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Background: Patients with lung adenocarcinoma (LUAD) exhibit significant heterogeneity
in therapeutic responses and overall survival (OS). In recent years, accumulating research
has uncovered the critical roles of hypoxia in a variety of solid tumors, but its role in LUAD
is not currently fully elucidated. This study aims to discover novel insights into the
mechanistic and therapeutic implications of the hypoxia genes in LUAD cancers by
exploring the potential association between hypoxia and LUAD.

Methods: Four machine learning approaches were implemented to screen out potential
hypoxia-related genes for the prognosis of LUAD based on gene expression profile of
LUAD samples obtained from The Cancer Genome Atlas (TCGA), then validated by six
cohorts of validation datasets. The risk score derived from the hypoxia-related genes was
proven to be an independent factor by using the univariate and multivariate Cox
regression analyses and Kaplan–Meier survival analyses. Hypoxia-related mechanisms
based on tumor mutational burden (TMB), the immune activity, and therapeutic value were
also performed to adequately dig deeper into the clinical value of hypoxia-related genes.
Finally, the expression level of hypoxia genes was validated at protein level and clinical
samples from LUAD patients at transcript levels.

Results: All patients in TCGA and GEO-LUAD group were distinctly stratified into low-
and high-risk groups based on the risk score. Survival analyses demonstrated that our risk
org June 2022 | Volume 13 | Article 9068891
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score could serve as a powerful and independent risk factor for OS, and the nomogram
also exhibited high accuracy. LUAD patients in high-risk group presented worse OS, lower
TMB, and lower immune activity. We found that the model is highly sensitive to immune
features. Moreover, we revealed that the hypoxia-related genes had potential therapeutic
value for LUAD patients based on the drug sensitivity and chemotherapeutic response
prediction. The protein and gene expression levels of 10 selected hypoxia gene also
showed significant difference between LUAD tumors tissues and normal tissues. The
validation experiment showed that the gene transcript levels of most of their genes were
consistent with the levels of their translated proteins.

Conclusions: Our study might contribute to the optimization of risk stratification for
survival and personalized management of LUAD patients by using the hypoxia genes,
which will provide a valuable resource that will guide both mechanistic and therapeutic
implications of the hypoxia genes in LUAD cancers.
Keywords: lung adenocarcinoma, hypoxia gene, immune landscape, overall survival, prognosis, therapeutic implications
INTRODUCTION

Lung cancer histology is determined according to the WHO
classification based primarily on the light microscopic
appearance of the malignant cells (adenocarcinoma, squamous
carcinoma, large cell carcinomas, and small cell carcinoma) (1).
Among lung cancers, lung adenocarcinoma (LUAD) is the most
commonly diagnosed subtype, accounts for 40% of all diagnosed
lung cancers, and has an average 5-year survival rate of only 15%
(2, 3). The incidence of LUAD has increased significantly over
the past two decades, especially among women (4). As a highly
aggressive disease with significant heterogeneous prognosis
across individuals, the molecular mechanisms underlying
LUAD progression remain elusive (5). The International
Union Against Cancer (UICC) tumor–node–metastasis (TNM)
staging system was widely used for LUAD prognosis assessment
(6). However, TNM-based clinical assessment method has so far
proved inadequate in predicting clinical outcomes and treatment
decision. Therefore, it has become one of the hot spots in clinical
research to find more valuable prognosis indexes of LUAD.

Hypoxia, or lack of oxygen, is a feature of most solid tumors
(7). Studies have shown that hypoxia-inducible factors (HIFs) are
highly expressed in osteosarcoma stem cells (OSCs), and a
significant decrease in stem cell proliferation and migratory
activity was found after selective inhibition of HIF-1a or HIF-
2a (8). During tumor progression, hypoxia develops when tumor
growth exceeds the ability of available vasculature to supply
tumor cells with oxygen and nutrients (9). Tumor hypoxia is one
of the worst prognosis factors for survival (10). Multiple studies
have demonstrated that hypoxia condition is an important cause
of promot ing the pro l i f e ra t ion and angiogenes i s ,
chemoradiotherapy resistance of cancer cells, migration,
invasion, and metastatic growth at distant sites, which are
significant obstacles to treatment and cause significant adverse
prognostic ramifications (11–13). In LUAD, the upregulation of
multiple hypoxic-related genes has been reported to have a
significant prognostic value, such as HIF-1a (14), NLUCAT1
org 2
(15), TRB3 (16), GBE1 (17), and CCL28 (18), highlighting the
potential therapeutic value of targeting hypoxic-related genes,
and the prognostic assessment and treatment decision. In view of
the crucial role of hypoxic in the LUAD, hypoxic-related genes
may be an effective way to predict the prognosis and therapeutic
benefit for LUAD patients, individually.

In the present study, a range of machine learning and
bioinformatic approaches were combined and used to excavate
and screen robust candidate genes to explore in depth the
potential correlation between hypoxia and LUAD, followed by
the establishment and verification of an individualized hypoxia-
derived signatures (Figure 1). Our findings provide further
insight into the role of hypoxic-related genes in LUAD and
provide a comprehensive demonstration that they are promising
prognostic markers and therapeutic targets for LUAD.
METHODS

Patient Samples
In March 2022, three LUAD tissues and their paired non-
tumorous lung tissues were collected for quantitative real-time
PCR (qRT-PCR) detection from the Ren Ji Hospital. All
specimens were evaluated for histological features by
pathologists according to criteria. The investigators obtained
approval from the Ethics Committee of the Ren Ji Hospital,
affiliated Shanghai Jiao Tong University School of Medicine to
conduct the study (Ethics Approval Number KY2021-220-B). All
procedures were carried out in accordance with the Declaration
of Helsinki and relevant Chinese policies.

