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Food allergy is a growing concern due to its increasing world-wide incidence. Strict
avoidance of allergens is a passive treatment strategy. Since the mechanisms responsible
for the occurrence and development of food allergy have not yet been fully elucidated,
effective individualized treatment options are lacking. In this review, we summarize the
pathways through which food antigens enter the intestine and review the proposed
mechanisms describing how the intestine acquires and tolerates food antigens. When oral
tolerance is not established, food allergy occurs. In addition, we also discuss the
contribution of commensal bacteria of the gut in shaping tolerance to food antigens in
the intestinal tract. Finally, we propose that elucidating the mechanisms of intestinal
uptake and tolerance of food antigens will provide additional clues for potential treatment
options for food allergy.

Keywords: food antigens, food allergy, paracellular pathway, transcellular pathway, intestinal barrier, oral
tolerance, intestinal immune system, gut microbiota
INTRODUCTION

Globally, there is an increasing incidence of food allergy that affects the quality of life of those
affected (1–3). Food allergies have been identified at all ages. Food allergy affects approximately 6%
of children and 3 to 4% of adults (4). Allergies to certain foods that start in childhood can persist
into adulthood, and new allergies can occur at any stage of life (5). For example, 40 to 60% of fish or
shellfish allergies begin in adulthood (6). Peanut allergy affects nearly 5 million adults in the United
States, and about one in six individuals with peanut allergy experience their first episode in
adulthood (7).

Although food allergy has a wide incidence and is considered a substantial public health burden,
its diagnosis and treatment are still inadequate due to the limitations of research into its
pathogenesis (8) and the understanding of the mechanisms triggering food allergies (9). First,
there are no clear and uniform diagnostic criteria. In addition, most symptoms of food allergy are
not typical, such as cough, diarrhea, abdominal pain, and vomiting, which are similar to the
symptoms of many other clinical diseases and are often ignored or misdiagnosed (10). Second,
because of the lack of understanding of the pathogenic mechanisms of food allergy, there is a lack of
safe and effective treatment options for individuals diagnosed with food allergy. The only safe and
effective method for patients with a food allergy diagnosis is to strictly avoid the allergic antigens
(11, 12). However, there is widespread concern that a strict and limited diet in patients with food
org June 2022 | Volume 13 | Article 9061221
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allergies can lead to nutritional deficiencies and growth failure in
children (13). Recently, allergen-specific immunotherapy has
also emerged, and involves the administration of allergic
antigens orally, sublingually, or epicutaneously to induce
immune tolerance to allergens. Although allergen-specific
immunotherapy has made considerable progress in the
treatment of food allergies, during the course of clinical
treatment, allergen-specific immunotherapy has obvious
limitations in efficacy, safety, and durability (14). Thus, an in-
depth exploration of the pathogenic mechanism of food allergy is
necessary to further improve and optimize treatment plans.

It is well-known that the primary role of the intestinal mucosa
is to act as a barrier to prevent harmful substances from entering
the digestive system. Furthermore, as a selective filter, the
intestinal mucosa allows the necessary dietary nutrients, water,
and electrolytes to be diverted from the lumen into the blood
circulation of the intestine (15). Although considered as foreign
antigens, food antigens are selectively filtered into the circulation
by the intestinal mucosa without triggering a defense immune
attack response in the intestines but induces immune tolerance.
Nevertheless, the disruption of this tolerance mechanism will
lead to food allergies. Herein, we focus on how food antigens pass
through the intestinal barrier and how they are acquired and
tolerated by the intestinal immune system. We also discuss
situations in which food allergy occurs when the intestinal
immune regulation is disturbed. Finally, by summarizing and
discussing these studies on food allergy, we hope to provide more
clues to stimulate fundamental research and clinical applications
in the field of food allergy.
HOW DO FOOD ANTIGENS CROSS THE
INTESTINAL BARRIER?

