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Stem-like T cells and niches:
Implications in human health
and disease

Linglu Yi and Li Yang*

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical
School, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
Recently, accumulating evidence has elucidated the important role of T cells

with stem-like characteristics in long-term maintenance of T cell responses

and better patient outcomes after immunotherapy. The fate of TSL cells has

been correlated with many physiological and pathological human processes. In

this review, we described present advances demonstrating that stem-like T (TSL)
cells are central players in human health and disease. We interpreted the

evolutionary characteristics, mechanism and functions of TSL cells. Moreover,

we discuss the import role of distinct niches and how they affect the stemness

of TSL cells. Furthermore, we also outlined currently available strategies to

generate TSL cells and associated affecting factors. Moreover, we summarized

implication of TSL cells in therapies in two areas: stemness enhancement for

vaccines, ICB, and adoptive T cell therapies, and stemness disruption for

autoimmune disorders.

KEYWORDS
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Introduction

Physiologically, stem cells are responsible for tissue regeneration (1). They exist in

multiple tissues, such as skin (2), cardiac muscle (3), lung (4), central nervous systems (5),

intestine and blood (6, 7). In tumor, cancer stem cells (CSCs) sustained the heterogeneity

of tumor cell populations (8, 9). Since hematopoietic stem cells (HSCs) are insufficient to

support the high turnover of antigen-specific T cell for long-lasting immunological

memory, which persisting for a lifetime without re-exposing to the antigen stimulation

(10, 11). In 2001, Fearon’s team proposed stem cell-like properties of T cells to maintain

T cell memory (12). Like HSCs, memory T cells also show some stem-like features like

asymmetric T lymphocyte division (ASD) (13, 14). Possibly, the T cell population is

originated from memory stem T cells.

Akin to stem cell in somatic tissues, these T cells generated and maintained T cell

heterogeneity (14, 15), and shared a core transcriptional signature with HSCs (13).
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Recently, significant development can be seen in revealing the

features and functions of stem-like T cells and how they can be

harnessed to improve therapeutic outcomes (14, 16–

31) (Figure 1).

The TCF1-positive stem-like T cells, differing from TSCM

cells, have been found in chronic immune model. These stem-

like T cells are memory-like progenitor exhausted T cells. They

are essential to maintain the immune response of T cell and

determine therapeutic effects of PD-1 antibody (31).

Traditionally, niche is defined as a specific microenvironment

that contains intrinsic an extrinsic cues for stemness retaining and

continuous division (32).

Niche provides a spatial associations, which surrounded by

extracellular matrix, cytokines and chemokines, which are

produced by stroma, are essential for cellular homeostasis,

self-renewal or differentiation (33). Integrins are essential to

regulate the interaction of stem cell with surrounding niches,

and mediate stem cell location and motion. Depending on

contacting via integrin, stem cells receive cues from niches to

sustain their activities (34–39). Bone marrow provides physical

and chemical confinement to keep anatomic structure of the

stem cell niches (40–42). But there is no direct evidence to prove

that it similarly serves as a TSCM cell niche.

Particularly, increasing evidence has shown that T cells need

niches to maintain their long-lived memory and effectively

respond to immunotherapy (40, 43). Further studies

demonstrated that secondary lymphoid tissues (lymph nodes

(LNs) and spleens etc.) provide homeostatic cues from

fibroblastic reticular cell niches for TSCM cells (44). These

organs are specialized to support immune cells in antigen

presentation, initial activation and proliferation (45, 46). In

triple negative breast cancer (TNBC) patients, stem-like T

lymphocytes against tumor have been found to residue in

tumor-draining lymph nodes (TDLNs) (47). TDLNs, tertiary

lymphoid structures and other intra-tumoral niches have been

demonstrated to house CD8 positive stem-like T cells (48–50).
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In this review, we describe emerging findings demonstrating

the characteristics of subset of stem-like T (TSL) cells, mainly

including stem-like memory T (TSCM) cells and stem-like

progenitor exhausted T cells. We highlight how they exist and

functionalize for human health and disease. We further

demonstrate the potential signaling pathways that maintain

stemness of T cells. Moreover, we discuss the import role of

distinct niches and how they affect the stemness of TSL cells.

Furthermore, we also outlined currently available strategies to

generate TSL cells and associated affecting factors. Finally, we

envision how to confer stem cell-like properties to T cells that

might be used for immunotherapies.
Origin and hallmarks of stem-like
T cells

Origin of stem-like T cells

Stem-like T cells (TSC) are a subpopulation of mature T cells

that own self-renewal potential and can generate progenies by

asymmetric division. These stem-like T cells exist in

differentiating and even in exhausting process (Figure 2). The

strength and duration of stimulatory signals decides the fate of

naïve T cells: transform to Effector (TEFF) or exhausted (TEX)

T cells.

Responding to antigen stimuli, naïve T cells differentiated

into memory T cells, like central memory T (TCM) cells and

effector memory (TEM) T cells and terminally, into TEFF cells

(51) (Figure 2A). The CD62L+ CCR7+ TCM cells were considered

to display stem cell-like phenotypes and functions among all

memory T cells (12). Later in mice model, a new group of

memory T cells were discovered with more stem cell-like

attributes in comparison with traditional TCM cells. Similar to

naive T cells, these memory T cells have a similar

CD44lowCD62Lhigh phenotype. Moreover, they are a new Sca-
FIGURE 1

T cell stemness: milestones and key discoveries in the last 12 years (14, 16–31). TM, T memory cells; TSCM, T memory stem cells; HTLV-1, human
T cell lymphotropic virus type 1; CAR, chimeric antigen receptor; LCMV, lymphocytic choriomeningitis virus; TDLN, tumor-draining lymph node.
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1+ Bcl-2+ IL-2Rb+ CXCR3+ T cells subset (16, 57). These T cells

were named memory stem T (TSCM) cells.

CD8+ TSCM cells are also found in humans, which highly

express c-KIT indicating stemness, expel cellular toxins by

ABCB1 (58). More recently, other studies have demonstrated

highly expressed b-catenin as molecular clue to human CD8+

TSCM cells (16, 59). Therefore, TSCM cells can be regarded as

stem-like memory T cells. Upon acute antigen stimulation, naïve

T cells may differentiate into TSCM cells, TCM cells or TEM cells

after antigen clear. In virus infection condition, TSCM cells, TCM

cells and TEM cells can be found in latent or resolved

infection (60).

However, primed T cells would differentiate into terminal T

exhausted (TEX) cells upon chronical antigen stimulation (52).

The exhausted PD-1 positive T cells are divided by

differentiation hierarchy marked by their PD-1 expressing

level, including less-differentiated PD-1intermediate T cell that

are able to respond to PD-1 blockade, and terminally
Frontiers in Immunology 03
exhausted PD-1 high T cells, which have inefficient function

(27, 53, 61). Jolanda Brummelman et al. conducted scRNA-seq

and found that these stem-like T cells do not exhibit typical

properties as seen in circulating TSCM cells (28).

These stem-like CD8+ T cells, which undergo TOX-driven

epigenetic changes, are progenitor exhausted T cells co-

expressing TCF1,PD1,TOX and CXCR5 (52–56) (Figure 2B).

Indeed, these stem-like CD8+ T cells are subset of exhausted

T cells. But they differ from exhausted T cells by the expression

of TCF-1 Under chronic antigen stimulation, Tex cell

population can be generated independently of TCF-1-

expressing Tpex cells, but they would be replaced by new Tex

cells derived from TCF-1+exhausted T cells progenitor T cells,

which continuously activated, proliferated and differentiated

into Tex cells (60). Some researchers demonstrated the

development relationship among different exhausted T cells

(62, 63). There are four subsets of exhausted T cells

distinguished by expression of Slamf6 and CD69, and the four

subsets were defined as progenitor 1 (Slamf6+CD69+; Tex
prog1),

progenitor 2 (Slamf6+CD69-; Tex
prog2), intermediate (Slamf6-

CD69-;Tex
int), and terminal (Slamf6-CD69+; Tex

term).Among

them, the Tex
prog1 cells are stem-like progenitor exhausted T

cells we mentioned above, which had potential to generate all

other three subsets of exhausted T cells. Tex cells transited from

Tex
prog1 to Tex

prog2 to Tex
int and to Tex

term,accompanied by

changes of TCF1,TOX, T-bet and Eomes expressions (from

TCF1hiToxhi to TCF1intToxhi to TCF1negT-bethiToxint and

finally to TCF1negT-betloToxhiEomeshi). Further, Yao et al.

emphasized the role of transcriptional repressor BACH2 for

stem-like T cells to maintain their stem-like feature (64). But the

mechanism about how stem-like cells prevent terminally

exhausted cell fate is not well understand till now. There is

still much to do to address this issue.
The hallmarks of stem-like T cells

TSCM Cells
According to Lugli’s depiction (65), TSCM cells are generated

with stem-like proprerties like strong proliferation potential and

multipotency under healthy homeostatic conditions. These cells

can rapidly generate progeny that produce granzyme and other

cytokines. Besides, they express naïve T markers-CD62L and

CCR7, and self-renewal markers- TCF1 and LEF1.

