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CD93 is a transmembrane receptor that is mainly expressed on endothelial

cells. A recent study found that upregulated CD93 in tumor vessels is essential

for tumor angiogenesis in several cancers. However, the underlying

mechanisms are largely unexplored. Our present research systematically

analyzed the characteristics of CD93 in tumor immunotherapy among

33 cancers. CD93 levels and co-expression of CD93 on cancer and stromal

cells were detected using public databases and multiple immunofluorescence

staining. The Kaplan-Meier (KM) analysis identified the predictive role of CD93

in these cancer types. The survival differences between CD93 mutants and WT,

CNV groups, andmethylation were also investigated. The immune landscape of

CD93 in the tumor microenvironment was analyzed using the SangerBox,

TIMER 2.0, and single-cell sequencing. The immunotherapy value of CD93 was

predicted through public databases. CD93 mRNA and protein levels differed

significantly between cancer samples and adjacent control tissues in multiply

cancer types. CD93 mRNA expression associated with patient prognosis in

many cancers. The correlation of CD93 levels with mutational status of other

gene in these cancers was also analyzed. CD93 levels significantly positively

related to three scores (immune, stromal, and extimate), immune infiltrates,

immune checkpoints, and neoantigen expression.. Additionally, single-cell

sequencing revealed that CD93 is predominantly co-expressed on tumor

and stromal cells, such as endothelial cells, cancer-associated fibroblasts

(CAFs), neutrophils, T cells, macrophages, M1 and M2 macrophages. Several
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immune-related signaling pathways were enriched based on CD93 expression,

including immune cells activation and migration, focal adhesion, leukocyte

transendothelial migration, oxidative phosphorylation, and complement.

Multiple immunofluorescence staining displayed the relationship between

CD93 expression and CD8, CD68, and CD163 in these cancers. Finally, the

treatment response of CD93 in many immunotherapy cohorts and sensitive

small molecules was predicted from the public datasets. CD93 expression

is closely associated with clinical prognosis and immune infiltrates in a

variety of tumors. Targeting CD93-related signaling pathways in the

tumor microenvironment may be a novel therapeutic strategy for

tumor immunotherapy.
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Introduction

Cancer remains the secondmost common cause of death in the

United States and remains a significant global public health threat

until now (1). Uncontrolled cell proliferation is mainly due to the

accumulation of genetic and epigenetic alterations, leading to cancer

formation (2, 3). Cancer occurs due to the synergistic action of

multiple carcinogens, such as chemical and physical carcinogens,

viruses, and bacteria (4, 5). There are only a few options for cancer

treatment, including surgery, chemotherapy, targeted drug therapy,

radiation and hormone therapy, stem cell transplant, clinical trials,

and immunotherapy (6–8). Despite rapid improvements in early

diagnosis and treatment in past decades, five-year survival rates for

many cancer types remain unsatisfied (9). The past decades have

witnessed tremendous developments in cancer immunotherapy,

one of the most promising fields for the future of cancer treatment.

Immunotherapy functions by inducing the immune system to

target the tumor and stroma cells via various xenoantigens,

ultimately enhancing the innate anti-tumor immune responses

(10, 11). In particular, checkpoint inhibitors in the tumor

microenvironment (TME) have been shown improve prognosis

for patients with advanced malignancies, including melanoma,

lymphoma, lung and bladder cancers (12, 13). A large number of

immune checkpoints have been discovered through public

databases according to the rapid development of high-throughput

sequencing technology (14–16). Validating the effectiveness of these

immune checkpoints through preclinical and clinical studies will

help significantly improve the prognosis of cancer patients.

Recent evidence indicated CD93 act as anew immune

checkpoint for immunotherapy in the TME (17–19). CD93 is

a transmembrane protein from the Group XIV C-Type lectin

family (20). It contains a short cytoplasmic tail, a C-type lectin

domain, a unique transmembrane like and a highly glycosylated
02
mucin like as well as a series of epidermal growth factor like

structural domains (21). CD93 plays a vital role in endothelial

cell-cell adhesion, cell migration, cell polarization, and

phagocytosis (22). Endothelial cell migration is essential for

angiogenesis and promotes the formation of new blood vessels

under physiological and pathological conditions (23, 24). In

addition, CD93 can regulate b1 integrin activation and

fibronectin fibril formation, thereby mediating angiogenesis

during tumorigenesis and growth. CD93 is expressed by

various cell types, such as myeloid lineage, platelets,

monocytes, microglia, and endothelial cells (25). CD93

expression levels in tumor blood vessels are associated with

poor survival in patients with high-grade astrocytic glioma (21).

