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Background: Knowledge of the genetic variation underlying Primary Immune Deficiency
(PID) is increasing. Reanalysis of genome-wide sequencing data from undiagnosed
patients with suspected PID may improve the diagnostic rate.

Methods: We included patients monitored at the Department of Infectious Diseases or
the Child and Adolescent Department, Rigshospitalet, Denmark, for a suspected PID,
who had been analysed previously using a targeted PID gene panel (457 PID-related
genes) on whole exome- (WES) or whole genome sequencing (WGS) data. A literature
review was performed to extend the PID gene panel used for reanalysis of single
nucleotide variation (SNV) and small indels. Structural variant (SV) calling was added on
WGS data.

Results: Genetic data from 94 patients (86 adults) including 36 WES and 58 WGS was
reanalysed a median of 23 months after the initial analysis. The extended gene panel
included 208 additional PID-related genes. Genetic reanalysis led to a small increase in the
proportion of patients with new suspicious PID related variants of uncertain significance
(VUS). The proportion of patients with a causal genetic diagnosis was constant. In total,
five patients (5%, including three WES and two WGS) had a new suspicious PID VUS
identified due to reanalysis. Among these, two patients had a variant added due to the
expansion of the PID gene panel, and three patients had a variant reclassified to a VUS in a
gene included in the initial PID gene panel. The total proportion of patients with PID related
VUS, likely pathogenic, and pathogenic variants increased from 43 (46%) to 47 (50%), as
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one patient had a VUS detected in both initial- and reanalysis. In addition, we detected
new suspicious SNVs and SVs of uncertain significance in PID candidate genes with
unknown inheritance and/or as heterozygous variants in genes with autosomal recessive
inheritance in 8 patients.

Conclusion: These data indicate a possible diagnostic gain of reassessing WES/WGS
data from patients with suspected PID. Reasons for the possible gain included improved
knowledge of genotype-phenotype correlation, expanding the gene panel, and adding SV
analyses. Future studies of genotype-phenotype correlations may provide additional
knowledge on the impact of the new suspicious VUSs.
Keywords: structural variation analysis, primary immune deficiencies (PID), single nucleotide variant analysis,
whole genome sequencing (WGS), reanalysis approach, whole exome sequencing, small INDELs, gene
panel analysis
INTRODUCTION

Primary immune deficiency (PID) is defined as immune
dysfunction due to a genetic cause, which causes either
inhibition and/or gain of function of components within the
innate and/or adaptive immune system (1). The prevalence of
patients with PID is estimated to be as high as one out of every
thousand individuals (2). Patients with PID have impacted
quality of life and increased mortality primarily due to
infectious complications (3). Currently the total number of
different monogenetic PID disorders extends to over 400 and is
continuously increasing (4). Nevertheless, targeted analysis of
PID genes on whole exome- or whole genome sequencing (WES/
WGS) data detects monogenetic pathogenic variants in less than
50% of patients suspected of PID (5, 6). Due to the continuously
increasing knowledge of genes and variants related to PID, a
reanalysis of prior WES/WGS data with an extended PID gene
panel in undiagnosed patients may improve the diagnostic
performance. The potential benefit of performing reanalysis
needs to be established, so that institutes can properly weigh
up cost benefit.

There are wide ranging benefits of providing a genetic
diagnosis for the individual patients. The confirmation or re-
classification of a clinical diagnosis may provide the potential for
treatment adjustments. In addition, a clarification of the
inheritance pattern is important to provide genetic counselling
for relatives at risk, as well as the opportunity for prenatal or
preimplantation genetic tests in relevant cases. Furthermore, the
gain in knowledge of the underlying causes of PID diseases can
pave the way for the development of novel biomarkers in risk
stratification and treatments. Therefore, reanalysis of WES/WGS
data is important to consider in previously undiagnosed cases. In
other disease groups, conducting a semiautomated reanalysis of
WES/WGS data have been shown to increase the rate of genetic
diagnoses (7–10), primarily due to the analysis of newly added
genes (11–13).