Stem-like T cells exhibit long-term persistence and the

ability to renew to generate more differentiated cells. To

monitor the persistence of these cells, genetically engineered T

cells have been infused into the host, in order to easily trace these

infused cells as antigen-experienced cells over time. Based on

this approach, TSCM cells have demonstrated decades of

persistence in patients who suffer severe combined

immunodeficiency (adenosine deaminase -deficient form) (20).

Further studies demonstrated a strong correlation between TSCM
FIGURE 2

Developmental trajectory of CD8+ T cells toward effector (TEFF)
and exhausted (TEX) CD8+ T cells in response to different
antigen stimulation conditions. Stem-like T cells emerge during
the T cell differentiation. (A) When antigen clear and stimuli
cease, activated T cells differentiate into memory stem cell-like T
cells (TSCM), central memory (TCM) T cells or effector memory
(TEM) T cells in terms of signal strength (51). (B) Induced by TOX-
based epigenetic regulation, TSCM cells become stem-like
progenitor exhausted T cells co-expressed TCF1, PD1, TOX and
CXCR5. These stem-like exhausted T cells then become TCF1-

PD1+TOX+CX3CR1+ transitory exhausted T (TTRANS) cells, which
give rise to terminally exhausted (TEX) T cells (52–56).
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cell numbers and enhance d immune reconstitution capacity and

longevity in hematopoietic stem cell transplantation (HSCT)

models and chimeric antigen receptor T (CAR-T) cell therapy

(66, 67).

To track individual transgenic T-cell clones, TCR-a/TCR-b
labeling and viral integration can be used to classify according to

the patient’s infusion product and T-cell differentiation

phenotype during long-term follow-up. Similarly, in patients

infected with simian immunodeficiency virus (SIV), TSCM cells

can be tracked for up to 70 days at high levels after infection (68).

In another study, the number of TSCM cell types gradually

increased in HIV-1 patients receiving antiretroviral therapy

(ART). After treatment, terminally differentiated effector (TTE)

cells shrank more than TEM cells and TSCM cells (19). After all,

these studies prove that human TSCM cells have long-term self-

renewal capacity and pluripotency.

Another feature of stem-like T cells is that they are also able

to produce more differentiated progenies (69). Upon acute

antigenic stimulation, TSCM cells directly transformed from

naive T cells and further differentiated into TCM, TEM, and

terminally differentiated effector T cells (23, 70–72). Pais

Ferreira et al. found that stem cell-like TCF7high CD8+ T cells

possess a central memory function and can quantitatively

generate TCM cells (73). In fact, only naive T cells and TSCM

cells were able to produce all memory T cell subsets (17, 19, 21,

51). Therefore, TSCM cells are a memory T cell subset sharing

some phenotypes with naïve T cells.

Identification of TSCM cells from other T cells
subset

Gattinoni’s group have been done a serial of studies to

generate and identify TSCM cells (16, 17, 74, 75). They

illustrated that TSCM cells are genetically similar to naïve T

cells, showing only 75 differently expressed genes compared with

naïve T cells. But they differed from naïve T cells by expression

of CD95 and IL-2Rb, and performing memory T cells functions,

including low levels of T cell receptor rearrangement excision

circles, replicative history, rapid acquisition of effector functions

(IFN-g, IL-2, and TNF-a production) upon antigen re-challenge.

On the other hand, TSCM cells differ also differed from

conventional memory T cells with enhanced self-renewal

and multipotency.

There were more TSCM cells retained their input phenotype

than TCM cells did, indicating enhanced self-renewal capacity of

TSCM cells. Researchers have demonstrated increased fraction of

effector functional T cells from TN cells to TSCM cells to TCM cells

to TEM cells (17). Besides, TSCM cells could generate all

conventional memory T cells, including TCM cells and TEM

cells. On the contrary, TCM cell could not generate TSCM cells.

They further testified increased proliferation and survival of

TSCM cells compared with naïve T, TCM and TEM cells in vivo.

Verma et al. also confirmed that TSCM cells were distinct from

TCM and T naive cells and possessed the characteristics of an
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intermediated state between naïve T and TCM cells (76). They

demonstrated these TSCM cells had high FAO-mediated

metabolic fitness, self-renewability, high proliferation,

multipotent capacity and antigen recall responses. These TSCM

cells are different from naïve T cells in capacity of antigen recall

response. In other words, TSCM cells are cover function of both

naïve T and TCM cells. Based on their findings that TSCM cells

owned a higher degree of unmethylated CpG sites at Tcf7 and

methylated CpG sites at Ifng and Prf1 sites, it can be reasonably

inferred that more TSCM cells may be superior to TCM cells in

stemness when compared with TCM cells.

Indeed, existing observations have provided some

experimental evidence for specificity of stem-like T cells

among all T cells. However, it may be not sufficient to

completely isolate this subset of T cells out of memory T cells

and defined as T stem cells. All unique function of stem-cell like

T cells is not completed proven by experiments. Further

experimental evidence is still needed to comprehensively dig

out all their unique function before an exact definition can

be made.

Stem-like progenitor exhausted T (Tpex) cells
According to Lugli’s depiction (65), TSCM cells are

generated with stem-like proprerties like strong proliferation

potential and multipotency under healthy homeostatic

conditions or acute antigen stimulation. While TSL cells

herein specifically refers to exhausted precursor T cells with

stem-like properties under the condition of chronic antigenic

stimulation. Therefore, compared with TSCM cells, TSLs are a

group of cells that are closer to exhausted T cells, and thus have

certain characteristics of exhausted cells including increased

expression of PD-1 and decreased secretion of TNF-a and

IFN-g (65).
TCF1 is the key factor to determine the recall expansion and

self-renewal of stem-like PD-1+ T cells (77). These cells also

express TIGIT, but not other negative regulators. Furthermore,

sustained TCR stimulation is needed for the differentiation into

terminal effector or exhausted T cells. Besides, conventional type

1 dendritic cells, CD28 co-stimulation signals, and the cytokine

IL-12 in tumors are needed for TIL re-activation under

treatment of immune checkpoint blockade, suggesting that

these factors are key regulators for PD-1+ TCF1+ progenitor

TILs. Besides, IL-27, c-MAF, PRDM1, NR4A1 and TOX support

the immune effect and inhibit potential. However, how these

factors affect less-differentiated PD-1+ TCF1+ T cells versus PD-

1+ TCF1- T cells should be directly evaluated. During T cell

priming, the expression level of TCF1 decides the fate of CD8+ T

cells: enter into memory T cell pool or differentiated effector cell

pool (16, 56, 73, 78–91).

CXCR5+exhausted CD8+ T cells play a key role in controlling

replication of virus in lymphocytic choriomeningitis virus

(LCMV)-infected mice (61). These CXCR5+ PD-1lo TIM-3lo

KLRG1hi T cells are less exhausted than their CXCR5-
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counterparts. This result suggests that CXCR5+ KLRG1+CD8+

PD-1lo TIM-3lo T cells may have stem cell-like properties. Based

on high-dimensional single-cell analysis, additional studies

demonstrated that these T cells retained signal networks

regulating stem cell-like properties and functions (28). Similarly,

other chronic viral infection studies also discovered

CXCR5+TCF1+PD1+ TIM3- T cells with stem-like features and

CXCR5−TCF1- PD1+ TIM3+ T cells with terminally differentiated

features (53, 54, 56). Therefore, CXCR5 may be another key

marker for stem-like progenitor exhausted T cells.