Structurally, the intestinal barrier can be divided into three
layers. The outer layer is the mucus layer that is symbiotic
with intestinal microorganisms, the central layer is a
specialized single cell layer consisting of epithelial cells, and the
inner layer is the lamina propria (LP) composed of innate and
adoptive immune cells. The mucus layer has a Sieve-like
structure, among which mucins secreted by goblet/mucinous
cells cover the intestinal epithelium (16). Mucins secreted in the
mucus layer can protect intestinal epithelial cells from digestive
enzymes and function as a defense barrier to prevent the invasion
of foreign microorganisms (17–19). The central layer is made up
of intestinal epithelial cells that are considered important
components of the intestinal defense system and play a key
role in the transport of substances into the intestinal tract. A
variety of epithelial cell subsets, including absorptive enterocytes,
goblet cells, Paneth cells (20, 21), tuft cells (22), enteroendocrine
cells (23), microfold cells (M cells), and epithelial stem cells, have
unique and specialized characteristics and functions, which
cooperatively form a sophisticated epithelial layer against
numerous antigens in the lumen (24). A set of highly
organized intercellular junction complexes links these intestinal
epithelial cells to form intestinal paracellular barriers. These
Frontiers in Immunology | www.frontiersin.org 2
junction complexes are in dynamic balance and are divided
into three types: tight junctions (TJs), adherens junctions (AJs),
and desmosomes (25). Paracellular barriers composed of these
junction complexes function to maintain the integrity of the
intestine and also mediate the regulation of nutrients that pass
through the intestine through the paracellular pathway. Beyond
the mucus layer and the epithelial layer, is the LP, which contains
both innate and adaptive immune cells, such as dendritic cells
(DCs), macrophages, T cells, and B cells. Immune cells in the LP
are involved in both immune defense and immune regulation in
the intestinal microenvironment (26). The intestinal barrier
composed of these three layers can effectively prevent harmful
substances from entering the body. However, this barrier is not
completely impenetrable. The intestinal barrier allows foreign
nutrients to enter the body to meet growth needs. We will first
summarize the pathways through which nutrients from ingested
food pass through the intestine.

Food is digested into peptides, amino acids, polysaccharides,
monosaccharides, water, electrolytes, and other nutrients
through chemical and mechanical activity in the digestive tract.
These nutrients, including food antigens, enter the
subepithelium through two main pathways, the paracellular
pathway and the transcellular pathway.

Paracellular Pathway
As mentioned above, the intercellular junction complex located
in intestinal epithelial cells is the main mediator that regulates
the paracellular pathway. Among the three types of epithelia
junction complexes, TJs are composed of transmembrane
proteins (27), which interact with each other and with the
intestinal immune system, making them the main rate-limiting
step in controlling the permeability of the paracellular pathway
(28, 29). The TJ proteins, such as zonula occludens (ZO) (30–32),
occludins (33), and claudins (34) participate in the formation of
TJs and control the permeability of paracellular pathways. Small
molecules derived from food nutrients, such as solutes soluble in
water, cross the intestinal barrier through paracellular pathways
(Figure 1-(1)). Paracellular pathways have the selectivity of
capacity, charge, and size for the substances they transport.
This pathway is highly regulated by TJs to ensure that the
transport of materials across the epithelial barrier is strictly
controlled. However, when the epithelial barrier is damaged,
such as following destruction of TJs, the paracellular pathway
becomes nonrestrictive and allows the free passage of ions, water,
macromolecules, and even bacteria or viruses. This increases the
intestinal permeability and leads to pathological changes
(Figure 1-(2)). For example, food cysteine proteases degrade
the TJ protein occludin, thus increasing the permeability in the
paracellular pathway, which can contribute to the sensitization
process of food allergies (35). Furthermore, the paracellular
pathway is disrupted in patients with inflammatory bowel
disease (IBD) due to the reduced expression of TJs and AJs
proteins in epithelial cells in the inflammatory zone, such as ZO-
1, claudin, and E-cadherin (36). Thus, the paracellular pathway
plays an indispensable role in mediating materials into the
intestinal subepithelium, and this process is controlled by TJs
between epithelial cells. Furthermore, damage to TJs disrupts the
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paracellular pathway, which leads to increased intestinal
permeability and intestinal disorders such as food allergies
and IBD.

