specific antigen
(PSA), and Gleason score and significantly predicted an unfavorable prognosis in PCa
patients. Results from Gene Set Enrichment Analysis (GSEA) suggested that KIF2C was
involved in the cell cycle and immune response. KIF2C DNA methylation was reduced in PCa
and was inversely linked with KIF2C expression. KIF2C was shown to have a strong
relationship with the tumor microenvironment (TME), infiltrating cells, and immune checkpoint
genes. Furthermore, high KIF2C expression was significantly resistant to a variety of MAPK
signaling pathway-related inhibitors. Our study reveals that KIF2C may be a possible
predictive biomarker for assessing prognosis in PCa patients with immune infiltration.

Keywords: prostate cancer, KIF2C, pan-cancer, immune infiltration, prognostic biomarker, TME

INTRODUCTION

Prostate cancer (PCa) is one of the most widespread cancers of the male genitourinary system, with
a predicted 1.3 million occurrences globally in 2018 (1). The second greatest cause of cancer-related
mortality in the U.S. is PCa (2), with an estimated 174,650 new cases in 2019. The incidence of
metastatic PCa is on the rise (3). In the United States, the incidence of metastatic PCa increased
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from 4% in 2003 to 8% in 2017 (4). Androgen deprivation
therapy (ADT) is the recommended therapy of choice for newly
diagnosed progressive PCa and recurrence following radical
therapy. ADT induces tumor remission at first, but resistance
develops over time, leading to recurrence and ultimate
progression to castration-resistant prostate cancer (CRPC) (5).
CRPC patients have a terrible prognosis, with a median survival
time of 9 to 30 months (6, 7). Chemotherapy, radium 223, and
medicines that target the androgen receptor axis, such as
enzalutamide and abiraterone, are the most common therapies
for metastatic CRPC (8, 9). However, CRPC is still incurable and
is the leading cause of mortality in PCa patients.

Of the kinesin superfamily, the kinesin-13 family members
are strictly MT depolymerases. The most obvious member of the
kinesin family-13 is kinesin family member 2C (KIF2C), also
called mitotic centromere-associated kinesin (MCAK) (10).
KIF2C is distributed across the cell, but is particularly
abundant around centromeres, kinetochores, and spindle poles
(11, 12). KIF2C is a kinesin-like protein that acts as a
microtubule-dependent molecular motor during mitosis,
allowing chromosomal separation (13, 14). Furthermore, both
during interphase and mitosis, KIF2C modulates microtubule
dynamics in the cell (15, 16). With respect to KIF2C, changes in
expression have been linked to a poor prognosis for cancer
recovery in several studies. In a number of malignancies, KIF2C
has been recognized as a potential oncogene. According to Mo
et al. (17), KIF2C enhanced hepatocellular cancer through the
Ras/MAPK and PI3K/Akt signaling pathways. According to
Yang et al. (18), KIF2C may accelerate the growth of cervical
cancer by blocking the stimulation of the p53 signaling pathway.
According to Wei et al. (19), Wnt/catenin signaling directly
upregulates KIF2C expression and KIF2C overexpression causes
mTORCI pathway activation. According to An et al. (20), KIF2C
increased cancer growth and was linked to tumor immune cell
infiltration in endometrial cancer. According to Ha et al. (21),
KIF2C promotes tumor cell motility and invasion. Furthermore,
Zhu et al. suggested that KIF2C is a new player in the DNA
damage response (22). However, the function of KIF2C in PCa
has not been reported, which means it needs to be explored.

The goal of this research is to figure out what KIF2C’s role
and mechanism in PCa could be via integrating multiple
bioinformatics approaches. We discovered that when
comparing PCa tissues to nontumor tissues, KIF2C expression
was considerably higher in PCa tissues. In addition, KIF2C
expression was increased with the age, stage, grade, PSA,
Gleason score, lymph node metastases, and distant metastases
of the PCa. High KIF2C expression was correlated with a poor
prognosis for patients with PCa. Using Gene Set Enrichment
Analysis (GSEA), we investigated the biological function and
pathways of KIF2C. Moreover, we evaluated the possible
connections between KIF2C expression and DNA methylation,
gene mutations, TME, immune infiltration levels, various
immune-related genes, and drug resistance in PCa. The results
indicated that KIF2C expression was significantly negatively
correlated with promoter methylation and positively correlated
with immune scores and estimate scores. Furthermore, there was

a link between KIF2C expression and the levels of B cells, T cells,
macrophages, NK cells, and dendritic cell infiltration in PCa.
Finally, our findings highlight the critical function of KIF2C in
tumorigenesis and suggest that KIF2C may be involved in the
modulation of immune responses in PCa.