In this study, we aimed to assess the increase in the diagnostic
rate after reanalysis using an extended gene panel on WES/WGS
data in a cohort consisting of patients over 16 years of age and
suspected of PID. The reanalyses included a repeated analysis for
org 2
single nucleotide variants (SNVs) and small indels in 94 patients
and adding analysis for structural variants (SVs) in 56 patients
analysed with WGS. We investigate the proportion of new
genetic variants identified after the reanalysis due to either 1)
improved knowledge of phenotype-genotype correlation leading
to a variant re-classification 2) expansion of the PID gene panel
or 3) addition of SV analysis. To our knowledge, this is the
first study conducting a WES/WGS data reanalysis in a
PID population.
MATERIALS AND METHODS

Patient Population
Patients monitored at the Department of Infectious Diseases,
Rigshospitalet, Copenhagen, Denmark, for a suspected PID
between January 2016 and September 2020 were offered WES/
WGS analysed with a targeted PID gene panel (PID-1), after
clinical evaluation and most often also following immunological
analyses. Patients who accepted the offer and gave informed
consent were included in the study (Figure 1). The study was
approved by the national ethics committee. Patients fulfilling the
diagnostic criteria for Common Variable Immunodeficiency
(CVID) (14, 15) were subsequently excluded from this analysis,
as a separate prospective study focused on CVID is ongoing.
However, one child, who fulfilled the diagnostic criteria for
CVID, was included as the child was part of a family including
a parent and sibling with antibody deficiency. The excluded
patients with CVID constituted approximately half of the
patients suspected of PID and referred for genetic analysis at
our institute.

Phenotype data were collected from patients records and
assigned the Human Phenotype Ontology (HPO) terms (16).
Patients enrolled between January 2016 and January 2018 were
analysed with WES (n=37) and patients enrolled between
January 2018 and September 2020 were analysed with WGS
(n=58). One of the patients analysed withWES, who had a causal
pathogenic variant and had died, was excluded from reanalysis.
In total 94 patients hadWES/WGS data reanalysed for SNVs and
small indels. Two of the patients with WGS data were excluded
June 2022 | Volume 13 | Article 906328
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from SV analysis, one of these had poor quality control of WGS
data and one had a causal pathogenic SV reported in the initial
analysis. In total, WGS data from 56 patients were analysed for
SVs. The genetic analysis consisted of three different types of
entities: 1) 18 Trio analysis (the analysis of a patient and the
patient’s parents), 2) 60 Singletons (one patient analysis) and 3)
Seven Families (one patient and one or more relatives also
presenting symptoms compatible with a PID).

Extended PID Gene Panel
The initial gene panel, PID-1, was developed in 2015 and
contained 457 genes. PID-1 genes were primarily from the
2016 European Society for Immunodeficiencies online registry
of diseases genes (17) and Practice parameter for the diagnosis
and management of primary immunodeficiency (18). References
included in the development of PID-1 are listed in
Supplementary. Based on a literature search in October 2020,
208 genes were added resulting in a total of 665 genes in PID-2.
The majority of genes were added from Genomics England Panel
App (19) (Supplementary). PID-1 and PID-2 included both
known disease-associated PID genes and candidate genes for
Frontiers in Immunology | www.frontiersin.org 3
which the association with PID needs further study. PID-2 was
implemented for clinical use in our laboratory after 1 November
2020 (Supplementary Table 1).

Whole Exome Sequencing
Genomic DNA was extracted from whole blood. 500 ng of DNA
was fragmented to an average size of 300 base pairs using Covaris
S2 (Woburn, MA, USA). Adaptor ligation was performed using
the KAPA HTP Library Preparation Kit (Roche Diagnostics,
Basel, Switzerland) on a Sciclone G3 robot (Perkin Elmer,
Waltham, MA, USA). Sequence capture targeting the exome
was done with the SureSelectXT Clinical Research Exome kit
(Agilent) and followed sequencing on HiSeq2500 or NextSeq500
(Illumina, San Diego, CA, USA). For WES the sequencing
protocol aimed to achieve at least 95% of positions within the
capture covered by minimum 10x and average coverage of 50x.