Similarly, CD93-deficient glioma mice had significantly slower

intracranial tumor growth and improved survival than wild-type

mice. In addition, recent papers have shown that CD93 is a

prognostic marker for many malignant cancers and is involved

in immune responses in the TME during cancer immunization

(26, 27). However, the specific mechanisms of CD93 in tumor

immunity remain largely undiscovered. Thus, a comprehensive

assessment of the predictive value of CD93 in other cancers and

the co-expression and role of CD93 on tumor and stromal cells

in the TME require further elaboration.

Therefore, in this paper, we systematically checked the

prognostic and immune role of CD93 in pan-cancer based on

public databases like TCGA, CCLE, and GTEX. Meanwhile, the

survival difference between CD93 mutant andWT, CNV groups,

and methylation were explored. Moreover, the co-expression of

CD93 on various cell types in the TME were verified through the

online dataset, single-cell sequencing analysis, and multiple

fluorescent staining. Furthermore, the immunotherapy

effectiveness and sensitive drugs targeting CD93 in these

cancers were predicted.
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Materials and methods

Data collection and preparation

The transcriptomic data of CD93 in pan-cancer cohorts were

obtained from The Cancer Genome Atlas (TCGA; http://

cancergenome.nih.gov) (28) and Genotype Tissue-Expression

(GTEX; https://gtexportal.org/home/) (29) databases. The cell

lines data were collected from the Cancer Cell Line Encyclopedia

(CCLE; https://sites.broadinstitute.org/ccle/) (30) dataset. The

single-cell sequencing data were collected from the Gene

Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)

database, including BLCA (GSE145137), BRCA (GSE75688 and

GSE118389), CHOL (GSE125449), COAD (GSE81861), HNSC

(GSE103322), KIRC (GSE121636 and GSE171306), LIHC

(GSE125449), OV (GSE118828), PRAD (GSE137829), SKCM

(GSE72056), and STAD (GSE183904). The Single Cell Portal

platform was used to collect the scRNA-seq dataset of GBM

(SCP50 and SCP393, http://singlecell.broadinstitute.org). The

Genome Sequence Archive (GSA) database was used to collect

the scRNA-seq dataset of PAAD (CRA001160, https://ngdc.cncb.ac.

cn/gsa/browse/CRA001160). The BioProject (#PRJNA591860)

database was applied to collect the scRNA-seq dataset of LUAD.
CD93 prognostic and immune
role identification

The Kaplan-Meier (KM) curve was applied to analyze the

overall survival (OS) and disease-specific survival (DSS). The

immune landscapes of CD93 were analyzed by the SangerBox

(http://sangerbox.com/) and immunedeconv package. The immune

score is a sophisticated tissue-based assay that defines the score by

precisely quantifying and identifying T lymphocytes infiltrating the

tumor in specific regions. The stromal score, which captures the

presence of stroma in the TME, uses expression data for specific

gene signatures associated with the stromal component of the TME

to predict levels of infiltrating stromal cells. Estimated scores are

used to infer tumor purity in the TME. These scores were calculated

by the SangerBox using the ESTIMATE algorithm. The correlation

between CD93 levels and other gene mutation status in these

cancers was analyzed by the MuTarget dataset (https://www.

mutarget.com/analysis?type=target) (31). The Gene set variation

analysis algorithm (GSVA) (32), Kyoto Encyclopedia of Genes and

Genomes database (KEGG; https://www.genome.jp/kegg/) (33, 34),

and HALLMARK database were applied to identified enriched

signaling pathways. The survival difference between mutant and

WT, CNV groups, and methylation were analyzed by the GSCA

dataset. The TIDE (http://tide.dfci.harvard.edu) and TISMO (http://

tismo.cistrome.org) websites were used to analyze the

immunotherapy and gene treatment responses of CD93 in these

cancers.. The Gene Set Cancer Analysis (GSCA; http://bioinfo.life.
Frontiers in Immunology 03
hust.edu.cn/GSCA/#/), CCLE, and CellMiner (https://discover.nci.

nih.gov/cellminer/) (35) datasets were used to predict the sensitive

small molecule drugs. The correlation of CD93 expression with

treatment response in breast cancer, OV, GBM, and colorectal

cancer was predicted by the ROC Plotter (http://www.rocplot.org/

site/index) (36, 37).
Single-cell sequencing analysis

The R package (Seurat) were applied for BRCA and STAD

data integration and quality control (38). Dimensionality

reduction using Principal Component Analysis (PCA).