METHODS

Data Collection and Analysis of

Differential Expression

Pan-cancer sequencing data and linked clinical data were
downloaded from The Cancer Genome Atlas (TCGA) by the
online tool UCSC Xena (https://xena.ucsc.edu/). The GTEx
database (https://commonfund.nih.gov/GTEx) was used to get
gene expression data for normal tissues. The CCLE database
(https://portals.broadinstitute.org/ccle/) was used to gather gene
expression data in tumor cell lines. Using the data downloaded
above, we evaluated KIF2C expression in 31 normal tissues, 30
tumor cell lines, and 33 tumor tissues and compared KIF2C
expression levels in 33 cancer samples and corresponding
paracancer samples. For these tumor types, expression data
was Log2 transformed, and a two-group t-test was performed.
P < 0.05 indicated that KIF2C was differentially expressed
between tumor tissues and normal tissues. All data was
statistically analyzed using R software (version 4.0.2; https://
www.R-project.org/), and box plots were created using the R
package “ggpubr.”

Specimen Collection

This study obtained tumor samples and related paracrine tissues
from 14 pairs of PCa patients at Kunming Medical University’s
Second Affiliated Hospital. None of the patients had had any
chemotherapy, radiation, or endocrine treatment prior to
surgery. These samples were extracted from the patients,
frozen in liquid nitrogen, and kept indefinitely. All samples
were donated only for the purpose of study. The Rational
Committee of Kunming Medical University’s Second Affiliated
Hospital gave their approval to this study.

RNA Extraction and Quantitative
Real-Time PCR (qRT-PCR)

TRIzol reagent (Sigma-Aldrich, USA) was used to extract total
RNA from tissues, and quantitative real-time PCR (qRT-PCR)
was performed as directed by the manufacturer. The
concentration and purity of RNA were measured using a
nanophotometer (IMPLEN, Germany). The iScriptTM cDNA
Synthesis Kit (Promega, USA) was used to synthesize cDNA. In
the qRT-PCR test, the Eastep qPCR Master Mix (Promega, USA)
and the CFX96 Real-Time PCR Detection System (Bio-Rad,
USA) were utilized. The primers were created by BioSune
(Shanghai, China). The optimal RNA expression levels were
determined using the 2 AL method. qRT-PCR was used to
determine the expression levels of GAPDH (forward, 5'-TGC
ACCACCAACTGCTTAGC-3/, reverse, 5'-GGCATGGACTG
TGGTCATGAG-3’) and KIF2C (forward, 5-CTGTTTCCC
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GGTCTCGCTATC-3', reverse,5'-AGAAGCTGTAAGAGTT
CTGGGT-3’). All of the trials were repeated at least three times.

Analysis of the Relationships Between
KIF2C and Prognosis

Overall survival data was downloaded from the TCGA website.
The connection between KIF2C expression and overall survival
(OS), disease-specific survival (DSS), disease-free interval (DFI),
and progression-free interval (PFI) in each cancer type was
investigated using Cox regression analysis. The Kaplan-Meier
techniques and the log-rank test were used to construct a survival
analysis for PCa patients. To create and analyze survival curves,
the R packages “survival” and “survminer” were used. To
illustrate the Cox regression model, the R packages “survival”
and “forestplot” were used. Significant was defined as a P value of
less than 0.05.

Correlation of KIF2C Expression With
Gene Mutation and DNA Methylation

Gene mutation data was downloaded from TCGA by an online
tool, UCSC Xena. cBioPortal (www.cbioportal.org) was used to
examine the genomic alteration types and frequency of KIF2C in
PCa. The gene mutations in the KIF2C high-expression group
and low-expression group in PCa were drawn using the R
package “maftools.” Using forest plots, we showed the
differences in gene mutations between the KIF2C high
expression group and the KIF2C low expression group.
HM450 methylation data from cBioPortal was also utilised.
For PCa, we looked at the relationship between KIF2C
expression and gene promoter methylation.