Transcellular Pathway
Enterocytes are the main type of intestinal epithelial cells and
differ greatly in structure and composition between the small
intestine and the colon. In the small intestine, enterocytes have
villi that protrude into the lumen. The villi increase the surface
area of the intestinal mucosa for better absorption of nutrients.
These cells concentrate digestive enzymes (such as pancreatic
proteolytic enzymes) on their apical surface, which are involved
in the chemical digestion of lipids, carbohydrates and proteins,
and absorb these digested nutrients through the apical brush
boundary transporters (such as the SLC1A, SLC6A, and SLC7A
families) (37). As we mentioned, small molecules such as water
(38) and ions (39) can enter the intestinal subepithelium via
paracellular pathways. They can also enter the intestinal
cytoplasm from the apical membrane through epithelial
Frontiers in Immunology | www.frontiersin.org 3
transporters (integral membrane protein pumps or channels)
and are discharged from the basolateral membrane (Figure 1-
(3)). For example, the sodium-dependent transport of glucose
(40), alanine (41), and glutamine (42) occurs on the surface of
intestinal epithelial cells. However, macromolecules can only
enter the cell through vesicles, which are formed by invagination
and extrusion of the apical membrane. The vesicle transfer
process is called endocytosis (43), which in intestinal cells is
limited to pinocytosis (44). A variety of intestinal epithelial cells
are involved in these intestinal epithelial-mediated transcellular
pathways. Among them, M cells and goblet cells play a pivotal
role in internalizing luminal antigens into gut-associated
lymphoid tissues (GALTs) and in establishing intestinal
tolerance or inducing intestinal immune responses to food
antigens. They indiscriminately sample lumen contents,
including food antigens, and transport the intact antigens to
intestinal DCs to process and present these antigens (37).

M cells are specialized epithelial cells located in the follicle-
associated epithelium overlying Peyer’s patches (PP) (45, 46).
FIGURE 1 | Food antigens cross the intestinal epithelium to induce tolerance or provoke allergy. (1) Small molecules such as electrolytes and water enter the sub-
epithelium via paracellular pathways. (2) Degradation of tight junctions increases the permeability of the paracellular pathway, which leads to non-selective and
uncontrolled entry of macromolecules into the intestinal sub-epithelium and contributes to the sensitization process of food allergies. (3) Small molecules such as
amino acids and glucose that are transported across the epithelium by apical brush boundary transporters such as SLCs on enterocytes. (4) M cells sample food
antigens, and then present them to dendritic cells. (5) Goblet cells form goblet-cell-associated antigen passage (GAP) to enclose luminal antigens (food antigens and
microbial antigens) in internal sack-like vesicles, and then transport them across entire cells to dendritic cells. (6) In food allergy mouse models, secretory epithelial
cells function as conduits to allow the transport of food antigens through the epithelium of the small intestine and induce a food-induced anaphylactic reaction. (7)
CX3CR1+ macrophages rely on CX3CR1 expression to form dendrites to efficiently sample antigens from the intestinal lumen without disrupting the tight junctions
between the cells. CX3CR1+ macrophages transfer antigens they captured to CD103+ DC. (A) When food antigens enter the intestinal sub-epithelium through above
pathways, they are acquired and processed by dendritic cells. Then DCs migrate to MLNs where they present the processed food antigens and induce tolerance or
food allergy. To induce oral tolerance, DCs secrete interleukin-10 (IL-10), transforming growth factor-b (TGF-b), and indoleamine 2,3-dioxygenase (IDO) to induce
Tregs and promote their production of IL-10 and TGF-b to maintain tolerance. (B) In the case of allergy, oral antigens and adjuvants stimulate the expression of IL-33
in intestinal epithelial cells, which in turn upregulates the expression of the costimulatory molecule-OX40L on DCs. OX40L expression upregulates DCs to promote
the TH2 response in the MLN and leads to more severe food allergies.
June 2022 | Volume 13 | Article 906122
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Their location facilitates M cells to transcytose a wide range of
substances, such as food antigens and microbes, to underlying
DCs for antigen processing and presentation (47) (Figure 1-(4)).
In addition, M cells have specialized structures that lack the
typical brushlike border and have thinner calyx glycosomes,
making it easier to capture large particle antigens and
transcytose them by pinocytosis in the fluid phase and by
receptor-mediated endocytosis (48). Besides the delivery of
intact antigens into the underlying lymphoid tissue of the
GALT (49, 50), M cells also participate in Ag processing and
presentation based on the observation that GALTM cells express
MHC class II molecules and acidic endosomal-lysosomal
compartments (51). Suzuki et al. developed an M cell-targeting
Ag delivery system by combining antigens OVA with ps1
protein that is known to bind to M cells in gut and nasal-
associated lymphoid tissues (NALT) to investigate the role of M
cells in oral tolerance (47, 52, 53). Using this M cell-targeting
antigen delivery system, the authors determined that the
recombinant protein OVA-ps1 can induce mucosal
unresponsiveness through two main mechanisms: clonal
deletion of Ag-specific CD4+ T cells and the induction of
acquired type Tregs cells (47). However, additional studies
have also reported that oral tolerance could be established even
in the absence of PP or the destruction of M cells to facilitate
antigen transport to the PP (54, 55). Thus, the role of M cells in
the induction of oral tolerance by transporting Ags from the
lumen is controversial and further studies of the mechanism
are needed.