Galletti’s group had illustrated difference between fwo

subsets of stem-like CD8+ memory T cells progenitors (PD1-

TIGIT- subsets versus PD1+TIGIT+ subsets). PD1-TIGIT-

subsets were committed to functional progeny, while

PD1+TIGIT+ subsets were committed to dysfunctional

progeny (82). Acccording to their data about phenotype and

transcription charaters, these two subsets correspond to TSCM

cells and TSL progenitor exhausted cells as we described in this

paper. In order to fast distinguish TSL progenitor exhausted cells

and TSCM cells, we summarized serval key difference of them in

Table 1 (60, 65). Besides, as TSCM cells are functionally similar to

TCM cells, we also compared TSCM and TCM cells together in this

Table 1. As shown in this table, TSL progenitor exhausted cells

can be distinguished from TSCM cells mainly by the generation

condition. TSCM cells were generated under physiology

stimulation or acute antigen stimulation, while TSL progenitor

exhausted cells. Besides,TSL cells cannot perform high

proliferation unless treated by immune checkpoint blockade.

Besides, the effector progency derived from TSL progenitor

exhausted cells cannot produce Granzyme and express high

level of PD1. Additionally, TSL exhausted progenitor cells

maintained their survial independent of CD4+ T cell help,

while TSCM cells needed the help of CD4+ T cells. On the

other hand, although TSCM cells possessed most function that
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TCM cells also have, they can be differentiated from TCM cells by

enhanced stem-like properoties, such as proliferation potential.

In addition, TSCM cells are always CD45RA-positive, while TCM

cells are CD45RA-positive.
Effects of stem-like T cells on
human health and disease

Negative effects

When TSCM cells are abnormal and self-reactive, these T cells

may cause pathogenic effects (83). For example, CD4+ TSCM cells

may support viral replication and transcriptionally silenced

forms of infection in HIV-1 infections (84). Furthermore,

HIV-1 is able to use CD4+ TSCM cells as an extremely durable,

self-renewing viral reservoir that persists despite antiretroviral

therapy for up to approximately 277 months (85). Similar

conclusion is reached in patients with HTLV-1 infection.

HTLV-1 infected CD4+ TSCM cells can act as a cancer stem

cells contributing to the spread and preservation of malignant

cells infected by HTLV-1.

TSCM cells also exhibit negative effects in autoimmunity.

Aplastic anemia is regulated by autoreactive CTLs that target

hematopoietic progenitor cells. Compared with healthy people,

patients with aplastic anemia have increased frequency and

activation status of CD8+ TSCM cells. Furthermore, the growing

number of CD8 positive TSCM cells after immunosuppressive

therapy indicates bad prognosis (86). A recent genome-wide

association study further pinpoints the effect of CD4+ TSCM cells

in the autoimmune and other lymphoid diseases. It indicated that

the number of CD4+ TSCM cells indicates those susceptible

individuals to juvenile idiopathic arthritis or chronic

lymphocytic leukemia (87). Till now, it can be hypothesized that
TABLE 1 Comparison between TSCM,TCM and stem-like progenitor TEX cells (60, 65).

Conditions

Physiology
stimulation
Stimulation

Names

TSCM cells TCM

Proliferation
potential

+++ ++

Key markers CD45RA+CD62L+CCR7+CD27+CD95+ CD45RA-CD62L+CCR7+CD27+CD95+

Function Re-elicit effector function: granzyme (GZMB) and cytokine production;
Dependent of CD4+T cells help

Re-elicit effector function: granzyme (GZMB) and
cytokine production;
Dependent of CD4+T cells help

Chronic
stimulation

TSL progenitor exhausted cells

Proliferation
potential

Unleashed upon immune checkpoint blockade (ICB)

Key markers TOX+CCR7+CXCR5+TIM3-

Function Re-elicit effector function:mixed phenotype of effector cells (CCR7-GZMB-)
and exhausted cells(PD1+);
Dependent of CD4+T cells help
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self-renewal autoreactive TSCM cells may lead to long-lasting

inflammatory responses, which may explain the long persistence

of these diseases. But how TSCM cells affect autoimmune disease

must be investigated in dedicated studies. In general, TSCM cells,

especially CD4+ TSCM cells, play negative role in many virus-

induced diseases and autoimmune diseases. However, how TSCM

cells act in diseases like type 1 diabetes, thyroiditis and

autoimmune hepatitis is currently poorly understood.
Positive effects

TSCM cells are vital in maintaining long-term protection in

many acute and chronic infections (17, 19, 88, 89). However,

how these TSCM cells generate during immune response remains

unclear. It is difficult to dynamically study T cell activities in

human by the limitation of knowing exact timing of infection.

Active vaccination, especially smallpox and yellow fever

vaccines, offer the possibility to induce an immune response in

a supervised manner, are particularly suitable models for

primary acute viral infection in humans (90). Based on this,

further study has been made to entirely uncover how TSCM cell

form and maintain for a long time by using the YF vaccine as a

model system (19). In line with results on SIV infection in NHP

(68), YF-specific TSCM cells existed early after receiving vaccine,

and persisted at stable levels for decades (19). The frequency of

TSCM cells are responsible for continuously replenishing

exhausted effector T cells, so that to control persisting

infections (19, 27, 55, 91).

Notably, some researches reveal that TSCM cells are unable to

show positive effects in chronic viral and parasitic infections (88,

89, 92). However, TSCM cells are generally necessary for long-

term immune effect acute and chronic microbial infections. The

existence of SIV and HIV-1 infected TSCM cells is closely

correlated to the development of symptomatic immune

deficiency after virus infections (93, 94). In fact, SIV DNA

copies were found in CD4-positive TSCM cells of rhesus

monkeys, which normally exhibit AIDS-like clinical

manifestations when untreated. But in SIV-infected CD4+

TSCM cells of sooty mangoes (a group of NHPs), SIV DNAs

are not found. This group is more likely to be asymptomatic

carriers even when large number of virus can be detected in

circulation system (95, 96). Similar results are also found in

viremic nonprogressors, who have less HIV-1 DNA carried

CD4+ TSCM cells than ordinary patients. Despite their low

frequency, TSCM cells are pivotal to produce the circulating

CAR T cell pools substantially, and determine early anti-

leukemic responses in patients (97).

Current vaccines are often not efficient enough to induce

robust and long-term immunological effect, because they mainly

focus on induce CD8+ TEM cells other than TSCM cells (98, 99).

In fact, these T cell vaccines are inferior to vaccines that can

induce protective antibodies (100, 101). In order to improve
Frontiers in Immunology 06
efficiency of T cell vaccines, methods should be developed

considering induced stem or memory T cell pool at gene,

transcription or metabolism levels (102).

Indeed, small number of TSCM cells can be induced after

natural infections or administration of cancer vaccine, despite

that effector cells are initially predominant cell subsets (103). On

the other hand, TEM and tissue-resident memory cells should be

reserved to guarantee immediate protection against re-infection

(104–106). Altogether, ideal vaccines should be designed to

reconstitute entire diversity of memory T cell subsets in vivo

(107, 108).
Stem-like T cells and niches

Niches in bone marrow

In adult immune system, TCM cell pool has been considered

as one cell subset with stem cell characteristics (16, 109). Bone

marrow is crucial in sustaining the persistence of memory T cells

(40, 41). However, it is unclear if the bone marrow plays role to

support TSCM cell as their niche.

Memory T cells were previously thought to share some

attributes with p HSCs (13). Further, the existence of two

distinct BM niches, including quiescence niches and self-

renewal niches, was found to be a main reservoir for memory

T cells. Together with similar niches in other organs, BM niches

maintain the pool of memory T cell (12, 110). Indeed, bone

marrow provides pivotal cues, such as IL-7, to support long-

lasting pathogenic CD4+ T cells (111). Most dividing T cells

reside in BM other than in spleen or LNs, despite that only less

than 2% memory CD8+T cells in the BM enter into proliferating

cell phase (112, 113). In bone marrow, such dividing is antigen-

independent and equality occurs among CD8+T cells that had

experimentally primed long before or those not express antigen

before (113, 114).