RNA Isolation and Quantitative
Real-Time PCR
Trizol reagent (Spark Jade, Qingdao China) was used to extract
the nucleic acids from three pairs of LUAD tissues and their
paired normal tissues according to the manufacturer’s
June 2022 | Volume 13 | Article 906889
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instructions. Then, qRT-PCR reactions were performed with
2xHQ SYBR qPCR mix (ZOMANBIO, Beijing, China) by using
the 7500 fast real-time PCR system ((Applied Biosystems, USA).
The primers of 10 selected hypoxia genes in this study are
outlined in Table 1.

Date of Acquisition
Gene expression profiles (fragments per kilobase million, FPKM
normalized) and the corresponding clinical parameters of 572
primary LUAD patients and healthy people were downloaded
from The Cancer Genome Atlas–Lung Adenocarcinoma
(TCGA-LUAD) (https://portal.gdc.cancer.gov/) and were used
as the training set. Datasets GSE13213 from the microarray
datasets generated by Agilent-014850 Whole Human Genome
Microarray 4x44K G4112F (Probe Name version) were
downloaded from Gene Expression Omnibus (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc) and was used as
external independent validation set, including 117 LUAD
patients. In addition, five datasets, namely, GSE72094,
GSE30219, GSE31210, GSE37745, and GSE81089 from the
Frontiers in Immunology | www.frontiersin.org 3
same chip platform (Affymetrix Human Genome U133 Plus
2.0 Array) were integrated into a new cohort and were used as
the other validation set, namely, GEO-II LUAD group, which
contained a total of 904 I–IV LUAD patients (I, 557; II, 178; III,
99; IV, 70) meeting the criterion. Batch effects from the five
independent datasets above were corrected by using the ComBat
function (sva R package).

Construction of Gene Signature by
Integrating Four Machine
Learning Algorithms
A total of 572 transcriptome data from TCGA were divided into
513 LUAD tumors group and 59 normal tissues group. The R
package DESeq2 was applied to perform the differential
expression analysis of hypoxia-related gene between tumors
group and normal tissues group, followed by plotting the
volcano plots for differentially expressed hypoxia-related gene
using R package ggplot2. The hypoxia-related differentially
expressed genes (DEGs) were defined as |log2 fold change| >
0.05, p < 0.05. Then, dimensionality reduction was further
FIGURE 1 | Flowchart for developing an individualized hypoxia-associated gene-based prognostic signature for LUAD.
June 2022 | Volume 13 | Article 906889
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performed on differentially expressed hypoxia-related gene in
LUAD tumors based on survival data by using the weighted
random forest and sliding windows sequential forward feature
selection (SWSFS) method, which was realized by R package
ranger, a weighted version of random forest. The SWSFS method
was used to identify the top important hypoxia-related DEGs by
increasing DEGs one by one to the random forest model by the
order of variable importance score (VIS). In the RF model, the
ordinate (left) represents the out of bagging (OOB)’ error rate,
which measured the performance of different gene combinations
consisting of a specific number of hypoxia-related DEGs. In the
RF model having the lowest error rate, the current hypoxia-
related DEGs combination was screened out for further analysis.

To enhance the accuracy and reliability of the established
HAGS, we make further screening of hypoxia-related DEGs by
training the XGBoost model using the xgboost package in R
language. The XGBoost model was used to analyze the
contribution of each hypoxia-related DEGs to survival state in
513 LUAD tumors group; the top-ranked hypoxia-related DEGs
with the VIS value of 0.01above were screened out for further
analysis. After screening by two methods mentioned above, we
used the intersection of RF model and the XGBoost model to
identify candidate genes, followed by employing the support
vector machine–recursive feature elimination (SVM–RFE)
algorithms (19). SVM–RFE has been widely used to rank
features and select the most significant features subset for
classification. In this study, the hypoxia-related DEGs subset
with the best accuracy for classifying survival status was chosen
to be the HAGS by the mean of fivefold cross-validation in the
SVM predictive model.

Finally, the HAGS subset screened by three models above was
determined by Gaussian mixture model (GMM), which is a very
feasible approach and has a good hierarchical agglomerative
clustering performance (20). Logistic regression analysis was
used to construct combined models of different gene sets
combinations to predict survival status in LUAD patients. The
area under the curves (AUCs) were calculated by constructing
the receiver operating characteristic (ROC) curves to assess the
predictive value of all logistic regression models. Then, the GMM
was used to cluster gene sets according to the AUC values of all
different gene sets combinations. The gene sets combinations
with the highest AUC will be selected and determined as the final
HAGS subset to establish HAGS. Ultimately, the risk score of
Frontiers in Immunology | www.frontiersin.org 4
HAGS was determined through the optimal parameter of logistic

regression analysis and was calculated by the formula: risk score

=
Z n

i
CiGi, where Ci represents the coefficient of gene i, and Gi is

the normalized expression value of gene i.
Validation of the HAGS
The risk score formula above was used to calculate risk scores for
each LUAD patient. Then, the median score of the LUAD
individuals in the training and external validation groups was
used as a risk cutoff value to classify all LUAD individuals into
the high- and low-risk groups. The survival status, hypoxia-
associated gene expression, and overall survival (OS) time was
compared between the two subgroups via Kaplan–Meier
analysis, respectively. The gene expression levels were
normalized by log transformation for each gene. Principal
component analysis (PCA) was performed to observe the
clustering conditions of LUAD individuals in different risk
levels, visualized by the “scatterplot3d” R package.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analyses
Next, the co-expression genes of differential hypoxia-associated
gene between high- and low-risk LUAD patients were chosen to
perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses, which was conducted by using
the clusterProfiler package. Enrichment significance thresholds
were set at p < 0.05 and false discovery rate (FDR) <0.05. GO
analysis was used to map all DEGs to GO terms in the GO
database (http://www.geneontology.org/) to analyze the main
functions of the DEGs. The KEGG pathway database (www.
genome.jp/kegg/) is a synthetic database, which was used to
analyze the biochemical pathways of the DEGs of interest.