Goblet cells are specialized mucous epithelial secretory cells.
The secretory products of goblet cells, including mucins, trefoil
factors, and other proteins, are essential for the integrity of the
intestinal barrier and the prevention against the entry of harmful
antigens (56). It should be noted that another important role of
goblet cells is the formation of a goblet cell-associated antigen
passage (GAP) to transport luminal antigens (food antigens and
microbial antigens) to antigen-presenting cells (APC) in the LP
(57, 58) (Figure 1-(5)). Preventing the entry of harmful antigens
through mucus secretion and sampling luminal substances into
the intestinal immune system through GAP formation are two
divergent processes for goblet cells. Molecular mechanisms have
revealed that a neurotransmitter called acetylcholine can trigger
both mucus release and the GAP process in goblet cells in
independent signaling pathways mediated by different
receptors (59). This regulation of Ach allows goblet cells to
accommodate the dynamically changing demands of the
mucosal environment. Goblet cells can also deliver luminal
substances, including food antigens and microbial antigens,
and induce intestinal tolerance through the GAP process (60).
First, goblet cells capture food antigens from the lumen, enclose
them in internal sack-like vesicles, and then transport them
across the entire cell. Then the APCs in the LP acquire luminal
antigens to induce intestinal tolerance by maintaining pre-
existing Tregs in the LP, and imprinting tolerogenic properties
(60). However, Noah et al. reported that in food allergic mice,
secretory epithelial cells, including goblet cells, enteroendocrine
cells, and Paneth cells in the small intestine function as conduits
Frontiers in Immunology | www.frontiersin.org 4
to allow the transport of food antigens through the epithelium of
the small intestine to the underlying immune cells and induce a
food-induced anaphylactic reaction (61) (Figure 1-(6)). They
also found that these secretory epithelial cell antigen passages
(SAP) were induced by the Th2 cytokine-IL-13 in a CD38/
cADPR-dependent manner (61). Additionally, blockade of this
process reduced the passage of food antigens through the
epithelium of the small intestine and alleviated the induction
of the food allergic reaction in the intestine (61). Finally, they
confirmed that SAP formation driven by IL-13 through the
PI3K/CD38/cADPR pathway is conserved in the human
intestine, indicating that blockade of this process, such as by
inhibiting Th2 cytokines, might represent a potential therapeutic
option for food allergy.
HOW ARE FOOD ANTIGENS ACQUIRED
AND TOLERATED BY THE INTESTINAL
IMMUNE SYSTEM?

When food antigens enter the intestinal sub-epithelium through
the above pathways, they are acquired and processed by APCs
dispersed in the LP, PPs, and mesenteric lymph nodes (MLN).
Oral tolerance to food antigens is often induced in MLNs (55)
(Figure 1A). When the underlying APCs acquire the food
antigens, they process them and present them to immune
regulatory cells such as Treg cells in the MLN and induce
tolerance (62).

Food Antigen Capture and Oral Tolerance
Induction in the Intestine
As we mentioned above, food antigens can be internalized by M
cells or acquired by goblet cell-associated passages. When the
food antigens are captured by these specialized intestinal
epithelial cells, they will be transferred to the migratory DCs in
the intestinal PP (where the M cells deliver antigens to
underlying DCs) (63) and LP (where the GAPs transport
antigens to DCs) (57).