Notably, there are approximately 2% of the cells are cycling,

and BM memory CD8+T cell in BM affect state of HSCs (115).

Both HSCs memory CD8+T cells are regulated by two kinds of

BM niches: quiescence and self- renewal niches. Under

physiological conditions, quiescence niches not self- renewal

niches are predominant niches for both HSCs and memory

CD8+T cells. But in some diseases, like BM T cell cancer, self-

renewal niches might grow (116). Memory phenotype cells may

include both antigen-reactive T cells and bystander T cells (117).

The frequency of these two groups of memory T cells changes

according microenvironment. Based on this, someone observed

different Ki67 staining results in animals-primates and mice,

living in living in normal (118) or SPF environment (41).

In fact, the majority of memory T cells in bone morrow enter

into the periapical tissue and are replenished by newly coming

memory T cells. This conclusion was reached by many

researches through methods including bromodeoxyuridine
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(BrdU) pulse-tracking (110), in situ labeling (119), and

parabiosis experiment (120).

Taking together, the two niches in the BM not only maintain

sustained recirculating memory T cells for re-circulation without

antigen stimulation, but also quickly regulate division and

migration of these cells when encounter disturbing (121).

Upon perturbation, the number of BM niches grow to produce

more relevant factors, which not only support T cell survival and

growth but also attract more memory T cells into the self-

renewal niches. Of note, the BM CD8+T cell proliferate in

response to stimulators that boost innate immune effect.

Someone found that polyI:C alone could evoke proliferation of

memory CD8+T cell in vivo, particularly in the BM (122).
Niches in node

Connolly et al. found that T cells in tumor-draining lymph

nodes (TDLNs) may be precursors of TCF1+ T cells and

responsible for persistence of T cell responses in lung cancer.

Therefore, TDLNs serve as reservoirs for TCF1+ tumor-specific

CD8+ T cells throughout development (31). Similarly in triple

negative breast cancer, Researchers demonstrated tumor-
Frontiers in Immunology 07
draining LNs (TDLN) worked as niches for CD8+T

lymphocytes against lymph-draining antigen (48).

TSCM cell homeostasis may depend on cues from FRC-based

lymphatic niches (44) (Figures 3A–C). Lymph nodes (LNs)

depend on a number of stromal cells, such as fibroblastic

reticular cells (FRCs), to build lymphatic macroniches and

guide cell-cell interactions (141). These cells provide integrin,

chemokine, and cytokine cues to keep multipotency of

lymphocytes, while also give rise to differentiated cells upon

pathogenic challenge. Therefore, lymphatic niches must

maintain homeostasis so that to avoid inappropriate immune

responses and autoimmunity.

T cells mainly locate in cortex (including outer cortex and

inner cortex) of LNs (141). The outer cortex is rich in CD4+

follicular T helper cells, while the inner cortex, also known as the

T cell zone, is rich in both CD4+ and CD8+ T cells. Other

important cells in T cell zone include dendritic cells (DCs), and

fibroblastic reticular cells (FRCs) (142).

Medulla is innermost region, containing plasma cells and

macrophages (143). Specific receptors and ligands in niches are

important for niche development and maintenance. Once these

receptors and ligands were knockout, it may change lymph node

structure and alter cell localization and responses (144–146).
A

B
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FIGURE 3

Representative niches supporting the maintenance of stem-like CD8+ T cells. (A) Stem-like CD8+ T cells in lymphoid niches differentiate into
cytotoxic effector T cells, regulating tumor regression (44). (B) CCR7+ naïve CD8+ T cells localize and in the inner cortex (blue) and depend on
homeostatic factors from niche supported by fibroblastic reticular cell. Activation process of CD8+ T cells can be divided into three phases,
during which regulation signals are unleashed from surrounding, especially DCs (123–125). (C) After activation signals, T cells undergo
symmetric or asymmetric cell division. Daughter cells transform into TEFF or memory T cells depending on their distance to DCs (32, 126). (D)
Tumors with high dense of TILs show APC-niches, containing cDC1, cDC2 and helper CD4 T cells and stem-like CD8 T cells (50, 127–130). (E)
Comparisons of human and mouse cDCs found in TDLNs and tumors (43, 49, 50, 127, 131–134). cDC, conventinal dendritic cell; TDLN, tumor-
draining lymph node (129, 130, 135–140).
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Numerous key studies describe cell-cell interaction and their

behavior in lymph nodes upon immune stimulation (147–150).

In the paracortical macroniche, CCL21/19 secreted by FRC

regulate the movement of DCs and T cells in FRC network,

and FRC also produces survival and proliferation factors such as

IL-7 and IL-15 (151–153). The process of T cell activation can be

divided into three distinct phases according to T cells migration

patterns along the FRC network (154).

The fate of CD8+ T cell may be conferred by T-APC

interactions during early T cell activation (Figure 3B). APCs

can generate inflammatory factors like IL-12, IFN-g, and IFNaa,
which control function and activities of T cells (155). In the third

phase, CD8+ T cells transiently contact with APCs and received

additional signals such as IL-2, CD40, CD27, 4-1BB, OX40, and

TNFR2 (123–125). After activation signals, T cells undergo

symmetric or asymmetric cell division (126) (Figure 3C).

Moreover, the fate of T cells is tuned by CXCR3-mediated

signals. Based on CXCR3-CXCL9 axis, T cells move out of

center of lymph node and lose some stem-like memory

features (131).
Niches in tumor

Intratumoral tertiary lymphoid structures (TLSs) have been

found in breast, colorectal, lung, hepatocellular and pancreatic

cancers. TLSs might form through IL-22-, IL-23-, CXCL13-,

CXCL19-, CXCL21- and LTa1b2-mediated signals (132). TLSs

can be considered small ectopic lymphoid structures found

within the tumor stroma. They also contain both B cell zone

and T cell zone. TLSs may promote local antitumor immune

responses, because TLSs can be linked to higher CD8+ T cell

infiltration. Recently, several studies identified positive

correlation of B cells found in TLSs with good outcomes of

ICB treatment in patients (43, 133).

Contrary to tumors in absence of TLSs, metastatic

melanoma tumors that own abundant TLS have larger number

of less differentiated TCF1+ T cells (49). Dense APC niches were

found in patients with kidney cancer. These niches keep

phenotype of TCF-1 positive T cells in tumor (123). Jansen

et al. also discovered dense antigen-presenting-cell niches within

tumor to keep stem-like T cells, which support extensively

infiltrating of T cells (50).

Although further researches are needed to uncover the role

of these structures for effect on immunotherapeutic outcomes

and tumor-specific CD8+ T cell function, it can be inferred that

TLSs and APC niches are predictive markers of immune

checkpoint blockade (ICB). Additionally, it will be important

to develop immune-monitoring platforms to visualize the

immune response organization inside the tumor before or

during ICB therapy (134).
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Both CD4+ T cells and DCs play important role in

intratumoral niches to facilitate the response of CD8 T cells

(50, 127–130) (Figure 3D). These intratumoral niches are

immune cell rich structures, where stem-like CD8 T cells

locate). DCs are mainly composed of Conventional dendritic

(cDC) 1 cells (cDC1s) and cDC2s are two main types of DCs.

cDC1s have been widely investigated in many kinds of cancer

based on the fact that they can crossly present exogenous

antigens and are prodominately APCs to prime CD8+ T cells

(135, 136). Their function has been studied in many tumor

models, as they are able to improve anti-tumor effect of CD8+T

cells (129, 130). It has also been demonstrated that CCR7

promotes migration of cDC1s into TDLNs, where they present

tumor antigen to CD8+ T cells (137). Resonating these results,

other studies in human also observed that increased cDC1

associates with better overall survival in patients with cancers

(129). However, the proportion of cDC1s is much lower than

that of cDC2s within tumors (136, 138). And cDC2s

preferentially perform as CD4+ T cells initial activator relying

on MHC class II (MHC-II)-antigen complex (138). A recent

study revealed that DC2s are a heterogenous population and can

gain different properties (139). But their role in the tumor

response remains unclear. A recent study focused on the

interaction of cDC2s and CD8+ T cells within breast cancer.

They found the presence of CD14-expressing cDC2 in tumors

correlates with infiltration by tissue-resident CD8+ cells (140).