Independent Prognostic Factors Analysis
of Risk Score and Construction of a
Nomogram Prediction Model
After the extraction of clinical information (age, grade, and
stage) of LUAD patients in the TCGA and GSE 13213 cohort,
univariate and multivariate prognostic analyses were used to
TABLE 1 | The primers of 10 selected hypoxia genes.

Gene name Primer sequences

Forward Primer Reverse Primer

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG
PGK1 TGGACGTTAAAGGGAAGCGG GCTCATAAGGACTACCGACTTGG
SLC2A5 GAGGCTGACGCTTGTGCTT CCACGTTGTACCCATACTGGA
TPI1 CTCATCGGCACTCTGAACG GCGAAGTCGATATAGGCAGTAGG
B4GALNT2 CACTGAACACCCTTGCTGATG CAGCTTCCGGTCACTGGTAG
TPST2 AGTCCTCGGTCTACCTGTCG GGCGTACATCACCTCGATGG
FBP1 CGCGCACCTCTATGGCATT TTCTTCTGACACGAGAACACAC
KLF7 AGACATGCCTTGAATTGGAACG GGGGTCTAAGCGACGGAAG
SDC4 GGACCTCCTAGAAGGCCGATA AGGGCCGATCATGGAGTCTT
PKP1 TTTGCCGTCGGACCAAAAGAT GAACCTCGATTGGAGTGGCTC
June
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demonstrate whether the risk score could be an independent
prognostic factor. Based on the multivariate Cox regression
analysis for risk score and other clinicopathological factors by
the rms R package, a clinically adaptable nomogram prediction
model was established to predict the survival probability of 513
LUAD individuals in 1, 3, 5, and 8 years from the TCGA group.
Then, the calibration analysis and time-dependent ROC (tROC)
curve were used to evaluate the prognostic value of nomogram
for LUAD patients.

Correlation Analyses Between HAGS and
the Immune Activity
The single-sample gene set enrichment analysis (ssGSEA), an
application and extension of Gene Set Enrichment Analysis
(GSEA) algorithm, calculates separate enrichment scores for
each pairing of a sample and gene set. To explore the
relationship between the HAGS and the immune activity, we
uploaded the gene expression matrix data of LUAD patients
from TCGA. For 513 LUAD patients, the infiltration levels of 16
types of immune cells and the activity of 13 immune-related
pathways were quantified using enrichment scores calculated by
ssGSEA algorithm in R package gsva. Then, the Spearman
correlation analyses were performed to evaluate the correlation
between the levels of risk score and the infiltration levels of
immune cells and immune-related pathways by R packages,
“ggcor.” Similarly, the Spearman correlation of infiltration
levels for different immune cells and immune-related pathways
were also performed to analysis possible relationships
between them.

In addition, based on expression profiling data retrieved from
the TCGA database, the ssGSEA was used to quantify the 29
infiltrating immune cells types and immune-related pathways of
513 LUAD in the training set, which was divided into 256 high-
risk score groups and 257 low-risk score groups based on the risk
score. Then, statistical difference between the two groups was
compared by the Wilcoxon test. The mutation status of TP53,
KRAS, and epidermal growth factor receptor (EGFR), which was
calculated by package “maftools,” was also displayed to gain
insights into the tumor mutation burden between low- and high-
risk groups stratified by the risk score. The clinical features
(gender and survival) and TNM stage of patients between the
two groups were also illustrated as an annotation.

Analysis of the Tumor Mutation Status
in the Low and High HAGS Risk
Score Groups
The tumor mutational burden (TMB) is defined as the total
number of somatic/acquired mutations per coding area of a
tumor genome (Mut/Mb) (21) and calculated as the number of
non-synonymous protein coding variants divided by the total
sequenced genome length. To inquire about the association
between the TMB and HAGS risk, we next compared the
tumor mutation status between the low and high HAGS risk
score groups. First, the RNA-seq data of 513 LUAD samples in
the TCGA group was annotated by the annotation files
(gencode.v22.annotation.gene.probeMap). Then, the mutational
Frontiers in Immunology | www.frontiersin.org 5
data of TCGA samples was identified and matched against the
somatic point mutation database (Genomic Data Commons
Data Portal, https://portal.gdc.cancer.gov/), which was used to
check for the presence of mutation in large populations of
control individuals. Significantly mutated genes (p < 0.05)
between the low and high HAGS risk groups and the
interaction effect of gene mutations were analyzed by maftools;
only genes mutating more than 50 times in at least one group will
be considered. The statistical significance test for the proportion
of mutation was evaluated by one-sided z-test and two-sided
Chi-square, and p < 0.05 was considered as significant.

Correlation Analysis Between Hypoxia-
Associated Gene Expression and
Drug Sensitivity
The drug sensitivity data used in our study were downloaded from
the CellMiner database (https://discover.nci.nih.gov/cellminer/
home.do). The CellMiner database includes rapid access to and
comparison of gene expression levels of 360 microRNAs, 22,379
genes, and 20,503 compounds incorporating 102 Food and Drug
Administration (FDA)-approved drugs (22, 23). First, the gene
expression and drug sensitivity data from the same sample were
downloaded. Then, the drug sensitivity data were filtered after
clinical trials verification and FDA standard certification.
Eventually, we combined the 10 hypoxia-associated gene
expressions with the retained drug sensitivity data to perform
the Spearman correlation analysis. Higher Spearman Cor value
indicates a stronger correlation.