Whole Genome Sequencing
Genomic DNA was isolated from whole blood samples using the
liquid handling automated station (Tecan Freedom EVO HSM
2.0 Workstation) according to the manufacturer’s instructions
FIGURE 1 | Flowchart of patient inclusion.
June 2022 | Volume 13 | Article 906328
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(Promega Corporation, USA, ReliaPrep Large Volume HT
gDNA Isolation System). Genomic DNA was subjected to
WGS using Nextera DNA Flex library preparation kit and
sequenced on a Novaseq 6000 (Illumina, San Diego, CA, USA).
For WGS the aim was for at least 98% of mappable positions to
be covered by minimum 10x and average coverage of 30x, which
was achieved for nearly all samples. Four samples were
borderline with a sequence coverage range of 95- 97% (28S,
36S, 57S, 83T). One patient (15FC1) was excluded from SV
analysis due to low coverage.
Variant Calling
Single nucleotide variants and small insertions and deletions
were called with GATK Haplotype Caller version 4.1.3.0 in
accordance with the GATK best practice guidelines developed
by the Broad Institute (20). Structural variants were called by
Manta version 1.5.0 (21), Lumpy version 0.3.0 (22), and
CNVnator version 0.3.3 (23). Thereafter, sequences called with
at least two of three tools were manually inspected.
Variant Exploration and Classification
For both WES and WGS datasets variant filtering was performed
using the Ingenuity Variant Analysis or QCI software (Qiagen
Bioinformatics, Redwood City, CA). Integrative Genomics
Viewer (IGV) Genome Browser (24) was used to manually
verify findings in the aligned raw sequencing data. The variant
calling was genotype driven as the PID gene panels were used for
all patients. In a minor proportion of patients all exome or
genome data was analysed, or disease specific search words were
applied in Ingenuity. In the trios and families, the information of
family members was included in the filtering and interpretation
of variants. In SNV and small indels analysis only variants with a
minor allele frequency of less than 2% in GnomAD (25) data and
variants in coding regions (+/− 20 base pairs) were selected for
further analysis unless an established Pathogenic common
variant, reported pathogenic in The Human Gene Mutation
Database (26) or ClinVar (27) or predicted a splice effect by
MaxEntScan (28). In the analysis of SNVs and small indels we
reanalysed WES/WGS data from all patients with PID-2 and
used the phenotypic information to evaluate the relevance of
variants. For SVs, we used the same +/- 20 bp for intron
boundaries and +/- 10 kb for the 1st exon of the genes for
promoter/regulatory regions. By WGS-based SV-analysis we
could pick up as small as 30bp SVs. SV analysis on WGS data
was performed genome wide as an explorative analysis. Only SVs
affecting genes included in PID-2 and/or genes related to key
phenotypic findings were reported. As a standard laboratory
procedure, the variants of interest were not verified by Sanger
sequencing unless they did not fulfil the required quality
measures (coverage, variant allele frequency etc.). The variants
were classified in accordance with the American College of
Medical Genetics and Genomics and the Association for
Molecular Pathology (ACMG/AMP) guidelines (29, 30). For
each patient, data was analysed and variants were classified by
two molecular biologists and/or clinical geneticists.
Frontiers in Immunology | www.frontiersin.org 4
Immunological Analysis
The standard immunological analysis included flow cytometry-
based leukocyte count and subtyping ofmaturation- and activation
stages, somatic hypermutation (measuring in kappa light chain
transcripts), T-lymphocyte proliferation (for patients between the
ages of 0 and 10 or for adults suspected of a T-cell defect) and
complement activation screen. Further specific immunological
analyses were performed based on the patient's clinical
presentation and results of the basic immunological analysis after
conference with clinical immunologists (31).
RESULTS

Patient Population
In total, 95 individuals suspected of having PID in 85 entities
consisting of 18 trios, 60 singletons and 7 families were included in
the study. Patients were categorized and sub-grouped according to
ESID (2019) clinical criteria (17) based on the presentation at the
timeof the initial genetic analysis (PID-1).Thepatients´ clinical and
immunological phenotypes were assessed again prior to the
reanalysis in order to include any additional information
obtained between the initial- and reanalysis. Baseline
characteristics are presented in Table 1 and detailed phenotype
data is in Supplementary Table 2. The major clinical subgroups in
our PID cohort were unclassified antibody deficiencies and
unclassified autoinflammatory diseases. The median time
between the initial- and the reanalysis of WES/WGS data was 23
months (range 1-57 months).

Results of Genetic Analysis
The results of the initial genetic analyses (PID-1) and reanalyses
(PID-2) are presented in Supplementary Table 3 and Table 2,
respectively. The number of patients with genetic findings
identified before and after reanalysis are summarized in
Table 3 and described further below. In the initial analysis, a
causal PID diagnosis was detected in eight patients, including
TABLE 1 | Baseline Characteristics.

Total number of patients, (n) 95

Adults, ≥18 years (n), Children (n) 87, 8
Age at inclusion (years), median (range) 37 (16-75)
Symptom onset at age 0-10 years (n (%)) 44 (46)
Symptom onset at age 10-20 years (n (%)) 12 (13)
Symptom onset at age 20-40 years (n (%)) 18 (19)
Symptom onset at age > 40 years (n (%)) 20 (21)
Symptom onset at unknown age 1 (1)
Female (n (%)) 65 (68)
Time between the initial- and the reanalysis of WES/WGS data
(months), median (range)

23 (1-57)