Thus, cDC1s may differ from cDC2s in their roles for activating

and differentiating antigen-specific CD8+ T cells in tumor. cDC1

population may mainly play its major role in TDLN, whereas the

cDC2 population may maintain intratumoral CD8+ T cell

responses. The different types of cDCs and their potential roles

in the antitumor response are summed up in Figure 3E (129,

130, 135–140). Together, the presence of APC-rich niches and

other intratumoral lymphoid structures (e.g. TLSs) may be an

explanation of long-lasting T cell immune response in chronic

antigen stimulation.
Mechanisms involved in T cell
stemness

Asymmetric T lymphocyte division (ACD)

Asymmetric T lymphocyte division (ACD) ACD is

speculated to be a mechanism for CD8+ memory T cell

development (126). Stem-like memory cells are derived from

one subset of daughter cells arising from ACD. Besides, TCM

cells arising from ACD have ability to replenish the CD8+

effector T cells population in response to antigen exposure (16,

109). Driven by IL-2Ra and T‐BET, TCM cells differentiated into

effector T cells (156, 157). T cells experience an effector fate

resulting from the asymmetric segregation. Similar to other stem
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cells, TSCM cells rely on activity of telomerase to keep telomere

length and replicative ability (158, 159). Thus, ACD can be

considered as a conserved mechanism giving rise to a subset of

stem-cell-like, less-differentiated memory precursor cells during

antigen stimulation (32).
Master regulators of stemness

Upregulation of TCF-1 in follicular helper T (TFH) cell may

induce expression of CXCR5 and PD-1. Meanwhile, TCF-1

enhances expression of BCL6, and further promotes early

differentiation (160, 161). TCF-1 further represses expression

of Blimp1 and IL2Ra, restricting differentiation toward TH1

pool (162, 163). Moreover, TCF-1 increases IL-6 responsiveness

by its enrichment at the IL-6 receptor gene locus. LEF-1 is also a

key regulator of T cells stemness, Both TCF-1 and LEF-1 is

essential to control early development of TFH cells (160, 164).

Additionally, TCF-1 keeps the expression of Achaete-scute

homologue-2 (ASCL2), which downregulates expression of

CCR7, leading T cell migration to the border of T and B cell

zone (165). Besides, TCF-1 also regulates TFH cell commitment

and growth by targeting costimulatory marker inducible T cell

co-stimulator (ICOS) (160). Among the TH cells subsets, TFH

cells are the main component to from memory pool to maintain

stem-like properties against stress in chronic infection (166,

167). These cells help B cell helper re-initiate function (168).

And TFH stemness was kept in the presence of TCF-1 (169),

which drives development of CD8+ central memory precursors

by increasing expression of Eomes.

TCF-1 plays similar role and relies on similar mechanism in

CD8+ TSCM and TFH cell differentiation to regulate cell stemness

and memory (170). For example, TCF-1 represses Tbx21 and

Prdm1 but induces Bcl6 expression in memory precursor CD8+

T cells. Further, TCF-1 is also a key player in regulating

sustaining immune memory and preserving T cell stemness

against chronic or acute infections (27, 75, 171). Loss of TCF-

1 hinders the generation of stem-like progenitor cells pool in

CD8+ T cells, resulting in rapid decrease of CD8+ T cells and

viral control impairment (53, 75). Together, TCF-1 plays a

shared role between TFH and central memory TSCM cells for

suppressing exhaustion and immunologic recall response.
Self-renewal pathways in T cells

A representative mechanism is shown in Figure 4, describing

how T cells devote to self-renewal character and keep stemness

on epigenetic level. In details, T cells also rely on WNT-b-
catenin signaling to obtain stemness (Figure 4). Once WNT

ligating to the Frizzled receptor and low-density lipoprotein

receptor related proteins (LRP), Dishevelled protein (DVL) is

activated to inhibit the formation of destruction complex
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(containing glycogen synthase kinase 3b (GSK3b) (172), which
mediates degradation of b-catenin by proteasome. Then, b-
catenin accumulates in cell nucleus, where it interacts with

different kind of DNA-binding partners, such as members of

the TCF and LEF family, leading chromatin remodeling and

transcription modulating. TCF7 and LEF1, the WNT signaling

transducers, which are found highly expressing in naïve T cells

and CD8+ TSCM cells and lost in more differentiated T cells, may

maintain the stemness of T cells (16, 109, 173, 174). WNT3A or

GSK3b inhibitors have been shown to promote the generation of

self-renewing TSCM and TCM cells, and inhibit the progressive

differentiation of naïve T cells (175, 176). In line in with these

findings, stabilizing expression of b-catenin also inhibited the

acquisition of effector T cell functions (177). In several studies

involved in infection, memory T cells were increased by

overexpression of TCF1 and b-catenin stabilization (178).

Contrarily, it could be found that TCM cells were depleted

when TCF-1 was knocked out, which increased expressing

levels of granzyme B and KLRG1 in T cells, but prevented the

establishment of long-term T cell memory (80, 179). And further

study revealed that TCF-1 regulate stemness depending on its

binding capacity to b-catenin (80).
FIGURE 4

Signaling pathways and epigenetics regulating self-renewal of T
lymphocytes (16, 80, 109, 172–181). WNT-b-catenin and
transducer and activator of transcription 3 (STAT3) signals are
mainly involved for the self-renewal regulation. Additionally, a
crucial role is played by chromatin modifiers, which can add
repressive histone marks to genes responsible for maintaining
stemness, or catalyze DNA methylation on genes regulating
differentiation.
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Interestingly, the center role of b-catenin in Wnt/b-catenin
pathway for memory regulation of CD8+ T cell was challenged

by some researches. Someone observed arrest of effector

differentiation by GSK3b inhibitors even without b-catenin
(175). In a mouse model, T cell memory and cell function

were not found to be impaired by T cell-specific deletion

(182). However, WNT reporter activity was not hindered by

b-catenin deleting, which suggested that there is compensation

mechanism for lack of b-catenin in WNT signals (183). Of note,

a 52 kDa fragment of b‐catenin, which mediates interaction with

TCF protein, retains some functionality (184). In addition, g-
catenin, which is also regulated by the destruction complex,

could substitute b-catenin to promote transcriptional activity of

TCF and LEF in cells showing b-catenin deficiency (185).

Other signaling involved in self-renewal of T cells include

STAT3, SMAD and Yes-associated protein (YAP). KLF4 and

KLF5 are the downstream genes of LIF-STAT3 signaling (186).

On the other hand, direct activating complex of LIF receptor and

GP130 recruit SHP2 to exciting MAPK signals. But this pathway

is mainly for transmitting pro-differentiation cues rather than

self-renewal signals (187, 188). Indeed, mature T lymphocytes

can achieve long-term memory by triggering STAT3 activity

based on environmental signals, which are triggered by IL-6, IL-

7, IL-15 and IL-21. For instance, IL-21 suppresses forming of

CD8+ TEFF cells, maintaining TSCM pool and supporting long-

term T cell survival (189). STAT3 might also limit cell

differentiation by activating KLF, which keep quiescence state

of cells and induce lymphoid-homing molecules expressing

(190, 191).

YAP has been found to enhance expression of ID protein

based on BMP-SMAD pathway, and induce binding of LIF to the

transcription factor TEA domain, resulting in expressing of

pluripotent genes. This process could promote ESC self-

renewal (192–194). As AKT/Hippo signals regulate YAP

negatively, activation of Hippo pathways by cytokine IL-2

resulted in YAP degrading and differentiation-associated

molecules expressing, further preventing CD8+ T cells

senescence in response to viral infection (195). In ESCs, YAP

may also enhance stemness associated transcriptional regulators,

including STAT3 and members of ID family, but further studies

are needed to confirm this mechanism in T cells.
Epigenetic regulation

Once activated, the effector related genes of TN CD8+ cells

are epigenetically regulated before they gain memory and

effector features. As such, CD8+ TSCM cells show some effector

features, while retain naive-associated transcriptional

programs fundamental for self-renewal and for homing to

lymphoid tissues (180). Therefore, epigenetic mechanisms are

essential to regulate the differentiation of self-reactive CD8+ T

cells. Epigenetic modifications not only regulate genes for
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silencing stemness, for example TCF7, SELL and CCR7, but

also genes for memory and effector-associated factors

(e.g. EOMES and TBX21) (180) (Figure 4). Furthermore,

methylated modification happens on chromatin (like

H3K9me3 and H3K27me3), resulting in suppression effect on

gene expression (181).