Chemotherapeutic Response Prediction
Based on the largest publicly available pharmacogenomics
database [the Genomics of Drug Sensitivity in Cancer (GDSC),
https://www.cancerrxgene.org/], we further predicted the
chemotherapeutic response for each patient with high and low
risk in the TCGA group to evaluate the value of hypoxia-derived
signatures for LUAD treatment in the clinic. The half-maximal
inhibitory concentration (IC50) of 28 antitumor drugs
recommended by The American Joint Committee on Cancer
(AJCC) guidelines for cancer treatment were calculated using the
R package “pRRophetic,” which could simultaneously construct
prediction models using transcriptome and drug sensitivity data
derived from GDSC and apply it to the transcriptome information
of 513 LUAD samples to generate predicted drug IC50s for each
sample. Finally, the difference in the IC50s of 30 common
antitumor drugs between the high- and low-risk groups was
compared using the Wilcoxon signed-rank test. The prediction
process was implemented by R package “pRRophetic” where the
samples’ half-maximal inhibitory concentration (IC50) was
estimated by ridge regression, and the prediction accuracy was
evaluated by 10-fold cross-validation based on the GDSC training
set (24).

External Validation of Proteins and
Transcription Levels of the HAGS
Human Protein Atlas antibody-based protein expression data are
freely available online from the Human Protein Atlas (HPA)
June 2022 | Volume 13 | Article 906889
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(www.proteinatlas.org) (25), a comprehensive database that
provides the information on the tissue and cell distribution of
26,000 human proteins. The protein expressions of 10 hypoxia-
associated genes (TPST2, SDC4, KLF7, SLC2A5, TPI1, FBP1,
B4GALNT2, PGK1, PKP1, and GAPDH) in normal and LUAD
tumor tissues were investigated based on the results of specific
antibodies obtained from HPA. The human model diagrams
illustrating the organ biodistribution of 10 genes in the human
body were generated using gganatogram, an R package for
modular visualization of anatograms and tissues based
on ggplot2.
RESULTS

Construction and Validation of HAGS
by Integrating Four Machine
Learning Algorithms
To improve the reliability, validity, and accuracy of HAGS, we
integrated four different machine learning algorithms to select
the most reliable hypoxia-associated genes set. First, the hypoxia-
related DEGs between tumors group and normal tissues group
were illustrated with a volcano plot (Figure 2A), which was
derived from “DESeq”-based differential gene expression
analysis. Second, supervised random forest (RF) models were
used to identify the top important hypoxia-related DEGs from
the selected hypoxia-related DEGs (Figure 2B). Using RF–OOB
algorithm, the subset of DEGs with the minimal value of OOB
Frontiers in Immunology | www.frontiersin.org 6
error was selected to be the optimal feature. Meanwhile, the top-
ranked hypoxia-related DEGs were also generated by using the
XGBoost algorithm based on the contribution (gain) of each
hypoxia-related DEG to survival state (Figure 2C). Third, the
intersection of the random forest model and the XGBoost model
were analyzed by SVM–RFE algorithms to further screen gene
set with the best accuracy for classifying survival status of LUAD
patients (Figures 2D, E). Finally, from all different gene sets
combinations selected through models above, the GMM was
used to determine the final hypoxia-associated genes signature
subset (Figure 2F), including TPST2, SDC4, KLF7, SLC2A5,
TPI1, FBP1, B4GALNT2, PGK1, PKP1, and GAPDH. Based on
the expression of these candidate genes, the risk score of HAGS
for each patient in TCGA and GEO groups was calculated by the

formula: Risk score =
Z n

i
CiGi, where Ci represents the

coefficient of gene i, and Gi is the normalized expression value
of gene i.

After each patient received a risk score according to the
personalized formula of HAGS above, we divided patients in
the TCGA training group into low‐risk (n = 257) and high-risk
groups (n = 256) by using the median risk score as the threshold
value. As show in Figure 3A, according to the median, all
patients in the TCGA-LUAD group were distinctly stratified
into low- and high-risk groups with the increasing risk score. By
displaying the risk scores, survival status, and the expression of
10 hypoxia-associated genes in a dot plot or heat map, we found
that patients with high-risk scores had higher expression of
PKP1, B4GALNT2, KLF7, GAPDH, TPI1, and PKP1. Kaplan–
A B

D E F

C

FIGURE 2 | Four machine learning algorithms were integrated to establish the HAGS. (A) The DEGs between the tumors group and normal tissues group were
illustrated with a volcano plot. (B) Supervised random forest models were used to identify the top important hypoxia-related DEGs. (C) Top 39 features selected
using XGBoost and the corresponding variable importance score. x-Axis indicates the importance score, which is the relative number of a variable that is used to
distribute the data; y-axis indicates the top 39 weighted variables. (D) The intersection of the random forest model and the XGBoost model. (E) The SVM–RFE
algorithms were used to further screen gene set. (F) The GMM was used to determine the final HAGS.
June 2022 | Volume 13 | Article 906889
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Meier survival curves presented a significantly higher number of
deaths in the high-risk group than in the low-risk group (p <
0.0001, Figure 3B), suggesting that the newly developed HAGS
was able to effectively predict survival. Moreover, PCA analysis
revealed that the individuals in different risk levels could be
distinctly distributed into two sections based on the risk score
(Figure 3C). Similarly, patients in GEO were also divided into
low‐risk (n = 59) and high-risk groups (n = 58), and the results of
Kaplan–Meier analysis and PCA were consistent with the results
of the TCGA-LUAD group mentioned above (Figures 3D–F).

Enrichment Analyses of GO and
KEGG Pathways
To evaluate the functional and biological implications of
differentially expressed genes (DEGs) and further recognize
important functional phenotypes of these genes between high-
and low-risk LUAD patients, GO and KEGG pathways
enrichment analyses of DEGs were performed, respectively.
GO described DEGs in terms of their related biological
processes, cellular components, and molecular function. Result
from GO enrichment analyses illustrated that the DEGs were
enriched in 30 GO terms, including 10 terms in biological
processes, 10 terms in cellular component, and 10 terms in
molecular function (Figure 4A). Additionally, 10 significant
KEGG pathways were identified (Figure 4B), including one
most significant types of pathways, namely, arginine and
Frontiers in Immunology | www.frontiersin.org 7
proline metabolism, proved to be an important metabolism
pathway for lung cancer (26).