PID related Clinical Characteristics*
Recurrent/opportunistic infections (n (%)) 78 (81)
Autoimmunity (n (%)) 15 (16)
Malignancy (n (%)) 5 (5)
June 2022 | Volume 13 | Arti
*Patients can have more than one PID related clinical characteristic registered.
PID, Primary immune deficiency; WES, Whole Exome Sequencing; WGS, Whole
Genome Sequencing.
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likely pathogenic- (LP) and pathogenic (P) variants
(Supplementary Table 3). One of these eight patients was
excluded from reanalysis. No new PID diagnoses were detected
upon reanalysis. Seven of the patients with a genetic diagnosis
had a SNV or small indel (11S, 25S, 44T, 45S, 46S, 48T, 74T) and
one patient had a SV (63S). One patient (52S) had a variant of
uncertain significance (VUS) in NLRP3, which was compatible
with the phenotype and segregated in the affected family
members. Due to reduced penetrance of the phenotype this
variant could not be classified as LP or P. Therefore, this
patient was not counted as having a genetic diagnosis.
Additionally, in the initial analysis eight patients (5S, 37S, 53S,
54S, 62FP, 62FC, 77S, 81S) had suspicious PID variants detected
(LP/P), which were not explanatory for the PID phenotype
(including heterozygous variants in PID genes with AR
inheritance). Further, 28 patients had suspicious PID VUS(s)
detected. In the reanalysis, five (5%) patients had new suspicious
PID related VUS(s) identified. Four out of the five patients did
not have any variant identified in the initial analysis. Due to the
addition of VUSs, the reanalysis increased the total number of
patients in the cohort with PID related VUS(s), LP, and P variant
(s) from 43 (46%) to 47 (50%).

Single Nucleotide Variation and Small
Indels Analysis
When the genetic data was reanalysed, a new suspicious SNV
VUS was identified in five patients (5%). The genetic variant
details are shown in Table 2. We divided the patients into four
groups based on the category of the reanalysis responsible for the
detection of the new finding, as shown in Table 3. Category 1)
Three of the patients (19S, 49S, 59S) had a new VUS added due to
improved knowledge of phenotype-genotype correlation in a
gene also included in PID-1. Category 2) Two patients (29S, 31S)
had a VUS added due to the expansion of the PID gene panel.
Additionally, one patient had an incidental finding (7S). Of these
five patients with new PID related VUS(s), two patients (19S and
59S) had a single VUS in an AR/autosomal dominant (AD) gene:
FLG and SERPING1, respectively, and three patients (29S, 31S,
49S) had a single VUS in an AD gene: OAS1, TNFAIP3 and
NFKB1, respectively. These five patients’ phenotypes were
compatible with the AR/AD or AD heritable disorder and
functional immunological analysis in addition to genetic
analysis of parents was recommended (where possible).

Structural Variation Analysis
One patient had a pathogenic SV detected in the initial analysis
(63S). Category 3) In the reanalysis we only detected SVs in
either PID candidate genes and/or heterozygous in PID genes
with autosomal recessive inheritance. These variants were
included in Category 4 (below).

SNV and SV VUS(s) in PID Candidate
Genes and/or Heterozygous in PID Genes
With Autosomal Recessive Inheritance
Category 4) We identified eight patients with SNV or SV VUS(s)
in PID candidate genes (n=6) and/or heterozygous VUSs in PID
genes with AR inheritance (n=2). Of the 56 individuals with
Frontiers in Immunology | www.frontiersin.org 5
WGS data, five patients (9%) had such a SV of uncertain
significance identified (10FP, 27S, 32S, 33S, 39FA1). Four
patients (9S, 16S, 27S, 75S) had a heterozygous VUS (SNV or
SV) in a PID candidate gene. In one of these patients (27S) with
Combined Immune Deficiency (CID), we detected a
heterozygous, frameshift deletion in LAG3 (lymphocyte-
activation gene 3), which is involved in T-cell receptor
signalling (32). LAG3 was not included in the PID-2 gene
panel. Further, one patient (75S) had a pathogenic incidental
finding in addition to the new suspicious VUS in a PID candidate
gene. In this patient, we detected a hemizygous pathogenic
deletion in EDA , which was causal for the patient´s
hypohidrotic ectodermal dysplasia phenotype. EDA is not
included in the PID-2 gene panel. The EDA variant was
categorized as an incidental finding. Notably, during the initial
WGS analysis of this patient, who also presented a phenotype of
recurrent infections, genes related to ectodermal dysplasia were
included in addition to the PID-1 gene panel. SV analysis was not
implemented at the time of the initial analysis. Furthermore,
Array CGH had been performed which could not detect the
deletion. Two patients (33S, 39FA1) had two VUSs in a PID
candidate gene. These patients both had a SV and a SNV of
uncertain significance in the same gene and potentially in trans
(these SNVs were not included in the results of SNV analysis
above). Two patients (10FP, 32S) had a single VUS in an
autosomal recessive (AR) gene. These two patients both had a
heterozygous tandem duplication in DOCK8. One of the patients
presented a phenotype compatible with Hyper IgE syndrome.
We added analysis for DOCK8 deep intronic SNVs and small
indels in these two cases due to prior reports of intron variants in
patients with DOCK8 deficiency. We did not identify LP or P
variants in this analysis. Finally, one patient (7S) had an
incidental finding (VUS) detected at reanalysis.