By profiling genome-wide DNA methylation in normal

versus autoimmune responses (196), Abdelsamed et al. built a

whole epigenetic profile was made for entire human CD8+T cell

population differentiation including TN, TSCM, TCM, TEM and

TEFF cells. Based on this profile, the CD8+ T cell differentiation

was further studied in type 1 diabetes exposed to chronic antigen

stimulation. They discovered There were 3,000 most variable

CpG loci found to distinguish different T cell subsets. In this

way, TSCM cells are found to be equally distant from both TN and

the TEFF cells.

In fact, autoreactive CD8+ T cells and TSCM cells show same

methylated features on differentiation-associated genes like

BATF, DNMT3A and TOX. TOX and BATF are responsible

for CD8+ T cell exhaustion and effector function specification

seperately (197, 198). These two factors are repressed by

methylation in both TSCM and beta cell specific CD8+T cells,

while they are free from methylation marks in more

differentiated CD8+ T cells. On the other hand, DNA

methyltransferase DNMT3A, which involves in self-renewal

regulation of stem cells, exhibits opposite methylation

patterns. Of note, researchers found a self-reactive CD8+ T cell

subset, which is clearly different from TN and TEFF cells, showing

a mixed epigenetic pattern. Indeed, both stemness-associated-

genes (such as LEF1, TCF7 and DNMT3A), and differentiation-

involved-genes (such as TBX21, INFG, PRF1 and GZMK)

opened, leading mixture of stem-like effector features in the

same cells. Above studies suggested that progressive

differentiation of CD8+ T cell is accompanied by great changes

in epigenetic modification, degree of gene loci openness, and

stem- and effector-like programming.
Strategies to generate and
investigate stem-like T cells

Generation methods

Multiple signal pathways, deriving from factors like TCRs,

cytokines, co-stimulatory receptors and growth factor receptors,

regulate the fate of effector and memory T cells (199–201). These

signal pathways can be regulated by many small molecular

drugs-mTOR inhibitor rapamycin (201), AMPK agonist

metformin (202), GSK3b inhibitor (16, 109) and AKT

inhibitor (203), can be quickly applied in new clinical trials.

Success clinical practice have been released in solid organ and

HSC transplantation, type 2 diabetes treatment, and

neurodegenerative diseases. Similar results can be achieve by
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using cytokines such as IL-7, IL-15, and IL-21 or by activating

proper costimulatory receptors like 4-1BB, OX40 and CD27 (21,

204). Combined these studies, it shows that pharmacological,

cytokine and costimulatory signal involved stemness can be used

to generate antigen-specific stem-like T cells (Figure 5A).

Metabolic tuning may be another way to confer stemness to

T cells, based on the fact that stem-like T cells own distinct

energetic and metabolic characteristics. For example, T cells with

stemness show a decrease in mitochondrial membrane potential

(DYm) (215, 216). Besides, metabolism is closely related to T cell

activity and fate (217).

TSCM cells usually show increased fatty acid oxidation, which

further increasing mitochondrial biomass and spare respiratory

capacity (218), while show decreased aerobic glycolysis, which

devoting to end-effector differentiation. Therefore, strategies

based on metabolic taming to directly confer these metabolic

signatures to T cell would help harness TSCM cells. Besides,

continuous TCR engagement should be control to help maintain

long-lived memory CD8+ T cells (219). Future study areas of

research getting deep insight into the global characterization of

the TSCM cell metabolome would lay the better foundation to

develop these strategies.

By inducing TSCM-specific transcription factors or

microRNAs, tumor-specific TEFF cell can be reprogramming to

display stem-like features (205, 206) (Figure 5B). This direct

reprogramming method has also been applied to convert specific
Frontiers in Immunology 11
mature cells to generate other tissues, such as neurons, heart and

liver, or stem-like blood progenitors (220–222).

Ideally, T cell can be de-differentiated into induced

pluripotent stem (iPS) cells by inducing expression of stem-

related transcription factors including OCT4, SOX2, KLF4 and

MYC, then iPS cells can be induced into TN cells by NOTCH

activation (207–210) (Figure 5C). Therefore, new group of less-

differentiated T cells can be re-differentiated from ESC, HSC and

iPS cells (211–214). However, the two-step method is now

impractical, because its efficiency is limited by low success rate

and long duration of reprogramming. Further studies are needed

to solve these problems.

TSCM cells have no unique marker. And they shared given

markers with TN and memory T cells. This indicates a limitation

to isolate pure TSCM cells with high yield for following studies.

To address this issue, Lugli et al. developed soring panels

containing CD95, CCR7, CD45RA, CD27, CD62L, CD127,

CD28 and CD11 (223).
Investigation methods for cellular
contacts promoting stem-like T cells

Given the potential of harnessing TSCM cells, there is much

work remained to be done about how cell-cell contact affect the

formation of these cells.
FIGURE 5

Strategies that might be utilized to generate stem-like T cells. (A) Progress of T cells differentiation toward effector T (TEFF) cell pool depends on
the strength of stimulatory signals. Differentiating progress of primed TN cells can be delayed or suppressed by targeted inhibitors (such as
mTOR, GSK3b, MEK, AKT inhibitor); or by using cytokines, such as interleukin‐21 (IL-21), interleukin-7 (IL-7), interleukin-15 (IL-15), or by using
proper costimulatory signal; or by taming metabolic modulators; or by curtailing TCR signaling (16, 21, 109, 201–204). (B) Direct reprogramming
methods using naïve- or stem-associated factors or miRNAs (205, 206). (C) A two-step induction method is shown. By enforcing expression of
OCT4, SOX2, KLF4 and MYC, terminal TEFF cells can be programmed into iPS cells, which are then re-differentiated into TN cells by inducing
NOTCH signals (207–214). GSK3b, glycogen synthase 3b; TN, naïve T; TEFF, TCM, effector T; iPS, induced pluripotent stem; OCT4, octamer-
binding transcription factor 4; SOX2, sex determining region Y BOX 2; KLF4, Kruppel-like factor 4.
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Recently, many new technologies have been developed to

reveal the relationship between transcriptional factors involved

in cellular contact and T cell fate. The most powerful of these

contains advances in imaging methods combine with new

transcription analyze. One approach to aiming to harness

interactions between T cells and DCs is achieved by targeting

specific dendritic cell populations (224). This strategies target

antigen to restrict presentation to a specific DCs type. The most

promising strategy for this purpose is targeting DC-expressed

molecules, such as CLEC-9A (expressed on cDC1s) and DEC-

205 (expressed on DCs and langerin cells), by antigen to the Fc

portion of an antibody heavy chain (224).

By targeting the two molecules with adjuvants, both CD4

positive and CD8 positive T cells show potent cellular responses

with strong humoral responses. While without adjuvants, the

responses are weak and regulatory T cells are activated (225).

Surprisingly, CLEC-9A without adjuvants also show CD4+ T

responses and humoral responses, which are stronger than DEC-

205 targeting without adjuvants (226, 227). The mechanism is

unclear about how these targeting strategies induce long-term

memory. It is seems that different selection of adjuvants may

show different results, which indicates that these strategies

are flexible.

NICHE-seq is the most suitable technology to determine cell

interactions (228). After dissociation of tissues, cells are

separated to identify components of niche, and then

investigated by single cell RNA-seq (scRNA-seq). Combined

with two-photon laser scanning technology, this method has

been used to CD4+T cell priming niche in response to viral

infection. Further combined with a ligand-receptor

bioinformatics analysis, this method widely revealed the

cellular interaction within a specific zone (229). This method

identifies conjugates of interacting cells before scRNA-seq

analysis. Following conjugate RNA-seq, the interacting

partners are bioinformatically separated. Applying these

approaches to a specific lymphoid niche uncovers what the

effects of cell interaction and inflammatory factors to T cell

differentiation. Labeling immune cell partnerships by a

proximity-dependent labeling system SorTagging intercellular

contacts (LIPSTIC), which crosses interfaces of cells, has been

developed to investigate CD40-CD40L interactions (230).