DCs and macrophages are the two main APCs for food
antigens (64, 65). Rescigno et al. observed that DCs can
penetrate the monolayers of the intestinal epithelium into the
gut lumen by extending the transepithelial dendrites (66). This
property provides DCs with access to antigens in the intestinal
lumen. CX3CR1+ macrophages have also been reported to rely
on CX3CR1 expression to form dendrites to efficiently sample
antigens from the intestinal lumen (67). These antigen uptake
macrophages quickly transfer food antigens to CD103+ DCs via
connexin 43 in the gap junctions (67) (Figure 1-(7)).

In general, food antigens are collected directly by intestinal
DCs or by CX3CR1+ macrophages or other epithelial cells (such
as the M cells and goblet cells described earlier) and are delivered
to DCs (68).

When loaded with food antigens, DCs migrate to the MLNs
where they present the processed food antigens and induce
tolerance (Figure 1A). Among various subsets of DCs, CD103+
June 2022 | Volume 13 | Article 906122
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DCs have been reported to play an important role in tolerance
induction (67). CD103+ DCs are derived from circulating
monocytes that express the gut homing marker-a4b7 integrin
(69). They are located in the LP of the small and large intestine.
When they acquire food antigens from the lumen, they migrate
to MLNs to induce oral tolerance by activating Tregs. There are
several mechanisms through which CD103+ DC induce Tregs.
For example, intestinal CD103+ DCs have been reported to
secrete retinoic acid (RA) and transforming growth factor-b
(TGF-b) to promote the differentiation of Foxp3+Treg cells (70,
71). CD103+ DC also express indoleamine 2,3-dioxygenase
(IDO), to sustain and differentiate Tregs, while inhibition of
IDO in vivo has been reported to reduce Tregs specific to orally
administered antigens and to impair the induction of oral
tolerance (72).

Besides CD103+ DC, resident intestinal macrophages marked
with high expression of the CX3C-chemokine receptor 1
(CX3CR1) also help to maintain Foxp3 expression in Tregs in
the intestine by secreting IL-10 (73, 74). These intestinal resident
macrophages have been proposed to provide additional survival
signals for Tregs since they express high level of MHC class II,
which enables them to undergo cognate interactions with specific
Treg cells (75).

In addition to Treg-mediated oral tolerance, T cell clone
anergy and/or deletion are also involved in oral tolerance (76,
77). The modality of oral tolerance induction depends on the
dose of food antigens (77). Low dose of antigens induce Treg
mediated immune suppression, while high doses of antigens lead
to anergy and deletion of antigen-specific T cells (76–78).

Intestinal Commensal Bacteria Help
Establish Oral Tolerance
Intestinal commensal bacteria also provide a large number of non-
self-antigens that are tolerated by the intestinal immune system
(73, 79, 80). Evidence indicates that the intestinal microbiota is
crucial for the development and maturation of the intestinal
immune system (81, 82). In particular, intestinal commensal
bacteria could help shape intestinal tolerance. In germ-free (GF)
mice, the frequency of Tregs and the levels of the anti-
inflammatory cytokine IL-10 produced by Tregs are markedly
reduced compared to mice free of specific pathogens (83–86). In
one study, 17 strains of bacteria from the human gut microbiota
were identified as Treg-cell-inducing bacterial strains. Treatment
of these 17 Treg cell-inducing strains could alleviate intestinal
inflammation, including allergic diarrhea (87). Furthermore, the
observation that food allergen sensitization is enhanced in GF
mice or mice that have been treated with antibiotics suggests that
commensal bacteria are essential for the establishment of oral
tolerance (88). Although the mechanisms by which the intestinal
microbiota regulate allergic responses to food are not yet fully
defined, studies have revealed that the composition of the gut
microbiota, metabolites derived from intestinal bacteria and
colonization of special functional bacteria are important factors
that influence intestinal tolerance to food antigens.