Genetic Results Across ESID
(2019) Subgroups
Figure 2 shows the distribution of genetic results in patients
across the different ESID (2019) (17) subgroups. In this figure,
the results of the initial and reanalysis (PID-1 and PID-2) are
combined. Variants were identified in patients within most
clinical subgroups.

Re-Evaluation of Variants Identified in the
Initial Analysis (PID-1)
All variants identified as part of the initial analysis with PID-1
were re-evaluated. The results of specific immunologic analysis
and/or segregation analysis in the patients with variants detected
in the initial analysis (PID-1) are presented in Supplementary
Tables 2, 3, where these analyses had been performed. This led to
a re-classification in two patients with Familial Chronic
Mucocutanous Candidiasis (CMC), ID 45S and 46S, who both
had a VUS in STAT1, which were reclassified to P and LP
variants, respectively. These two patients were part of the original
9 patients with a genetic diagnosis causal for the PID phenotype
after the initial analysis (PID-1). ID 45S had a heterozygous, gain
of function variant (STAT1, c.1204_1205delinsTT, p.Ala402Phe).
June 2022 | Volume 13 | Article 906328
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TABLE 2 | Variants detected after reanalysis with PID-2 and analysis for structural variation.
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Unclassified Antibody Deficiency
7S WGS GSN (c.487G>A,

p.(Asp163Asn),
NM_001353054.1)†

3 Missense Het Unknown 0.001 26.5 _ Actin-binding protein (PMID: 3

9S WGS BANK1 (c.723del,
p.(Met241Ilefs*35),
NM_001127507.2)

3 Frameshift Het Unknown 0 N/A _ B-cell receptor-, CD40-related
and TLR9 signaling (PMID: 34

10FP WGS chr9:g.73297_381074dup
Tandem duplication on 9p24.3
(~300kb) including exons 1-21
of DOCK8 (NM_203447.4)

3 _ Het AR DGV: 0.14 _ _ TCR (PMID: 27599296), TLR9
28882618)

Selective IgM Deficiency
16S WES NFKBID (c.359C>T,

p.(Ser120Leu), NM_139239.3)
3 Missense Het Unknown <0.001 24.5 _ NF-kB (PMID: 23578005)

IgG-Subclass Deficiency
19S WGS FLG (c.10255C>T,

p.(Arg3419*), NM_002016.2)
3 Nonsense Het AD/AR 0.05 39 PMID: 31365035 Protein in the skin barrier (PM

31509236)
T-cell Deficiency and Combined Immunodeficiency
27S WGS LAG3 (c.287_407 del,

p.(Pro96Argfs*36),
NM_002286.6)
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31S WGS TNFAIP3 (c.2140C>A,
p.(Pro714Thr), NM_006290.4)

3 Missense Het AD 0 17.19 _ NF-kB (PMID: 32334614)

32S WGS chr9:g.72599_452686dup
Tandem duplication on 9p24.3
(~400kb) including exons 1-44
of DOCK8 (NM_203447.4)

3 _ Het AR DGV: 0.11 _ _ TCR (PMID: 27599296), TLR9
28882618)

Pathogen-Specific Immunodeficiency
33S WGS MAVS (c.1186C>T,

p.(Arg396Trp),
NM_001206491.2)

3 Missense Het Unknown 0.007 23.9 _ Adaptor protein in RIG-I pathw
25636800)

33S WGS chr20:g.3836764_3840471del,
~4kb deletion including exon 3
of MAVS (c.118_292del,
p.(Asp40Glyfs*93),
NM_001206491.2)

3 Frameshift Het Unknown GnomAD-SV:
0, DGV 0

_ _ Adaptor protein in RIG-I pathw
25636800)

39FA1 WGS FPR2 (c.220T>C,
p.(Phe74Leu), NM_001462.3)

3 Missense Het Unknown 0.0046 23 _ Annexin A1/FPR2 (PMID: 319

39FA1 WGS chr19:
g.52271806_52617740dup
Tandem duplication on
19q13.41 (~300kb) including
exon 2 of FPR2
(NM_001462.3) and the entire
FPR3 gene (NM_002030.5)