KIF2C-Related Gene Enrichment

Analysis in PCa

The biology and functional relevance of KIF2C in PCa was
assessed using Gene Set Enrichment Analysis (GSEA). The
GSEA website (https://www.gsea-msigdb.org/gsea/downloads.
jsp) was used to obtain the Reactome gene sets. GSEA was
conducted using the R package Cluster Profiler.

The Correlation of the KIF2C Expression
With TME and Tumor Cell Infiltration

TME metagenes construction and gene signature scoring were
carried out in accordance with previous literature (23). The
stromal score, immune scores, estimated scores, and tumor
purity for each tumor sample in PCa were evaluated using
ESTIMATE (Estimation of Stromal and Immune Cells in
Malignant Tumor Tissues Using Expression Data). The R
software packages “estimate” and “limma” were used to assess
the relationship between KIF2C expression level and these four
indicators based on the degree of immune infiltration. The data for
the infiltration score and the 24 immune cell types in the TCGA
PRAD were estimated and obtained from the ImmuCellAI
database (http://bioinfo.life.hust.edu.cn/ImmuCellAl#!/).
CIBERSORT was used to calculate relative scores for 24
immune cells in PCa. R-packages “ggplot2”, “ggpubr,” and
“ggExtra” were used to estimate the relationship between KIF2C

expression levels and each immune cell infiltration level in PCa.
Significance was considered for P values below 0.05. A co-
expression study of KIF2C and immune-related genes, including
genes encoding major histocompatibility complex (MHC),
immune activation, immunosuppressive, chemokine, and
chemokine receptor proteins, was also performed using the R-
package “limma.” The “reshape2” and “RColorBreyer” packages
were used to illustrate the findings.

KIF2C and Drug Resistance

The Genomics of Drug Sensitivity in Cancer (GDSC) database
(https://www.cancerrxgene.org/) collects the sensitivity and
response of tumor cells to drugs and describes the response of
about 200 anticancer drugs to more than 1,000 tumor cells. The
GDSC database contains two datasets, GDSC1 and GDSC2. We
used cell line expression profiling data for GDSC2 to analyze the
relationship between KIF2C expression levels and the IC50 of
198 drugs.

Statistical Analysis

T-tests were used to evaluate changes in KIF2C expression levels
in cancer and normal tissues. All survival analyses were
conducted using the Kaplan-Meier curve, the log-rank test, and
the Cox proportional hazard regression model. The Spearman’s
or Pearson’s test was performed to analyze the correlation
between the two variables. The significance threshold for all
statistical analyses was set at P < 0.05.

RESULTS

KIF2C Expression in Different Cancers

We evaluated the physiologic expression of the KIF2C gene
across human tissues from the GTEx resource (Figure 1A).
KIF2C was highly expressed in bone marrow and testis tissues,
while ubiquitously low expression was observed in most other
normal tissues. We analyzed data from the CCLE to determine
the relative mRNA levels of KIF2C across lineages (Figure 1B).
According to the data from CCLE, KIF2C was highly expressed
in different cancer cells. By analyzing TCGA data, we found that
KIF2C expression levels were generally high in 33 types of tumor
tissues (Figure 1C), consistent with the results of analysis of
CCLE gene expression data. Next, we next compared the
expression levels of KIF2C in matched normal and malignant
tissue samples via GTEx and TCGA (Figure 1D). Comparisons
of KIF2C expression between normal tissues and tumor samples
across 33 types of cancers showed strikingly upregulated KIF2C
expression among 28 types of tumor tissues. Collectively, these
results demonstrate that KIF2C expression is upregulated and
suggest that KIF2C may play a crucial regulatory role in various
tumors’” progression.