Mechanistically, intestinal bacteria-derived metabolites,
including inosine and short-chain fatty acids (SCFAs), are
Frontiers in Immunology | www.frontiersin.org 5
considered key factors promoting Treg differentiation and
improve the production of regulatory cytokines such as IL-10
(89–91). In particular, SCFAs, which are produced during the
bacterial fermentation of indigestible dietary fiber, have received
much attention for their immunoregulatory activity. Butyrate,
one of the most abundant SCFAs in the gut, has been reported to
induce functional colonic Treg cells through its function to
enhance histone H3 acetylation in the promoter and conserved
non-coding sequence regions of the Foxp3 locus (92). In
addition, it has been reported that SCFAs, particularly acetate
and butyrate, could help establish oral tolerance and prevent
food allergy by enhancing retinaldehyde dehydrogenase-2
(RALDH2) activity in CD103+ DC (93). RALDH2 converts
vitamin A to retinoic acid, which promotes the differentiation
of naive T cells into Treg cells and contributes to the
establishment of oral tolerance (93, 94).

Stefka et al. reported that colonization of a Clostridia-
containing microbiota can protect against sensitization to food
allergens (88). Colonization of Clostridia induced early
production of IL-22 by RORgt+ innate lymphoid cells (ILCs)
and T cells in the intestine. This Clostridia-Induced IL-22
reduced the access of food allergen to the circulation (88).

In addition, dysbiosis of the gut microbiota leads to
intolerance in the intestine. When the gut microbiota of
infants allergic to milk protein was transplanted into GF mice,
these recipient mice also showed an allergic response to milk-
allergens (95).
PATHOGENESIS AND TREATMENT OF
FOOD ALLERGY

The most important role of intestinal immune system is to
distinguish innocuous food antigens and commensal microbes
from pathogens. They initiate an immune response against
pathogens and induce tolerance to food and commensal
bacteria. However, a breakdown of the default oral tolerance to
food leads to abnormal immune responses and results in food
allergy (Figure 1B). Many factors including the genetic
background, alteration of gut microbiota, food allergenicity
and methods of food processing, may trigger a food allergy.

As we mentioned, the intestinal APCs, especially intestinal
DCs play a pivotal role in the induction of tolerance. However,
stimuli from food components or extrinsic adjuvants could
activate DCs to trigger a food allergy. Although the detailed
identification of stimuli and their reorganization are not very
clear, it has been reported that glycoproteins from the allergenic
foods could directly bind to C-type lectin receptors (CLR) on
DCs to stimulate immune response to the food allergens (96).
For instance, in the peanut induced allergy, the glycoprotein Ara
h 1 was identified as the major peanut allergen able to bind to DC
specific intercellular adhesion molecule-3-grabbing non-integrin
(DC-SIGN), a C-type lectin receptor, on monocyte-derived DCs
and subsequently activate DCs to induce allergic immune
responses (97). Similarly, hazelnuts, walnuts, and egg whites
have also been found to bind to DC-SIGN and related DC-
June 2022 | Volume 13 | Article 906122
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SIGNR to activate DCs and contribute to the development of
food allergies (98, 99).

In addition, alarmins such as IL-25, IL-33, and TSLP are also
involved in the development of food allergies (100, 101). Among
these allergenic alarmins, intestinal epithelial cell-derived IL-33
has been reported to act on different immune cells to expand the
allergenic immune response in the intestine. In an allergenic
mouse model, oral Ags and adjuvants stimulate the expression of
IL-33 in intestinal epithelial cells, which in turn up-regulate the
expression of the costimulatory molecule-OX40L in DCs. These
DCs expressing upregulated OX40L promote the Th2 response
in the MLN and lead to more severe food allergies (102, 103)
(Figure 1B). In another study, IL-33 secreted by intestinal
epithelial cells was found to act on type 2 ILC (ILC2) to
enhance their expansion and induce their production of IL-4
(104). The IL-33 signal-stimulated production of IL-4 by ILC2 is
indispensable for oral allergic sensitization and anaphylaxis (104,
105). Furthermore, IL-33 acts directly on mast cells to potentiate
antigen-driven IgE-dependent degranulation of MC and
promotes oral anaphylaxis after epicutaneous sensitization (106).

Based on current understanding of the mechanisms of oral
tolerance and food allergy, there have been significant advances
in treatment to food allergy, such as allergen specific
immunotherapy, vaccines, and non-allergen specific therapies,
which provide viable options for patients with food allergies.