Visualization of CD93 expression by R packages (Vlnplot,

Dimplot, and Featureplot). The FindClusters function was

applied to cluster the cells together. Identification of tumor

cells by the R package (infercnv and copycat). Visualization of

dimensionality reduction with UMAP functions.
Multiple immunofluorescence staining

Multiple immunofluorescence staining was performed as

previously described (39, 40). The primary Abs were CD8

(Mouse, 1:3000, Proteintech), CD68 (Rabbit, 1:3000, AiFang

biological), CD93 (Rabbit, 1:200, Thermo Fisher), and CD163

(Rabbit, 1:3000, Proteintech). PV6001 (horseradish peroxidase-

conjugated secondary antibody, ZSGB-BIO, China) was the

secondary antibody, and the tyramide signal was amplified to

TSA [FITC-TSA, CY3-TSA, 594-TSA, and 647-TSA (Servicebio,

China)]. Image analysis and positive cell quantification were

performed by Caseviewer (C.V 2.3, C.V 2.0) and Pannoramic

viewer (P.V 1.15.3). Negative controls excluded the primary Ab.

We obtained the tissue microarray (HOrg-C110PT-01) from the

Outdo Biotech company (Shanghai, China), and the ethics

were approved.
Statistical analysis

The R package calculated the optimal cutoff of CD93

(survminer). A student's t-test (normally distributed data) and

Kruskal-Wallis's test (non-normally distributed data ) compared

CD93 expression in the cancer and corresponding samples,

respectively. Meanwhile, the log-rank test was applied to

explore the prognostic role of CD93. All tests were bilateral,

and P< 0.05 was set as statistically significant.
Expression and prognostic value of CD93

The flow chart designed in this paper is shown in Figure 1.

Firstly, we used the CCLE, TCGA, and GTEX databases to
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explore the CD93 levels in the cancers and their counterparts.

Data from the CCLE database showing CD93 expression in

tumor cell lines, of which the top three cell lines were AML, B

cell ALL, and leukemia (Figure 2A). Elevated mRNA levels of

CD93 in tumor samples compared to normal controls in GBM,

PAAD, STAD, CHOL, LGG, LIHC, KIRC, acute myeloid

leukemia (LAML), HNSC, TGCT, and SKCM (Figure 2B;

P<0.05). Conversely, decreased mRNA levels of CD93 in

tumor samples compared to normal controls in COAD, KIRP,

ACC, CESC, UCEC, BRCA, BLCA, LUAD, PRAD, KICH,

THCA, LUSC, and UCS (Figure 2B; P<0.05). Meanwhile, we

verified the protein levels of CD93 in our tumor microarrays

through immunofluorescence staining (Figure 2C). Data showed

that CD93 protein levels were upregulated in the tumor samples

compared to control (pericancerous) samples in penile

squamous cell carcinoma (PSCC), laryngeal squamous cell

carcinoma (LSCC), and TGCT. Meanwhile, CD93 protein
Frontiers in Immunology 04
levels were decreased in the tumor samples than in control

samples in THCA, UTUC, BLCA, and CESC. The CD93 protein

levels were also expressed in ovarian serous papillary

adenocarcinoma (OPV) and OV.

In addition, the prognostic role of CD93 in these cancers was

explored using the KM algorithm. Results show that CD93 has a

good value in predicting OS (Supplementary Figure 1A) and

DSS (Supplementary Figure 1B) in multiple cancers. Low CD93

mRNA levels were associated with longer OS in BLCA, CESC,

COAD, ESCA, GBM, UCEC, UVM, KIRP, LAML, LGG, LIHC,

READ, LUSC, MESO, OV, STAD, and THCA (Supplementary

Figure 1C; P<0.05). Conversely, low CD93 mRNA levels were

associated with shorter OS in PCPG, LUAD, SARC, HNSC, and

KIRC (Supplementary Figure 1C; P<0.05). In addition, low

CD93 mRNA levels related to better DSS in BLCA, COAD,

ESCA, LGG, LUSC, KIRP, MESO, OV, UCEC, and UVM, and

related to poor DSS in HNSC, LUAD, KIRC, SARC, and PCPG
B

C

D

A

FIGURE 1

The flow chart of this study. *p < 0.05, **p < 0.01, ***p < 0.001.
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B