KIF2C Expression and Clinical Parameters
of PCa Patients

Given the results of the pan-cancer analysis described above, we
further analyzed the potential role of KIF2C in PCa. Using the
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value of KIF2C expression to see if there was an association between
KIF2C expression and PCa clinicopathological features. In the
TCGA-PRAD cohort, there were 249 patients in the KIF2C high
expression group and 250 patients in the KIF2C low expression
group. We found that KIF2C was associated with T-stage, N-stage,
Gleason score, and PSA (Table 1). Next, we further analyzed the
expression of KIF2C in TCGA-PRAD and compared it with normal
tissues. The expression of KIF2C mRNA was observed to be higher
in tumor tissues (Figure 2A). In addition, when 52 paired tumor
samples were compared to adjacent normal samples, KIF2C
expression was found to be significantly higher in PRAD
(Figure 2B). Furthermore, we examined KIF2C expression in
distinct patient groups based on clinical characteristics. KIF2C
levels were shown to be higher in the PCa tissues of patients of
various ages, depending on their age (Figure 2C). In consideration
of tumor stage, KIF2C expression was shown to be significantly
higher in prostate patients in stages 2, 3, and 4 (Figure 2D). KIF2C
expression was higher among patients classified as NO and N1 based
on cancer stage (Figure 2E). Regarding tumor metastasis stage,
KIF2C expression was higher in patients classified as M0 and M1
(Figure 2F). Following that, we discovered that KIF2C expression
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FIGURE 1 | Differential expression of KIF2C. (A) KIF2C expression in normal tissues. (B) KIF2C expression in tumor cell lines. (C) KIF2C expression in 33 types of
tumors. (D) Comparison of KIF2C expression between tumor and normal samples. *P < 0.05, **P < 0.01, **P < 0.001, ****P < 0.0001.

was significantly increased in PSA and Gleason score (Figures 2G,
H). In addition, we collected 30 paired PCa and paraneoplastic
tissues. KIF2C was found to be significantly overexpressed in PCa
tissues, according to qRT-PCR results (Figure 2I). Altogether, these
findings indicate that KIF2C expression is enriched in PCa and
might be a promising biomarker in PCa progression.

Elevated KIF2C Expression Associates

With Worse Prognosis in PCa Patients

We evaluated the prognostic and diagnostic utility of the KIF2C
gene since it was significantly expressed in PCa cells and tissues
and was closely linked to PCa development and metastasis. In the
pan-cancer dataset, we calculated the relationship between
KIF2C expression and patient prognosis. Overall survival (OS),
disease-free interval (DFI), disease-specific survival (DSS),
and progression-free interval (PFI) are provided for each of the
33 tumor types. The Cox proportional hazards model analysis
suggested that the KIF2C expression was significantly correlated
with OS (p = 0.037), DSS (p = 0.008), DFI (p < 0.001), and PFI
(p < 0.001) in PCa (Figures 3A-D). Further, KIF2C was a high-
risk gene in OS (hazard ratio = 1.755), DSS (hazard ratio
2.364), DFI (hazard ratio = 1.736) and PFI (hazard ratio = 1.838)
in PCa (Figures 3A-D). The results from According to the
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TABLE 1 | Association between KIF2C mRNA expression and clinicopathologic
characteristics in TCGA cohort.
Characteristic

Low expression of  High expression of p-value

KIF2C KIF2C
n 249 250
Age, n (%) 0.116
<=60 121 (48.6%) 108 (41.2%)
>60 128 (561.4%) 147 (568.8%)
T stage, n (%) <0.001
T2 129 (561.8%) 60 (24%)
T3 113 (45.4%) 179 (71.6%)
T4 3(1.2%) 8 (3.2%)
Unkown 4 (1.6%) 3 (1.2%)
N stage, n (%) <0.001
NO 176 (70.7%) 171 (68.4%)
N1 22 (8.8%) 57 (22.8%)
Unkown 51 (20.5%) 22 (8.8%)
M stage, n (%) 0.249
MO 224 (90%) 231 (92.4%)
M1 0 (0%) 3 (1.2%)
Unkown 25 (10%) 16 (6.4%)
Gleason score, n (%) <0.001
(%) (%)
6 38 (15.3%) 8 (3.2%)
7 152 (61%) 95 (38%)
8 25 (10%) 39 (15.6%)
9 33 (13.3%) 105 (42%)
10 1(0.4%) 3 (1.2%)
PSA (ng/ml), n (%) 0.011
<4 221 (88.8%) 194 (77.6%)
>=4 7 (2.8%) 20 (8%)
Unkown 21 (8.4) 36 (14.4%)

Kaplan-Meier analysis, increased KIF2C expression was
significantly correlated with poor OS, DSS, DFI, and PFI in
PCa (Figures 4A-D), consistent with the results of the analysis
of the Cox proportional hazards model in PCa. In addition, ROC
curve analysis showed that KIF2C was an effective predictor of
PCa in TCGA with an AUC of 0.748, and its diagnostic efficacy
was higher than that of PSA (Figure 4E).