Evaluation of Risk Score as an
Independent Prognostic Factor for LUAD
and Construction of a Nomogram for OS
Prediction in LUAD Patients
After the extraction of clinical information (age, grade, and
stage) of LUAD patients in the TCGA and GEO cohort,
univariate and multivariate Cox regression analyses were
performed to demonstrate whether the risk score derived from
the HAGS model could serve as an independent prognostic
factor for OS in LUAD patients. In the univariate Cox, the risk
score was significantly associated with OS in both the training
cohort from TCGA group and external validation dataset from
GEO (p < 0.001, Figures 5A, B). The multivariate Cox regression
analyses also indicated that the risk score was also proven to be
an independent factor predicting OS in both TCGA and GEO
cohorts (p < 0.001, Figures 5C, D).

Next, in order to acquire a more accurate quantitative method
for disease progression and survival probability of LUAD patient,
we constructed a nomogram to estimate the 1-, 3-, 5-, and 8-year
survival probabilities of 513 patients with LUAD by integrating
the risk score and different clinicopathological factors, including
sex, age, risk score, tumor stage, T stage (tumor size), and N stage
(lymph node metastasis) (Figure 5E). The calibration plots of the
A B

D E F

C

FIGURE 3 | The risk score plots, OS status plots, and heatmaps of these 10 hypoxia-associated genes in the TCGA and GEO groups. (A) Risk score distribution,
OS status, and the expression of 10 hypoxia-associated genes of LUAD patients in TCGA group. Red means high risk, blue means low risk. (B) Kaplan–Meier plot
found that the HAGS divided patients into high- and low-risk groups with significant difference in OS. (C) Based on PCA analysis, the 513 LUAD patients in TCGA
were distributed into two sections according to the risk score. (D–F) Similar results were also found in the GEO group. OS, overall survival; PCA, principal
component analysis.
June 2022 | Volume 13 | Article 906889
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nomogram for 1-, 3-, 5-, and 8-year survival (Figure 5F)
indicated that the OS estimated by the nomogram was
extremely closely to the actual OS. Time-dependent ROC
(tROC) curves of 5-year OS showed that the nomogram
exhibited the most stable and powerful ability for predicting
survival, with an average AUC above 0.7, much better than other
clinicopathological factors (Figure 5G). These results further
support the powerful discriminative ability of the HAGS in
conjunction with clinicopathological factors for predicting
survival in LUAD.
Frontiers in Immunology | www.frontiersin.org 8
Association Between HAGS Risk Score
and the Clinical Characteristics of LUAD
Given the diversity and complexity of different LUAD cases in
clinical samples, we further investigated the distribution of the
HAGS risk score in LUAD patients with different gender, age,
survival status, and TNM stage. We found that there is no
difference in LUAD patients with different TNM stage and
gender in TCGA group (Figures 6A–E), only a significant
difference was detected between patients with different survival
status (p < 0.05, Figure 6F). In the GEO-II LUAD group, the
A

B

FIGURE 4 | GO and KEGG pathway enrichment analyses of DEGs between high- and low-risk LUAD patients. p-value: purple, high (bottom); yellow, low (top).
The size of the dots represents the number of DEGs. (A) GO analysis results. (B) KEGG pathway enrichment analyses results. p.adjust, adjusted p-value.
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elderly (>60), male, and dead populations all had significantly
higher risk score than those in the younger (≤60), female, and
alive populations, respectively (p < 0.05, Figures 6G–I).

Then, in order to explore whether the 10-gene signature could
be widely and accurately used to determine the survival
conditions in different clinical characteristics, the Kaplan–
Frontiers in Immunology | www.frontiersin.org 9
Meier curves analysis was conducted in different subgroups
with different age (≤60 and >60), gender (male and female),
and stage (I–IV) from the GEO-II LUAD group. The results
indicated that individuals in the low HAGS risk group had
significantly better OS than individuals in the high HAGS risk
group for all subgroups (p < 0.001, Figures 7A–H). These results
A B

D

E F

G

C

FIGURE 5 | Evaluation of risk score as an independent prognostic factor and construction of nomogram for predicting overall survival in LUAD patients. (A–D) Results of
the univariate and multivariate Cox regression analyses regarding OS in the TCGA and GEO. (E) Construction of the nomogram was based on sex, age, risk score, tumor
stage, T stage, and N stage in the TCGA cohort. (F) Calibration plot analysis indicated that the nomogram showed a high accuracy of survival prediction. (G) tROC
analysis demonstrated that the nomogram had the most powerful capacity for survival prediction by comparing with other clinicopathological factors.
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also demonstrated that the hypoxia-associated signatures had
reliable ability for predicting the OS of different subgroups,
regardless of the difference in age, gender, and stage.

Correlation of TMB With Hypoxia-
Associated Signatures in LUAD
We also checked for the somatic mutation in the Genomic Data
Commons (GDC) data portal of the National Cancer Institute
(https://portal.gdc.cancer.gov/) to investigate HAGS risk-related
mechanisms based on TMB in LUAD. A comparison of
cumulative mutant frequency between samples of the low- and
the high-HAGS risk groups showed that less somatic mutations
were observed in the high-HAGS risk group, including non-
synonymous and synonymous mutations (Figures 8A–C).
Concurrently, maftools analysis results showed that 22 mutated
more frequently in LUAD patients in the low HAGS-risk group,
including RYR2, KEAP1, PCDH11X, CSMD3, ADAMTS12, SI,
CACNA1E, ASTN1, LRP1B, RYR3, APOB, XIRP2, TNR, ZFHX4,
Frontiers in Immunology | www.frontiersin.org 10
PCLO, TP53, SPTA1, FAT3, CDH10, DNAH9, TTN, and FLG
(Figure 8D). Moreover, significant co-occurrences were observed
among these mutated genes (Figure 8E).