3 _ Het Unknown GnomAD-SV:
0.037, DGV: 0,22

_ _ Annexin A1/FPR2 (PMID: 319

Autoinflammatory Disorders and Periodic Fever Syndromes
49S WES NFKB1 (c.689G>T,

p.(Arg230Leu), NM_003998.4)
3 Missense Het AD ≤ 0.001 22.7 _ NF-kB (PMID: 26663363)

59S WES SERPING1 (c.5C>T,
p.(Ala2Val), NM_000062.3)

3 Missense Het AD/AR 0.11 23.6 PMID: 32896191 C1-inhibitor. Major control of
kinin system (PMID: 3151742

Patients not fulfilling ESID (2019) Criteria
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Subsequent analysis proved the variant to segregate with the
phenotype in several family members. Additionally, functional
immunological analysis confirmed the effect. Therefore, this
variant was reclassified to a P variant. ID 46S had a
heterozygous, missense variant (STAT1 , c .823C>A,
p.Gln275Lys), which was absent from controls. Subsequent
analysis of the parents proved the variant to be de novo.
Therefore, the variant was reclassified to a LP variant. We did
not re-classify any VUSs to benign or likely benign variants.
DISCUSSION

This study was conducted to investigate the value of performing
a reanalysis of WES/WGS data in a PID population consisting of
patients over 16 years of age, after an inclusion period of
approximately 4 ½ years. The re-analysis (PID-2) was
performed a median of 23 months after the initial analysis
(PID-1). Upon re-analysis new suspicious PID VUSs were
detected in 5% of the patients. Since all new PID related
variants (SNVs and SVs) were VUSs, the number of causal
genetic PID diagnoses did not increase after the reanalysis. The
total rate of patients having PID VUS(s), LP or P variant(s)
increased by 4% to a total rate of 50%. Three patients had a VUS
identified due to improved knowledge of genotype-phenotype
interaction and two patients had a VUS in new PID genes added
in PID-2. In addition, we identified five patients with new SVs of
uncertain significance and three patients with SNVs of uncertain
significance. These eight patients were described separately, as
they have VUS(s) in either PID candidate genes or heterozygous
in established PID genes with AR inheritance. Reasons for the
identification of new variants include the updated tools for
calling of SNVs/small indels and SVs as well as improvements
of in silico analysis. Our findings indicate a possible diagnostic
importance of analysing SVs in an adult PID population.
Therefore, we aim to transfer the genetic analysis from WES to
WGS to be able to perform SV analysis in selected cases with
high suspicion of a PID. Furthermore, in selected cases
presenting symptoms beyond a PID phenotype, a re-evaluation
of the indication for adding additional gene panels or extending
to full exome/genome analysis should be considered. The
detection of VUSs in new PID candidate genes together with
functional immunological analysis of affected pathway(s) can
potentially improve the knowledge of genotype-phenotype
correlations underlying PIDs.

When comparing rates of genetic findings between PID
cohorts, the selection of patients is crucial. Including patients
with more severe phenotypes, patients with symptom onset in
childhood and a positive family history will lead to a higher
molecular diagnostic rate (33). Further, a proportion of PIDs
with symptom onset in adulthood are suspected to be caused by
polygenetic (34, 35) and/or multifactorial inheritance (36).
Additional knowledge of mono- and polygenic variation
underlying these PIDs remains to be gained. Methods beyond
analysis of single cases and smaller cohorts are needed to detect
new genetic variants contributing to PID phenotypes (37, 38). In
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one relatively small cohort of six PID patients analysis of WGS
data, including copy number variation (deletions and
duplications), led to the detection of explanatory variants in all
cases analysed (39).

Unclassified antibody deficiencies and unclassified
autoinflammatory diseases constitute the major clinical
subgroups in our PID cohort (Table 2). The proportion of
antibody deficiencies corresponds to the proportion in a large
study of primarily adult PID patients (6). Furthermore, the
proportion consisting of CIDs was relatively low (7%), whereas
the proportion of pathogen specific immunodeficiencies was
relatively high (9%). These deviations could be due to a larger
proportion of children in the study by Smith et al. However,
Frontiers in Immunology | www.frontiersin.org 8
these subgroups contain small numbers of patients. Notably, in
the subgroup of patients, who did not fulfil ESID clinical criteria,
a variant was identified in six of the 13 patients, of which one had
a homozygous, pathogenic variant in ERAP1 (74T) and five had
VUS(s) in PID genes. In addition, three patients had familial
chronic mucocutaneous candidiasis (CMC) due to pathogenic
gain of function variants in STAT1.