Correlation of KIF2C Expression With DNA
Methylation and Genetic Alteration

We calculated the levels of correlation between KIF2C and
promoter methylation in 33 types of cancer using cBioPortal
web-based data sets. Our results suggested that KIF2C expression
and promoter methylation had a significant negative correlation
in PRAD, COAD, UCEC, BRCA, PCPG, SKCM, ESCA, STAD,
LIHC, KIRP, PAAD, DLBC, CHOL, TGCT, and LGG
(Figure 5A). Using the cBioPortal (TCGA, Pan-Cancer Atlas)
database, the pan-cancer alterations of KIF2C were investigated.
These results indicated that amplification and mutation were the
most common types among the different types of genetic
alterations of KIF2C (Supplement Figure 1). In addition,
using the USUC XENA database, we further analyzed the gene
mutation status of KIF2C in high and low expression groups in
PCa. In the KIF2C low expression group, the main mutated
genes were TNN, SPOP, TP53, HMCN1, ADGRB3, SYNEL, RP1,
RYR2, ATM, and LRP1B (Figure 5B); in the KIF2C high

expression group, the main mutant genes were SPOP, TP53,
TTN, MUC16, CSMD3, KMT2C, MUC17, SPTA1, OBSCA, and
RYRI (Figure 5C). The results of the forest plot showed that the
TP53, SPOP, MYO9A, SSPO, FAT2, IGSF10, KIF13A, XIRP2,
MUC17, NALCN, PIK3CA, and MUC16 genes were significantly
different mutant genes in the KIF2C high and low expression
groups in PCa (Figure 5D).

Functional Enrichment Analysis of KIF2C
in PCa

We queried the database of TCGA to identify co-expressed genes
with KIF2C. Heatmaps were created for the top-50 genes that
were strongly positively linked with KIF2C (Figure 6A). Next, a
total of 300 genes positively related to KIF2C were performed
using classical GSEA for PCa to explore the KIF2C-related
canonical signaling pathway and biological functions. Among
the GSEA results for reactome terms, the top 20 terms are shown
in Figure 6B. Pathway analysis showed that KIF2C mainly
participated in the cell cycle and several immune functional
gene sets, including megakaryocyte development, platelet
production, adaptive immune system, cellular responses to
stress and HIV infection. In summary, these results strongly
suggest an important role for KIF2C in the cell cycle and immune
response in PCa.

Correlation Analysis Between KIF2C
Expression and TME in PCa

The tumor immune microenvironment is gradually being
recognized as playing a vital role in the occurrence and
development of PCa. To better characterize the function of TME
signature genes, we tested known signatures in the PRAD dataset.
The analysis confirmed that high KIF2C expression was
significantly associated with the immune relevant signature and
mismatch repair relevant signature, while the stromal relevant
signature was not significantly associated (Figure 7A); the results
for other malignancies are given in a heat map (Supplementary
Figure 2A). We also used the ESTIMATE algorithm to produce
immune cell scores, estimate scores, and tumor purity in 33 different
types of cancer, and looked at the relationship between KIF2C
expression levels and these three scores. Strikingly, in PCa, our
findings showed that KIF2C expression was favorably connected
with immunological and estimation scores but negatively correlated
with tumor purity in PCa (Figures 7B-D); the outcomes for other
malignancies are given in a heat map (Supplementary Figure 2B).
These findings suggest that KIF2C plays a critical role in TME.