Relationship Between HAGS and the
Immune Activity
Correlation analyses between HAGS and the immune activity
revealed that the risk scores in 513 LUAD patients were positively
correlated with the levels of the APC co-inhibition, APC co-
stimulation, B cells, CCR, CD8+ T cells, checkpoint, cytolytic
activity, DCs, HLA, inflammation promotion, macrophages, major
histocompatibility complex (MHC) class I, neutrophils,
parainflammation, pDCs, T-cell co-inhibition, T-cell co-stimulation,
T-helper cells, Tfh,Th1 cells, tumor-infiltrated lymphocyte (TIL), and
Treg (p < 0.01, Figure 9). The Spearman correlation of different
immune cells revealed that the expression levels of checkpoint was
positively correlated with the levels of infiltrating CCR, T-cell co-
inhibition, andTIL, respectively; theexpression levelsof inflammation
A B

D E F

G IH

C

FIGURE 6 | Difference analysis of the distribution of HAGS risk score in different TNM stage (A–D), age (G), gender (E, H), and survival status (F, I). Statistical
difference of three or more groups was compared by the Kruskal–Wallis test and that of two groups was compared by the Wilcoxon test.
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promotion was positively correlated with the levels of CD8+ T cells;
TILwas positively correlatedwith theT-cell co-stimulation (r≥ 0.90).
Those genes with strong correlations may also be functionally
correlated, and future studies about hypoxia could incorporate them
into existing knowledge.

Based on the ssGSEA,we further compared the enrichment scores
of 16 types of immune cells and the activity of 13 immune-related
pathwaysbetweenthe low-andhigh-riskgroups intheTCGAcohorts.
Frontiers in Immunology | www.frontiersin.org 11
The comparison of the immune activity level between high- and low-
risk groups in the TCGAdataset revealed that the high-risk subgroup
generally showed lower activity of immune-related pathways and had
lower levels of infiltration of immune cells, such as type I interferon
(IFN) response, Th2 cells, cytolytic activity, MHC class I, T-cell co-
stimulation, Th1 cells, CD8 T cells, parainflammation, Treg,
checkpoint, inflammation promotion, and APC co-inhibition, than
thoseinthelow-riskgroup(Figure10,p<0.05),whereasonlythelevels
A B

D E

C

FIGURE 8 | Hypoxia-associated signatures were related to TMB. (A–C) Association between all mutation counts, synonymous mutation counts, non-synonymous
mutation counts, and HAGS risk score and their distribution in the low and the high HAGS risk groups. (D) Forest plot of genes mutating differentially between the
low and the high HAGS risk groups. (E) Interaction effect of genes mutating differentially between the low and the high HAGS risk groups. *p < 0.05; **p < 0.01; ***p
< 0.001; ****p < 0.0001.
A B D

E F G IH

C

FIGURE 7 | Kaplan–Meier survival analyses of the HAGS risk score in different subgroups. (A–I) LUAD patients in the low-risk group showed a more promising OS
than the high-risk group in all subgroups (p < 0.001).
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of type II IFN response, B cells, macrophages, and mast cells in the
high-risk group were significantly higher than those in the low-risk
group, suggesting that the HAGS presented an excellent consistency
with the immune activity.

Drug Sensitivity Analysis of Hypoxia-
Associated Gene
Based on the analysis of the correlation between 10 hypoxia-
associated genes and drug sensitivity, significant correlation was
found between the expression levels of the 10 genes and drug
sensitivity (p < 0.001, Figure 11). The higher the expression of
FBP1, the stronger the drug sensitivity of fulvestrant, raloxifene,
and LEE-011 (p < 0.001). The higher the expression of SDC4, the
weaker the drug sensitivity of oxaliplatin, ifosfamide, carmustine,
estramustine, etoposide, epirubicin, and nilotinib (p < 0.001).
SLC2A5 expression had a significant positive relationship with
the drug sensitivity of megestrol acetate and nandrolone
phenpropio (p < 0.001). The higher the expression of PKP1
and TPST2, the stronger the drug sensitivity of calusterone and
abiraterone, respectively (p < 0.001). The expression of KLF7 had
Frontiers in Immunology | www.frontiersin.org 12
a significant positive relationship with the sensitivity of
bleomycin and lenvatinib (p < 0.001).

Comparison of the Sensitivity to
Anticancer Drugs Between LUAD
Patients With Different Hypoxia-
Associated Risk Scores
To further explore the value of hypoxia-associated gene sets for
therapy in LUAD patient, we estimate the IC50s of the 28
common anticancer drugs for each sample through the
expression matrix of hypoxia-associated gene in each LUAD
sample from TCGA group. A comparison between the high- and
low-risk groups found that the IC50s of docetaxel and
camptothecin (Campt), two FDA-approved chemotherapeutics
for cancer treatment, were higher in patients with lower HAGS
risk score, which suggests that increased HAGS risk was
accompanied by increased sensitivity to docetaxel and Campt
(Figure 12). In other words, these two drugs may have the
therapeutic potential to treat LUAD patient with HAGS
high risk.
FIGURE 9 | Correlation between HAGS and immune cells infiltration. The correlation between risk score and specific immune cells is shown with solid lines; the line
color is related to the p-value. The square colors represent Pearson correlation coefficients between different immune cells; only the Pearson r ≥0.85 is displayed.
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Validation of the Expression of the HAGS
To evaluate differences in hypoxia-associated gene expression
at the protein level, images of immunohistochemistry (IHC)
staining of protein expression in normal tissues and LUAD
tumors tissues were downloaded from the HPA and analyzed.
As showcased in Figure 13, the protein expression level of five
of these genes (GAPDH , PGK1 , SLC2A5 , TPI1 , and
B4GALNT2) was prominently higher in LUAD cancers when
compared to the normal tissue (*p < 0.05, Figure 13).
Otherwise, four of these genes (TPST2, FBP1, KLF7, and
SDC4) were expressed at a low level, and no difference in
expression levels of PKP1were noted between normal tissues
and LUAD tumors tissues.