In order to study the interaction of ligand and receptors,

Staphylococcus aureus transpeptidase sortase A (SrtA) or tag

residue are usually used to modified them. When the interact,

Based on substrate transfer onto tagged receptor catalyzed by Srt

A, the interaction ligand and receptors can be tracked and

detected by flow cytometry. Based on this method, someone

developed a new method called FucolD, which relying on

enzymatic fucosyl-biotinylation, offers alternative choice to

label T cells in terms of cell interaction (231). Unlike LIPSTIC,

this method is a proximity-based labeling system, allowing

detection even without prior known receptor.
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Despite that TSCM cells possess superior antitumor response

and immune reconstitution capabilities, their rareness

and lack of unique markers poses a major hurdle to their

clinical application.

A panel was made to include optimal set of markers for

human TSCM cells identification (223). Thereby, pure TSCM cells

can be identified and separated with high efficiency and yield. It

is possible to apply this direct isolation method in clinical

application if this process can be completed under GMP grade

A condition. However, it requires GMP-grade equipment that

integrating with flow sorting function.

It is easier to generate TSCM cells from naive precursors.

After selected by magnetic beads, naïve T cells can be induced

with IL-15, IL-21 and IL-7, or in combination with small

molecular drug (e.g. GS3K GSK-3b inhibitor). These

conditions enabled the generation of large number of TSCM

cells, which meet clinical needs. A representative scheme

that illustrate how to produce and program clinical-grade

TSCM cells based on present technologies, is shown in Figure 6

(26, 75, 223).
Stem-like T cells associated theraies

Application in retroviral infections and
autoimmune diseases

CD4+ TSCM cells might be a new target in patients infected

with HIV-1 and HTLV-1. In the context of HIV-1 infection,

HIV-1-carried CD4+ TSCM cells serve as the source of the virus

in HIV-1-infected patients. Although patients received

antiretroviral therapy, these CD4+ TSCM cells continuously

provide progenies infected with HIV-1. There are some

essential factors determining self-renewing and expanding

abilities of TSCM cells. Therefore, these factors might be new

targets to reduce continuous existence of virus in CD4+ TSCM

cells. For example, targeting WNT-b-catenin pathway, which

regulates the homeostasis of TSCM cells (16), might reduce

frequency of long-lasting HIV-1-loaed TSCM cells (75) (Table 2).

Current pharmacological inhibitors for Wnt-b-catenin
targeting cancer stem cells can be also applied for eliminate

HIV-1 infected CD4+ TSCM cells (238). By nanoparticles or

aptamer-based targeting systems, it can be more precise to

deliver Wnt inhibitors or shRNAs to viral host cells (232, 233)

(Table 2). Based on similar strategies, TSCM cells can be

disturbed in HTLV-1infection followed by T cell leukemia, or

in autoimmune diseases.

In addition, ex vivo genetically modifying TSCM cells to make

them more resistant to pathogen factors should be another way

for the treatment purpose. For instance, knock-out of CCR5,

which determines the ability of the virus to enter into host cell

(239), therefore imitating the CCR5D32 mutation that make
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hosts resist to HIV-1 (234) (Table 2). Once these long-lasting

CD4+ T cells become intrinsically HIV-1-resistant, they could be

utilized to build long-term HIV-resistant immune system. Such

population of cells might be helpful to remit HIV-1 infection in

absence of drug treatment. Representative clinical trails

relating to the adverse effects of TSCM cells are listed in

Supplementary Table 1.
Strengthen stemness of T cells for
immunotherapy

TSCM cell type is a promising target to promote

immunotherapeutic strategies, because it shows several
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advantages: the robust proliferative potential, the extreme

longevity, and the potential to produce various types of the T

cells. Adoptive immunotherapy has really become a practical

option for cancer treatment (240, 241). Despite some success in

patients with advanced cancer, adoptive T cells are not robust

enough to induce adequate response, which underscores the

need for further improvements (240). Notably, experiments in

mice have demonstrated the role of CD8+CD45RA+CCR7+

TSCM cells for supporting long-lasting proliferation of CD19-

specific CAR T cells and T cells expressed suicide genes.

Similarly, transferring naïve-like CD62L positive T cell

population leading to increased number of long-lasting

activated T cells, which lead to robust and continuous tumor

suppression (16, 109, 242, 243).
TABLE 2 Overview of researches relating to TSCM-cell-based applications for human diseases (21, 21, 26, 75, 232–237).

Disruption Exploitation

Methods and techniques Targeting diseases Methods and techniques Targeting
diseases

• Wnt antagonists combined with nanoparticle
• shRNA targeting TCF7 combined with aptamer
technology

• Autoimmunity
• T cell leukemia
• T cell tropic
infections

• Isolation of naïve T cells
• In vitro TSCM programming
• Delivery of TSCM cell to patient
• Insertion of specific CAR or TCR
• Sensitization by APC loaded with virus-related
antigens
• Introduction of suicide-genes
• Edition of endogenous genes like CCR5

• Cancer
• Infectious diseases
FIGURE 6

Schematic representation of clinical stem cell memory T (TSCM) cells product and programming process (26, 75, 243). Naïve T (TN) cells were
then stimulated to transform to TSCM cells with IL-15, IL-21 and IL-7. To maximize the induction of TSCM, GSK-3b inhibitor can be used in
addition to the above cytokines. TSCM cells can be also isolated directly from PBMCs by a set of markers. Representative programming methods
include introducing exogenous genes like specific CAR, TCR and suicide genes, or directly editing endogenous genes. Requirements of GMP
grade for main procedures are indicated in the figure. PBMC, peripheral blood mononuclear cells, CAR, chimeric antigen receptor, TCR, T cell
receptor; GMP, good manufacturing practice.
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TCM cells induce stronger antitumor immunity than highly

differentiated TEM cells, and TSCM cells are more profound than

TCM cells (244). These robust TSCM cells can be generated in

vitro and used for clinical exploitation (21, 26) (Table 2).

Although it is not easy to isolate naive T cells, this step is

important to determine the therapeutic effect. Because the

differentiation progress of naive T cell would be promoted by

co-existed T cells at more differentiated status (245). Relying on

the developments in clinical cell-sorting technologies, it is a real

strategy to enrich specific cell subsets with high yield under GMP

condition (246, 247). The combination strategy of IL-7 and IL-

15 is ideal to produce TSCM cells without the need to redirect

their specificity. Based on this strategy, naive cell precursors can

be programed into tumor-specific, TCR-gene-edited, suicide-

gene-modified or virus-specific TSCM cells (21, 235,

248) (Table 2).

Additionally, IL-21 also has been used to restrain T cell

differentiation and keep their stemness (189), which is realized

by activating STAT3 signaling and sustaining the expression of

TCF7 and LEF1. A study reported that they induced CAR-

modified TSCM cells by use of IL-21 together with inhibitor

TWS119, which keep stability of b-catenin resulting in enhanced

expression of TCF7 and LEF1 (26). These induced CAR-T cells

perform metabolic features of TSCM cells (e.g. low glycolysis

and high spare respiratory capacity) (249). CAR-modified TSCM

cells can also be attractive for effective treatment of in the setting

of chronic virus infection like HIV-1 infection (236, 237)

(Table 2). Collective studies provide practical approaches for

the use of TSCM cells in clinical practice of immunotherapy

(250). Based on these approaches, it would be better to confer

tumor reactivity to circulating T cells with less-differentiated

features, other than directly select specific TILs at exhausted

status (251, 252). Overall, the approach that relying on cytokines

(such as IL-7, IL-15 and IL-21) is applicable to produce clinical-

grade adoptive TSCM cells. And antigen-specific TSCM

cells exhibit better clinical outcomes in immunotherapy

(Supplementary Table 1).

Methods for sorting of specific stem-like T cells also ensure

the yield and reproducibility of defined T cell products. Indeed,

Unselected PBMC population from individuals with different

age, pathogen and therapeutic treatment may show different

outcomes owing to varied amplification rate (253–255).

Moreover, the benefits of removing more differentiated T cells

were offset by simultaneous depletion of TN and TSCM

cells (256).