Relationship of the Expression of KIF2C
and Tumor Immune Cell Infiltration in PCa
On the basis of the ImmuCellAI database, we then did a pan-
cancer analysis of the connection between KIF2C expression and
24 types of invading immune cells in 32 cancer types using the
CIBERSORT approach. In PCa, our results indicated that KIF2C
expression levels had a significant and negative correlation with
levels of infiltrating NK cells, NKT cells, Tex, Tgd, Th2 and Th17;
however, it was positively correlated with levels of infiltrating B
cells, CD8+ nave cells, dendritic cells, iTreg cells, macrophages,
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monocytes, Trl, nTreg, Tcm, and Thl (Figure 8). The
relationships between KIF2C expression and infiltrating
immune cells in other tumors are shown in the heat map
(Supplementary Figure 3). We also used gene co-expression
analyses to look at the correlations between KIF2C expression
and immune-related genes to see if KIF2C and other immune
modulators play a synergistic role in PCa. Investigated were
MHC, immunological activation, immunosuppression,
chemokine, and chemokine receptor genes. According to the
heatmap data (Figures 9A-E), almost all immune-related genes
were co-expressed with KIF2C, and the majority were positively
associated with KIF2C in PCa. Additionally, to further
investigate the synergistic role of KIF2C in PCa-induced
immune responses, we studied the correlation of KIF2C with
other immune checkpoint members. We found that KIF2C
expression correlated strongly with LAG3, PDCD1, TIGIT,
CD274 and CTLA4 (Figure 9F).

KIF2C and Drug Resistance
An important clinical issue in cancer treatment is drug
resistance. Here, we used GDSC2 datasets to analyze the

relationship between KIF2C expression levels and IC50 of 198
drugs to explore drug resistance due to high KIF2C expression in
PCa. Notably, our results suggested that high KIF2C expression
was involved in resistance to many drugs, including
doramapimod, ERK2440, ERK6604, trametinib, SCH772984,
selumetinib, PD0325901, ulixertinib, and VX-11e (Figure 10).
Interestingly, these drugs were all MAPK signaling pathway
inhibitors. In summary, our results provide new perspectives
and new horizons for PCa treatment.

DISCUSSION

PCa is the fifth highest cause of cancer death in the male
population and is among the most prevalent cancers of the
urinary system (24, 25). There is currently a lack of effective
biomarkers for PCa diagnosis and prognosis. KIF2C, a member
of the Kinesin 13 family, is mainly involved in processes such as
spindle assembly, chromosome aggregation and segregation, and
centromere-microtubule attachment, and is essential for mitosis.
Previous studies have shown that KIF2C as an oncogene plays an
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FIGURE 3 | Prognostic Value of KIF2C Across Cancers. (A) Forest plot showing the relationship between KIF2C expression and overall survival (OS) in 33 different
tumor types. (B) A forest plot depicting the relationship between KIF2C expression and disease-free interval (DFI) in 33 different tumor types. (C) A forest plot
depicting the relationship between KIF2C expression and disease-specific survival (DSS) in 33 different tumor types. (D) Forest plot of TREM2 expression and
progression-free interval (PF) in 33 different tumor types.
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important role in the occurrence and development of various
tumors. However, KIF2C has not been reported in PCa. In our
research, we comprehensively investigated the expression,
prognosis, functional enrichment of KIF2C in PCa, and the
association between KIF2C expression and DNA methylation,
clinical characteristics, immune response, and drug resistance.

Previous research has revealed that KIF2C is substantially
expressed in liver cancer (17, 19, 26, 27), breast cancer (28),
endometrial carcinoma (20), lung cancer (29, 30), glioma (31),
bladder cancer (32), colorectal cancer (33), esophageal squamous
cell carcinoma (34), cervical cancer (18), and thyroid cancer (35).
The results of our pan-cancer analysis indicated that KIF2C was
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FIGURE 5 | Gene promoter methylation and mutation features of KIF2C. (A) Correlation between KIF2C expression and gene promoter methylation in pan-cancer.
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between KIF2C low expression group and KIF2C high expression group in PCa patients. “p < 0.05, **p < 0.01.

highly expressed in 28 tumors, including PCa, which was
consistent with previous results reported in the literature. For
the first time, we detected the expression of KIF2C in PCa tissue
and corresponding paracancerous tissue, and the results showed
that KIF2C was significantly more expressed in PCa tissue than
in paracancerous tissue. The expression of KIF2C is significantly
correlated with clinical and pathologic tumor features.