Validation Experiment of Clinical Samples
From LUAD Patients at the Gene
Transcript Levels
Eventually, the expression level of 10 hypoxia-associated genes
was verified at transcript levels. It is heartening to note that the
expression level of all 10 hypoxia genes showed significant
differences at least two paired samples of three LUAD tissues
and the paired non-tumorous lung tissues (Figure 14).
Frontiers in Immunology | www.frontiersin.org 13
DISCUSSION

As the most commonly diagnosed histological type of lung
cancer, LUAD severely affects human health and possesses
both extremely high morbidity and mortality in clinic (27).
LUAD is the leading cause of cancer death worldwide, and its
incidence is increasing worldwide (28). Notably, even at an early
stage, LUAD patients also hold a high metastasis rate and present
different prognosis (29). Studies investigating LUAD-associated
genes may improve the prognosis, diagnosis, treatment, and
prognosis assessment of LUAD patients. In the last few
decades, a multitude of genes related to hypoxia have been
identified and studied in various cancers (30–32). However,
although numerous studies have explored the relationship
between hypoxia and tumor formation, the deep-seated
relationship between hypoxia-associated genes set and
prognosis of LUAD patients remains quite limited.

In the present study, we developed a new HAGS (HAGS) by
integrating four machine learning algorithms to predict clinical
outcomes and therapeutic responses in LUAD patients, followed
by performing internal and external validation for its
performance in TCGA and GEO groups, respectively. Our
results demonstrate that HAGS, as an independent prognostic
A

B C

FIGURE 10 | Landscape of immune cell infiltrations in the low and high TME risk groups. (A) The heatmap shows the normalized scores of immune cell infiltrations.
Blue represents cells with lower infiltration, and red represents cells with higher infiltration. (B, C) The statistical difference between the two groups was compared by
the Wilcoxon test. *p < 0.05; **p < 0.01; ns, not significant. In the lower panel, mutation status of TP53, KRAS, and EGFR; gender, survival;
TNM stage; and stage were annotated.
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factor, had a considerable effect on predicting the OS of LUAD
patients. LUAD patients in the high HAGS risk group presented
worse OS, lower TMB, and lower immune activity. Moreover, we
revealed that the hypoxia-associated gene had a strong statistical
association with the drug sensitivity of multiple FDA-approved
drugs and had potential therapeutic value for LUAD patients
based on the chemotherapeutic response prediction. Finally,
validation studies on the expression levels of 10 hypoxia-
associated genes were further analyzed to comprehensively
confirm the reliability of selected gene set.

Unlike most previous studies that only use one single machine
learning approach, our study established HAGS by integrating four
different machine learning approaches to maximally improve the
accuracy of our model. Finally, 10 hypoxia-associated genes (TPST2,
SDC4, KLF7, SLC2A5, TPI1, FBP1, B4GALNT2, PGK1, PKP1, and
Frontiers in Immunology | www.frontiersin.org 14
GAPDH) were identified and combined as HAGS. Among these 10
hypoxia-associated genes, only PGK1 and GAPDH are well-known
hypoxia-regulated genes; the hypoxia-based function of PGK1 and
GAPDH have been adequately validated in lots of studies (33–36).
Tyrosylprotein sulfotransferase 1 and 2 (TPST-1 and TPST-2) are
both responsible for the catalysis of tyrosine sulfation of chemokine
receptors, such as CXCR4 (Refs 93, 95, 96, 97, 98, 99) (37), it has
previously been demonstrated that the TPST 1 expression was
significantly associated with lymph node metastasis and the TNM
stage in patients with lung cancer and may be a negative prognostic
biomarker of lung cancer (38, 39). However, the studies depicting the
function of TPST2 in cancer are extremely rare, so that the screen of
this gene in our study indicates that its in-depth investigation in
LUAD or other cancers should be performed to elucidate its
underlying mechanisms. Sulfate proteoglycan syndecan-4 (SDC4)
FIGURE 11 | Correlation between HAGS and drug sensitivity analysis.
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is an important member of Syndecans (SDCs) family, which is a
family of transmembrane heparan sulfate proteoglycans (HSPGs)
ubiquitously expressed on cell surfaces in mammals and plays a
critical role in cell adhesion, migration, proliferation, differentiation,
and angiogenesis through independent and growth factor mediated
signaling (40). It has already been demonstrated that the SDC4
exhibited multiple functions in tumor pathogenesis and progression
(41), but the in-depth knowledge about SDC4 is still very limited. For
example, recently, Yang et al. for the first time identified SDC4 as a
direct anti-hepatocellular carcinoma (HCC) cellular target of bufalin
in inhibiting cell proliferation, invasion, and angiogenesis (42). These
indicated that the functional importance of SDC4 in tumors,
especially its roles in hypoxia, still needs more studies. Krüppel-
like factor 7 (KLF7) is a member of the KLF family of zinc finger
transcription factors and has antioncogenic functions in multiple
cancer, such as human oral squamous cell carcinoma (OSCC) (43),
glioma (44), gastric cancer (45), endometrial cancer (46), ovarian
cancer (47), and non−small cell lung cancer (48). There is evidence
that KLF7 and hypoxia work together to influence cell apoptosis, but
it is not yet fully understood how they will act together to affect
tumor development and progression (49). SLC2A5, which promotes
lung adenocarcinoma cell growth and metastasis by enhancing
fructose utilization, was proven to be overexpressed in LUAD, and
the expression was associated with prognosis (50). The result of IHC
staining from the HPA also demonstrated that the protein
expression of SLC2A5 was significantly overexpressed in LUAD
tumors tissues compared to the normal tissues (Figure 13C).
However, the regulation of SLC2A5 in lung cancer has not been
fully elucidated, especially when hypoxia is involved (50). TPI1
Frontiers in Immunology | www.frontiersin.org 15
(triosephosphate isomerase 1) was overexpressed in various types
of cancers and might be induced by hypoxia in pan-cancer (51).
FBP1 (fructose-1,6-bisphosphatase) is known as a rate-limiting
enzyme in gluconeogenesis, which is an important process in cell
energy metabolism. The association between FBP1 expression status
and hypoxia had just been found in recent years, and relevant
research is very limited (52). Tumor-hypoxia-related studies that are
directly relevant to B4GALNT2 and PKP1 in hypoxia are few and
far between.