Two studies from the UK that investigated a semiautomated
reanalysis of WES data in more than 1000 families with
developmental delay (13) and more than 2000 consecutive
cases of WES (12), showed increases of molecular diagnostic
rates of 13% (27 to 40%) and 11.5% (25 to 36%), respectively.
However, different disease groups are clearly not directly
TABLE 3 | Number of variants of uncertain significance (VUS), likely pathogenic- (LP) and pathogenic variants (P) before and after reanalysis (n = 94).

Total patients Patients with variants
identified in the initial

analysis (PID-1)

Patients with new
variants identified
in the reanalysis
(PID-1 & PID-2)

n (%) n (%) n (%)

Genetic diagnosis causal for PID (LP/P) 7 (7%) 7 (7%) 0
Suspicious PID variants (LP/P) 8 (8%) 8 (8%) 0
Suspicious PID variants (VUS) 32 (34%) 28 (30%) 5 (5%)*
All PID related VUS, LP and P 47 (50%) 43 (46%) 5 (5%)*
Categories of the reanalysis responsible for the detection of genetic findings†

Category 1 and 2:
Variants detected in analysis for SNV or small indels

46 (49%) 42 (45%) 5 (5%)*

Category 3:
Variants detected in analysis for SVs

1 (1%), ((2%))‡ 1 (1%), ((2%))‡ 0

Category 4§:
SNV and SV VUS(s) in PID candidate genes and/or heterozygous in PID genes with AR inheritance

8 (8%) — 8 (8%)

Incidental findings 4 (4%) 2 (2%) 2 (2%)
June 2022 | Volume
*1 of these 5 patients also had another SNV identified in the initial analysis. †Categories of the reanalysis responsible for detection of the new finding: 1 = improved knowledge of genotype-
phenotype, 2 = expansion of PID gene panel, 3 = SV analysis., or 4 = VUS(s) in candidate genes or heterozygous VUS(s) in genes with AR inheritance. ‡The one patient with a pathogenic
SV is listed relative to the number of patients analysed for SVs (n = 56) in double brackets. §Patients with VUS(s) in PID candidate genes and/or heterozygous VUS(s) in PID genes with AR
inheritance detected in the reanalysis were described separately and thus not counted in Suspicious PID variants (VUS).
AR, Autosomal recessive; LP, likely pathogenic; P, Pathogenic; PID, Primary immune deficiency; SNV, Single nucleotide variant or small indel; SV, Structural variant; VUS, Variant of
uncertain significance.
One patient with a causal variant identified with PID-1 was excluded from reanalysis and therefore not included in this table.
FIGURE 2 | Distribution of the genetic results (PID-1 and PID-2 combined) across ESID (2019) subgroups (n = 95 patients). *The Familial Chronic Mucocutanous
Candidiasis subgroup includes the one patient excluded from reanalysis. †One child with CVID was included, as the child is part of a family including a parent and
sibling with antibody deficiency. ‡Includes eight patients with suspicious PID variants (LP/P) and 28 patients with suspicious PID variants (VUS), of which one is
included in the five patients with new suspicious VUS(s) detected due to reanalysis, since this patient also had a suspicious PID VUS detected in the reanalysis. VUS,
variant of uncertain significance; LP, likely pathogenic; P, pathogenic.
13 | Article 906328
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comparable. The two studies both included children and the
molecular diagnostic rates did not include variants of uncertain
significance. In contrast, our findings of new variants in PID
genes were solely VUSs. Notably, our cohort primarily
investigated adult patients and few children included in
families with a suspected PID. As well as developmental delay,
PID phenotypes are very heterogenous, especially if milder
phenotypes of PID are included. Also, PID patients can
present with a symptom onset in adulthood, making it more
difficult to determine the impact and pathogenicity of genetic
variants, which may be inherited from an apparently unaffected
parent. Finally, both PID and developmental delay can
potentially arise due to variants with variable expression and/
or reduced penetrance.