According to Yang et al. (18), KIF2C expression was linked to
the kind of cervical cancer. In hepatocellular carcinoma, Mo et al.
found that KIF2C was substantially linked with pathological
stage and neoplasm histological grade (17). According to Gan
et al., elevated KIF2C expression in NSCLC tissues was
associated with a higher T stage, poor differentiation status,
and lymph node metastases (29). In our study, we also showed
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FIGURE 6 | Gene Set Enrichment Analysis (GSEA) for KIF2C in PCa. (A) Heat maps depicting the top 50 genes in PCa that are positively linked with KIF2C. (B) Top

that high expression of KIF2C was associated with an increase in
tumor stage, Gleason score, PSA score, lymph node metastasis,
and distant metastasis in PCa. In addition, our pan-cancer
analysis of the prognostic indicated that KIF2C was
significantly associated with poor prognosis in different tumor
types and was a high-risk factor affecting tumor prognosis. In
PCa, patients with high KIF2C expression had significantly
worse OS, DSS, DFI, and PFI. The above results reveal that
KIF2C plays an oncogenic role in PCa.

The occurrence and progression of cancer are linked to gene
mutations (36). We further explored the characteristics of KIF2C
gene mutations. Yang et al. found that the most common KIF2C
mutation was a missense mutation, and that the mutation was
linked to the survival rate of cervical squamous cell carcinoma
(18). Mike et al. discovered that boosting WT MCAK/Kif2C
protein levels over indigenous MCAK/Kif2C promoted
chromosomal instability in a comparable manner (37). The
results of our pan-cancer analysis indicated that KIF2C had
different degrees of genetic variation in 26 cancer types,
including mutations, structural variants, amplification, and
deep deletion. Mutation and amplification are types of KIF2C
genetic variation in PCa. It is unclear whether a genetic variant of
the KIF2C gene was associated with a poor prognosis for patients
with PCa. PCa progression is often accompanied by mutations in
genes that add to the difficulty of treating PCa (38). Therefore, a
role-shaping analysis of PCa gene mutations and misregulation
will help to understand, diagnose, and better treat PCa. Our
findings show that patients with high KIF2C expression are
accompanied by high-frequency mutations in genes such as
SPOP, TP53, and TTN. Previous studies have shown that
mutations in these genes are often associated with a poor

prognosis for PCa (39-41). Genetic testing for PCa patients is
now evolving, allowing clinicians to develop individualized
management strategies based on patient-specific genetic
alterations. Knowledge of these genetic mutations can better
help clinicians assess the malignancy, progression, and prognosis
of PCa patients and provide treatment guidelines for PCa
patients. DNA methylation is a common type of epigenetic
alteration that controls gene expression without changing the
DNA sequence (42). By altering chromatin structure, DNA
stability, and DNA conformation, DNA methylation normally
decreases gene expression (43). In recent decades, researchers
have steadily identified correlations between DNA methylation
and cancer. In malignant cells, hypermethylation within
promoter regions frequently results in the silence or
inactivation of tumor suppressor genes. The link between
KIF2C DNA methylation and KIF2C expression has never
been studied before. Our results indicated for the first
time that KIF2C DNA methylation was significantly inversely
associated with KIF2C expression in PRAD, COAD,
UCEC, BRCA, PCPG, SKCM, ESCA, STAD, LIHC, KIRP,
PAAD, DLBC, CHOL, TGCT, and LGG. However, the
regulatory relationship between levels of KIF2C DNA
methylation and KIF2C expression levels is complex and
merits further investigation.