Several studies had successfully converted by infusing TSCM

cells derived from circulating CD8+ T cells, and it showed

robust cellular immune responses in the treatment of different

cancers such as non-small cell lung cancer, acute myeloid

leukemia and renal cell carcinoma (257–259). TSCM CAR-T

cells, which were less likely to become exhausted, exhibited
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stronger antitumor response in mice model of Raji-ffluc

lymphoma (260). Similar observation was achieved in yellow

fever-vaccinated patients, when a subset of antigen-specific

CD8+ T cells was found to display naïve-like phenotypes and

play protection effect over 25 years (261). Since TSCM cells are

responsible for long-lasting memory of immune effect, TSCM

may be an ideal target for prediction and improvement of

vaccine effectiveness. Combination use of HPV vaccine with

CD40 and TLR3 agonist produces increased number of CD8+

TSCM cells, mediating better therapeutic and preventive

effects (262).
Stem-like T cell and immune-checkpoint
blockade (ICB)

Despite the potential of ICB to induce long-term remission,

most patients fail to achieve durable clinical responses, even in

patients with metastatic solid tumors (263–265). Initially, the

role of ICBs was thought to rejuvenate exhausted or

dysfunctional tumor-infiltrating CD8+ T cells. However, to

date it is unclear whether dysfunctional tumor-specific TILs

can be reversed to activated state by ICB.

Conversely, it has been shown that exhausted CD8+ T cells

(TEX) acquired a steady epigenetic feature different from that of

TEFF cells and memory T cells that were minimally remodeled

after PD-L1 blockade (266). Preliminary studies have revealed

that increased expansion of lymphocytes in blood predicts

more potent ICB responses (267), and T cell responses to

ICB are derived from newly entered T cells from outside of

tumor (268).

In addition, amplification of T cells in blood of patients with

cancer can serve as a prediction marker for clinical response

against PD-L1 antibody (269). Other studies have shown that

tumor-reactive TILs are largely ineffective for ICB-mediated

resuscitation prior to ICB. Whether there is a specific

subpopulation of T cells determining the ICB responses is still

unknown. Other studies identified a subset of TCF1+ CD8+TILs

as target T cell group for ICB or vaccination treatment (77, 270).

Sade Feldman et al. proved the correlation between TCF1+ TILs

and enhanced response to ICB (271). But there is no evidence

that whether these cells display stable stem-like attributes or

not (272).

By scRNA and TCR sequencing, Li’s team studied tumor-

reactive TILs in melanoma patients (273). They found that the

intratumoral TCF1+ T cells include bystanders without tumor

reactivity. Several studies have identified stem-like TCF1+ TILs

in human tumors (28, 55, 77, 274). PDL1 blockade could induce

CD8+ T cells antitumor effect mediated by TDLNs-derived

stem-like PD1+ T cells, which interact with PDL1+ DCs. The

existence of PD1-PDL1 interaction in TDLNs other than with
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tumors predict better outcomes in patients with melanoma

(275). However, there may be some tumor-specific TILs that

are capable to respond to ICB: those recently entered less-

exhausted TCF1+T cells, or T cells that reside in intratumoral

niches (50), tertiary lymphoid structures (TLSs) (132, 133),

regions of antigen loss or specific metabolic niches (276).

Tumeh et al. found that more PD1+CD8+ TILs localized at

the margins of invasive tumors, where they interact with PD-L+

cells, are positively correlated with better ICB responses (277).

The relationship between the existence of TCF1+ TSL cells in

tumors and good prognosis may reflect the properties of these

tumors-they have hot TME to promote infiltration of T cells

without limitation of tumor antigen specificity. Such tumors

were more likely to promote tumor-reactive T cell infiltration

from the peripheral tissues, when treated with ICB. Collectively,

these studies suggest that the stem-like TCF1+PD1+ T cells in

tumor and peripheral compartment may determine ICB

responses. They are the source of differentiated T cells in

tumor (278). This enlightened researchers to find ways to

active and expand stem-like/progenitor exhausted CD8+T cells

in tumor in order to improve ICB efficacy. Some recent studies

have proven to improve anti-PD-1 efficacy by combining with

an alarmin HMGN1 peptide or anti-PD-L1 efficacy by

combining with cyclophosphamide and vinorelbine (279, 280).

These observations above solved an important question about

the source of intratumoral stem-like T cellsm that is, they were

mainly arised in LNs. Another import question is how they enter

the tumor. A recent study pointed out that the existence of

tumor-associated endothelial cells (TA-HECs) is essential to

recruit stem-like T cells into tumor. And ICB would increase

recruitement of stem-like T cells by increasing the maturation of

TA-HECs (281). But further studies are still needed to illustrate

this question.

On the other hand, ICB still have many shortcomings. Many

clinical trials have found that ICB can lead to systemic immune

disorders, and long-term treatment can also induce the

occurrence of autoimmune diseases (282). In addition, the

cessation of PD-1 inhibition may also lead to the enhancement

of pathogenic immune responses, which is likely correlated with

the loss of immune memory of CD8+ T cells (283). Memory

CD8+ T cells persisting in the body for decades, are antigen-

independent, pluripotent, and respond rapidly to secondary

aggression. In some chronic viral infections and tumors,

effector CD8 T cells alone are not sufficient to induce tumor

elimination, and long-lived memory CD8 T cells are required to

maintain sustained antitumor immunity. A few studies have

found that PD-1 inhibitors reduce memory T cells (284).

Therefore, how PD-1 affects memory CD8+ T cells deserves

further study. Surojit Sarkar’s team found that PD-1 signaling

can promote the development and homeostasis of long-lasting

memory CD8+ T cells by balance metabolic ways relying on
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glycolysis and fatty acid oxidation. PD-1 deficiency results in

memory T cells consumption (285). Although wide type T cells

and PD-1 positive T cells had similar numbers of memory

precursors during the early activation phase, PD-1-deficient T

cells had similar numbers of memory precursors during the

contraction and memory maintenance phases of CD8+ T cells.

Both CD8+ TEFF cell numbers were markedly reduced, resulting

in an approximately 100-fold reduction in final memory cell

numbers in both lymphoid and non-lymphoid regions. The

researchers re-stimulated these memory cells with antigen to

follow longitudinally in vivo secondary responses. After antigen

clearance, Loss of PD-1 impairs protection memory of effector T

cells and results in the decreased number of antigen-specific

cells. At the same time, the researchers also found that PD-1

signaling ensures the normal homeostatic renewal and

maintenance of memory CD8 T cells. These results all imply

that PD-1 is pivotal in the formation of long-time immune

memory of CD8+ T cells.
Conclusions and future directions

Current immunotherapeutic approaches are often inefficient

to control the progress of tumors, partly due to negative

regulatory factors in TILs and tumor microenvironment. The

important role of stem-like T cells has been underlined in recent

studies in terms of immunotherapeutic effect of cancer.

Therefore, it may take advantages of stem-like T cells to

improve antitumor effect, based on complete understanding of

how these specific T cells form, maintain and functionalize. We

summarized our view about sem-like T cells in Box 1.

Additional work highlights the important relationship

between several kinds of stem-like T cells and relevant

niches, for example, studying interaction between CD8+ T

cell and stroma, other immune-associated cells and cues

provided by lymphatic niches. However, traditional

methodology for studying T cel l local izat ion l ike

immunohistochemistry limit further investigation due to the

fact that the number of antibodies or fluorophores are limited

for each imaging. Besides this destructive method disrupt the

structure of tissue, losing spatial information of important

epitopes. A new technique called CLARITY has been

developed to implement antibody labeling and imaging

within intact organ (286, 287). Based on multiple staining

and visualizing of intact lymph node, it will be easier to

elucidate stem-like T cell localization signals and its

surrounding microenvironment.

Given the importance of niches to support stem-like T cells,

we summarized current knowledge about several specific niches

and their spatial location and environmental cues that maintain

stemness and promote differentiation. While the secondary
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lymphoid niches that imprint TSCM cells fate have been

illustrated, there is still much work left for further

understanding of intratumoral stem-like T cells and niches.

This is important and helpful to harness stem-like T cell for

therapeutic interventions and develop methods for stem-like T

cell generation; either to strength long-lasting T cell responses

against chronic infection or cancer, especially for enhancing ICB

treatment, or to amplify humoral responses.
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