Data analyses and variant classifications were performed by
six molecular biologists and clinical geneticists during the 5-year
study period. To limit the effect of interobserver variability, all
interpreters followed the ACMG international guidelines (29),
and all findings were confirmed by two interpreters. However,
inevitably there will be interobserver variability of variant
interpretation, which can affect the rate of PID related variants
identified. Additionally, when rates of genetic variants are
compared between PID cohorts, there can be inter-laboratory
variability. Further, over time some monogenic PID disorders
known to be caused by autosomal recessive inheritance have
been proven also to be caused by autosomal dominant
inheritance (40). Therefore, during this study period, the
number of heterozygous variants reported has increased.
Finally, more patients were included as trio analysis in the
beginning of the inclusion period, and more singletons were
included towards the end. Trio analysis are often preferable for
WES/WGS data interpretation since trio analyses can provide
information on potential de novo variants or compound
heterozygosity for two variants in the same gene. Therefore,
the change to a predominant inclusion of singletons later in the
inclusion period may also have led to an increase of heterozygous
variants reported, where subsequent analysis of parents is needed
to unravel de novo variants or compound heterozygosity for
two variants.

One of the limitations of the study was, that analysis for low
level of germline mosaicism (<20% of reads) was not performed,
since WGS analysis is not ideal for identifying potential germline
mosaicism. Another limitation of our study was in the analysis of
genes known to have pseudogenes, e.g. IKBKG, NCF1, C4A, and
C4B. For such regions specialized bioinformatics pipelines could
be required to accurately call the variants in these genes, which
was not applied in our study. This limitation is included as a
disclaimer in the clinical reports. The targeted analysis
performed in our study could also be considered as a
limitation, since additional VUSs in new PID candidate genes
may be detected by performing analysis of the entire exome or
genome. Another limitation was, that we did not consider the
deep intronic variants (located deeper then +/-20bp to the
exons). However, as the performance of any kind of functional
analysis for potential effect of splice- or other non-coding
variants was not within our study scope, we decided to focus
Frontiers in Immunology | www.frontiersin.org 9
our analysis to the +/-20bp exon-flanking regions in order to
simplify the clinical interpretation of the variants.

Performing a reanalysis of broad sequencing data is resource
demanding. As such, a potential gain in diagnostic performance
after data reanalysis needs to be balanced against the time and
cost involved (41). In contrast to other studies including
automated reanalysis, we did not detect new genetic diagnoses
upon reanalysis. Yet our results showed that performing the
reanalysis may improve genetic results in prior undiagnosed
patients. Our findings included both SNVs and SVs in new PID
genes (added in PID-2), which shows the importance of regularly
extending gene panels for reanalysis in PID. The PID-2 gene
panel contains many PID candidate genes (newly described in
relation to PID) without prior reports in the literature of variants
in patients. Therefore, until the knowledge of gene-disease
interaction improves, variants identified in PID candidate
genes within PID-2 will primarily be classified as VUSs. Within
the Genomics England Panel App approximately half of the
genes in the current PID gene panel (Primary immune deficiency
Version 2.498) are categorized as red (not enough evidence) or
amber (moderate evidence of gene-disease association), where
additional evidence is needed to confirm the genotype-
phenotype correlation. Thus, additional evidence of
pathogenicity for the VUSs identified in our PID cohort may
arise from individual, specific functional immunological analysis
and segregation analysis.

Due to the high level of heterogeneity of PIDs, the
interpretation of rare variants and planning of functional
analysis, particularly of variants in PID candidate genes, can
benefit from international collaborations, e.g. GeneMatcher (42).
Due to costs of manual reanalysis an automated reanalysis of
VUS and LP variants incorporating genomic, phenotypic, and
pedigree data could ideally prioritize the variants in established
PID genes for clinicians to review, in line with what has been
implemented for other disease groups (43–46). Currently, new
methods are being developed and implemented to improve
automation of genetic reanalysis (8, 10, 47). In PID
populations, where most genetic variants are VUSs, patients
could benefit from regular semiautomated reanalysis of WES/
WGS data with a reduced demand of time for manual variant
interpretation. However, due to the large extent of PID candidate
genes, VUSs detected by automated reanalysis methods in these
genes will require additional evidence of pathogenicity from
segregation studies, functional analysis and/or other reports of
cases with similar phenotypes.

In conclusion, our reanalysis of WES/WGS data did not lead
to novel genetic diagnoses causal for PID. We detected new
suspicious PID VUS(s) in five (5%) patients suspected of PID.
Additionally, eight patients had SNV/SV VUS(s) in PID
candidate genes or heterozygous VUS(s) PID genes with AR
inheritance. Our data indicate a possible diagnostic value of
reassessing WES/WGS data with an extended gene panel and
performing analysis of SV in a PID population of primarily
adults. To our knowledge, this is the first study to investigate the
impact of a WES/WGS data reanalysis and to include structural
variation analysis in a PID population. Future improved
June 2022 | Volume 13 | Article 906328
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knowledge of genotype-phenotype correlation in PID candidate
genes may provide additional certainty of the effect of the
identified VUSs.
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