The immune system is essential in the body’s defense
system, playing a critical role in cancer development and
progression (44). In recent years, cancer immunotherapies
have ushered in a new age in tumor treatment, with long-
term clinical results (45). Androgen receptors are important for
the growth and survival of PCa cells. Androgen deprivation
therapy is a cornerstone of PCa treatment aimed at reducing
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tumor size by blocking androgen signaling. Studies have
reported that ADT has a close regulatory relationship with
CD4+ and CD8+ T lymphocytes, natural killer cells,
macrophages, and T regulatory (Treg) cells (46-49).
However, PCa tumors are weakly immunogenic, and
immunotherapy for PCa still has many limitations that
require further exploration. Screening antibodies in colorectal
cancer have identified NY-CO-58/KIF2C as a tumor antigen
(33). An et al. study found that knocking down KIF2C
decreased CD8+ T cell apoptosis, which was further inhibited
when paired with anti-PD1 in endometrial cancer (20).
However, the relationship between KIF2C and immune
response has not been explored in PCa. Our results indicate
that KIF2C plays a critical role in PCa immunity. It is well-
known that the TME has dramatic effects on the outcome of
tumor growth (42, 50-52). Our results suggest that high KIF2C
expression was mainly linked to CD8 T effectors and immune
checkpoints in the TME. In addition, there were positive
correlations between KIF2C expression and both immune

scores and estimated scores in the TME of PCa. Immune cells
infiltrating tumors have a significant impact on tumor
formation and progression (53). Our results suggest that
KIF2C is closely associated with a variety of immune-
infiltrating cells in PCa, including T cells, NK cells, B lineage
cells, dendritic cells, macrophages, monocytes, et al. We also
found that KIF2C has a significant positive correlation with
immune checkpoints such as LAG3, PDCDI, TIGIT, CD274,
and CTLA4 in PCa. Furthermore, KIF2C was found to be co-
expressed with genes encoding MHC, immunological
activation, immunosuppression, chemokines, and chemokine
receptor proteins in our research. In the current study, we first
demonstrated that the expression of KIF2C was closely related
to the immune response, providing a new perspective for
immunotherapy of the prostate.

The mitogen-activated protein kinase (MAPK) pathway,
including the kinases RAS, RAF, MEK, and ERK, regulates
tumor cell proliferation, apoptosis, inflammation, angiogenesis,
metastasis, and drug resistance, and plays an important role in
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FIGURE 8 | Relationship between KIF2C expression and tumor infiltration of different immune cells in PCa.
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cancer development (54). Several drugs that inhibit the MAPK
pathway have been developed in preclinical and clinical settings
and have shown promising efficacy and anticancer activity in the
treatment of several types of malignancies (55). It has been
reported that there is a relationship between KIF2C and the
MAPK signaling pathway. According to Mo et al. (17), the
downregulated oncogene KIF2C suppressed the development
of hepatocellular carcinoma through the Ras/MAPK signaling
pathway. Furthermore, in a transformed model, knocking down
K-Ras or inhibiting ERK1/2 activation lowered KIF2C
expression, suggesting that KIF2C might be a potential target

for cancer medication treatment (56). Our study showed that
high KIF2C expression leads to resistance to multiple MAPK
signaling pathway inhibitors, such as Doramapimod, ERK2440,
ERK6604, trametinib, SCH772984, selumetinib, PD0325901,
ulixertinib, and VX-11le. This provides new insights into the
pharmacological treatment of tumors. Although the MAPK
signaling pathway is critical in the progression of PCa,
inhibitors of the MAPK signaling pathway as well as the
regulatory relationship between KIF2C and the MAPK
signaling pathway have not been reported in PCa. Therefore,
the phenomenon of high KIF2C expression leading to resistance
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to multiple MAPK signaling pathway inhibitors in PCa deserves
further exploration.

In summary, our first PCa analyses of KIF2C indicated that
this factor was closely associated with the malignancy and can be
used as a risk prognostic factor in PCa. KIF2C expression has
been linked to immune cell infiltration, TME, and immune
checkpoint activation. Moreover, high KIF2C expression was
involved in resistance to MAPK signaling pathway inhibitors.
These investigations may help further shed light on the role of
KIF2C in PCa progression and expansion and can provide a
more accurate reference for the realization of immunotherapy in
the future. However, the study had several limitations. First, the
majority of the studies in this study were based on KIF2C mRNA
levels. The findings would be more persuasive if they were
analyzed further depending on protein levels. Second, we did
not explore the prognostic value of KIF2C methylation in PCa in
this study. Third, the relationship between KIF2C and immune

response and the relationship between KIF2C and drug resistance
needs to be further proved in vivo and in vitro experiments.
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