Previous studies did not investigate these 10 hypoxia-related
genes as a signature to predict the clinical outcomes of LUAD
patients. A majority of these 10 hypoxia-related genes are involved
in the complex regulation of progression in LUAD or other cancers.
Considering the complexity of the genetic network, tumor
progression is more likely to depend on the systematical
interaction network based on a group of critical hypoxia-related
genes rather than a single one. Therefore, the HAGS, that is, a
comprehensive gene set combining 10 hypoxia-related genes,
exhibited a powerful predictive prognostic capacity for LUAD
patients. Univariate and multivariate Cox regression analyses both
indicated that the HAGS was an independent prognostic factor in
LUAD patients, more importantly, independently of age, gender,
and stage (Figure 7). In addition, the independent and robust
prognostic performance of HAGSwas also confirmed by integrating
the risk score and clinicopathological factors to construct a
nomogram, which could be used to monitor the clinical outcomes
of LUAD patients (Figure 5).

Recently, TMB is an emerging biomarker and has proved to be a
potential and effective biomarker for independently predicting
A B

FIGURE 12 | Estimated drug sensitivity in LUAD patients with high and low HAGS risk. (A) The 28 common anticancer drugs may have therapeutic potential for
LUAD patient. (B) The difference in the IC50s of 30 common antitumor drugs between the high- and low-risk groups was compared by using the Wilcoxon signed-
rank test. **p < 0.01; ns, not significant.
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response to immunotherapy (53), but the effect and the prognostic
role of the TMB on outcomes varied dramatically across cancer
types (54, 55). Emerging pieces of evidence showed that higher
TMB tends to form more new antigens, making tumors more
immunogenic, improving clinical response to immunotherapy and
prolonging the overall survival (56–58). This is in perfect agreement
with our result that patients in the low-HAGS risk group showed
more somatic mutations (Figures 8A–C), strong immune activity
(Figure 10), and better OS (Figures 3B, E). However, there were
also studies showing the opposite, finding that high TMB was
associated with worse prognosis (55, 59).
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Recently, it was found that the drug responses and effect
were influenced by hypoxia (60). Consistently, we found that
the expression of certain hypoxia-associated genes had a
significant positive relationship with the sensitivity of
multiple drugs (Figure 11). In addition, we found a
significant difference in IC50s of two anticancer drugs
(docetaxel and camptothecin) between the high- and low-
risk groups (Figure 12) by taking an integrative approach to
analyzing the expression matrix of hypoxia-associated gene
and the IC50s of the 28 common anticancer drugs in each
LUAD sample. These signs suggested that hypoxia may exert a
A B D E
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C

FIGURE 13 | Comparison of hypoxia-associated gene expression at the protein level. From top to bottom, panels (A–J) represent biodistribution, IHC staining of
protein expression in normal tissues and LUAD tumors tissues, and comparison of expression levels between normal tissues and LUAD tumors tissues for each
gene, respectively. (A) GAPDH. (B) PGK1. (C) SLC2A5. (D) TPI1. (E) B4GALNT2. (F) TPST2. (G) FBP1, (H) KLF7, (I) SDC4. (J) PKP1. ***p < 0.001; ns, not
significant, p > 0.05.
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significant influence on drug sensitivity through the
modulation of hypoxia-related pathways or genes, and more
attention is require to study the effects of hypoxia on
drug therapies.
CONCLUSION

In summary, we developed a new hypoxia-associated gene
signature (HAGS) by integrating four machine learning
algorithms to predict clinical outcomes and therapeutic
responses in LUAD patients, followed by performing
internal and external validation for its performance in the
TCGA and GEO groups , respect ive ly . Our resul ts
demonstrate that HAGS, as an independent prognostic
factor, had a considerable effect on predicting the OS of
LUAD patients. LUAD patients in the high HAGS risk group
presented worse OS, lower TMB, and lower immune activity.
Moreover, we revealed that the hypoxia-associated gene had
a strong statistical association with the drug sensitivity of
multiple FDA-approved drugs and had potential therapeutic
value for LUAD patients based on the chemotherapeutic
response prediction. Finally, to comprehensively confirm
the reliability of selected genes, validation studies on the
expression levels of 10 hypoxia-associated genes were further
analyzed at protein level and transcript levels.
Frontiers in Immunology | www.frontiersin.org 17
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FIGURE 14 | The expression level of 10 hypoxia-associated genes were verified at transcript levels by using three paired samples of LUAD tissues and the paired
non-tumorous lung tissues. Sample1, Sample2, and Sample3 were collected from three different LUAD patients; each sample was used to detect 10 hypoxia-
associated genes simultaneously. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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