For allergen specific immunotherapy, patients with food
allergies are treated with their specific allergens to establish the
tolerance to these allergens. This process is called desensitization.
There are various approaches to treating patients with allergens
inc lud ing ora l immunotherapy (OIT) , sub l ingua l
immunotherapy (SLIT), and epicutaneous immunotherapy
(EPIT). Specifically, patients with allergies are treated with
their allergens in increasing amounts each time until a
maintenance dose is reached, and then this dose is given
periodically to patients (107). Compared to other allergen-
specific immunotherapies, OIT has a higher efficiency, but also
has a higher risk of systemic side effects, which may even require
therapeutic intervention. Clinical trials have shown that OIT
directed at milk, eggs, peanuts, and wheat allergens is
therapeutically effective; however, OIT directed at these
allergens generally caused significant adverse effects when the
dose is increased (108–110). In addition to concerns about safety,
there are many factors that limit the application of allergen-
specific immunotherapy. There is a lack of standardization of
clinical treatment, including the type of allergen used in the
treatment, the administration method, the given dose, and
frequency (111, 112). Further research is needed to promote
and apply allergen-specific immunotherapy in the clinical
treatment of food allergies.

Since the allergenic activity of natural allergen extracts is the
most concerning side effect of allergen-specific immunotherapy,
and broadly limits its applicability. However, recombinant
allergens with genetic modifications that can reduce allergenic
activity are produced to improve the safety of the
immunotherapies (113). Clinical therapy trials suggest that
recombinant allergens are effective for subcutaneous
Frontiers in Immunology | www.frontiersin.org 6
immunotherapy (114–116). Based on the promising results of
these clinical trials, the first recombinant allergen-based vaccines
will soon be registered and available for routine clinical use in
patients with allergies.

Except for allergen-specific immunotherapy, nonallergen-
specific therapies for food allergies have been developed, including
immune antibody therapy and prebiotics treatment. As an immune
antibody therapy, omalizumab has been tested in clinical trials as a
monoclonal antibody against immunoglobulin E (IgE) (117). The
combination of omalizumab and OIT has achieved promising
results for the treatment of food allergies (118). In the future, with
an in-depth understanding of themechanism of food allergy and the
identification of therapeutic targets, more targeted antibodies, such
as antibodies against Th2 cytokines, will be developed and used in
the treatment of food allergy.

Since intestinal microbiosis contributes significantly to
allergic states in the intestine, the manipulation of intestinal
microbes holds promise for the treatment of food allergy.
Preclinical evidence has shown that prebiotics have a positive
effect on remission of food allergy. For example, dietary
supplementa t ion wi th f ruc to-o l igosacchar ides , an
immunomodulatory prebiotic, significantly improved allergic
intestinal inflammation in OVA23-3 TCR-transgenic mice fed
with an OVA-containing diet (119). Supplements consisting of
Lactobacillus paracasei L9 reduced allergic responses in mice
allergic to b-lactoglobulin (120). Oral administration of
Lactobacillus murinus restored the deterioration of the
intestinal flora in food-allergic mice and alleviated allergic
reactions (121). Although prebiotic and probiotic trials are
promising in food allergy treatment, there is currently no solid
evidence to support the preventive or therapeutic effects of
prebiotics and probiotics in relation to clinical food allergies.
Therefore, future studies should uncover more specific details
and mechanisms for the treatment of food allergies, while
optimal functional probiotic strains should be selected and
isolated for this approach.

CONCLUSION

The incidence of food allergy worldwide has increased
progressively. When food allergies are diagnosed, there are
limited treatment options for patients. Strictly avoiding
allergens is one of the few safe and effective treatments in
clinical application. However, such treatment is considered as a
passive option with significant shortcomings. The limitations of
clinical treatments for food allergies are largely attributable to
unclear disease mechanisms. In recent years, significant progress
has been made in elucidating the mechanisms involved in food
antigen uptake and oral tolerance induction in the intestine. In
this review, we summarized the pathways in which food antigens
cross the intestinal epithelium and the processes through which
they are transferred to the sub-epithelial compartment to induce
tolerance or to provoke allergic reactions in the intestine.
However, more mechanistic details need to be explored
regarding processes associated with the promotion of clinical
manifestations associated with food antigen-triggered
June 2022 | Volume 13 | Article 906122
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anaphylaxis. More importantly, promising clinical strategies
have been proposed, such as allergen-specific immunotherapy,
vaccines, and non-allergen-specific therapies, which may provide
additional viable options for patients with food allergies.
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