C

A

FIGURE 2

CD93 levels in tumor samples and counterparts. CD93 mRNA expression in cancer cell lines from the CCLE dataset (A). CD93 mRNA expression in
cancer and normal samples from the TCGA and GETX datasets (B). CD93 protein expression in cancer and control samples in tumor microarrays (C). *p
< 0.05, ***p < 0.001, NS, no significant differences.
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(Supplementary Figure 2A; P<0.05). A summary of CD93

expression in pan-cancer and its association with prognosis is

shown in Supplementary Figure 2B.
Mutation analysis of CD93 in pan-cancer

Furthermore, we analyzed the survival difference between

CD93 genome mutants and the WT group in these cancers

through progression-free survival (PFS), disease-free interval

(DFI), OS, and DSS analysis (Figure 3A). The DSS and OS in

the CD93 mutant group significantly differ from the WT group

in OV (Figure 3A and Table S1; P<0.05). CD93 copy number

variation (CNV) and survival analysis results showed significant

differences in OS for LGG, UCEC, READ, LIHC, SARC, and

LUAD (P<0.05); in PFS for LGG, UCEC, ACC, LIHC, and KIRC

(P<0.05); in DSS for LGG, UCEC, LUAD, KIRC, THCA, STAD,

READ and BRCA (P<0.05); in DFI for ACC, UCEC, DLBC,

LGG and BLCA (Figure 3B and Table S2; P<0.05). CD93 RNA

expression is associated with methylation in almost every type of

cancer except OV (Figure 3C and Table S3; P<0.05). CD93 high

methylation group showed a significant difference with the low

methylation group in DSS and OS for UVM, KIRP, LGG, SKCM,

and KIRC (Figure 3D and Table S4; P<0.05).

The MuTarget dataset showed that CD93 expression was

associated with several gene mutational states in CESC,

including MUC4, TENM1, PLXNC1, LATS1, and CACNA1C.

The wild group of these genes has more CD93 expression than

the mutant group (Figure 4A; P<0.01). In COAD, the mutant

group of KIAA1217, GLG1, PAM, PFAS, and NCOR1 has more

CD93 expression than the wild group (Figure 4B; P<0.001). In

LGG, the mutant group of EGFR, HMCN1, PTEN, and LRP2

has more CD93 expression than the wild group, while the wild

group of IDH1 has more CD93 expression than the mutant

group (Figure 4C; P<0.01). In LUAD, the wild group of

ZNF804B, SLITRK3, NELL1, HERC2, and IFT172 has more

CD93 expression than the mutant group (Figure 4D; P<0.01). In

LUSC, the wild group of CTNND2, JAK2, LAMA5, and

RASGRP3 has more CD93 expression than the mutant group,

while the mutant group of CHD5 has more CD93 expression

than the wild group (Figure 4E; P<0.01). In SKCM, the wild

group of PKHD1, KIAA1551, CAPN13, and CASR has more

CD93 expression than the mutant group, while the mutant

group of MARVELD2 has more CD93 expression than the

wild group (Figure 4F; P<0.01). In STAD, the wild group of

PKD1, HDAC4, GABRG2, TRRAP, and TRPA1 has more CD93

expression than the mutant group (Figure 4G; P<0.01). In

UCEC, the wild group of LPCAT4, MRO, IRS4, ZNF251, and

CCDC18 has more CD93 expression than the mutant group

(Figure 4H; P<0.001). In BLCA, the wild group of FGFR3, SSPO,

and KHDRBS2 has more CD93 expression than the mutant

group, while the mutant group of KDM5B has more CD93

expression than the wile group (Supplementary Figure 3A;
Frontiers in Immunology 06
P<0.01). In SARC, the wild group of AHNAK and CCDC168

has more CD93 expression than the mutant group

(Supplementary Figure 3B; P<0.01). In LIHC, the wild group

of CTNNB1, KMT2D, and AXIN1 has more CD93 expression

than the mutant group, while the mutant group of COL6A3 has

more CD93 expression than the wile group (Supplementary

Figure 3C; P<0.01). In OV, the mutant group of AOC2,

DNAH11, ZNF835, and PLEKHG1 has more CD93 expression

than the wild group (Supplementary Figure 3D; P<0.01). In

HNSC, the wild group of AJUBA has more CD93 expression

than the mutant group (Supplementary Figure 3E; P<0.01). In

multiple myeloma, the wild group of SLC22A3, PTOV1, GRM2,

and NBPF10 has more CD93 expression than the mutant group,

while the mutant group of CXXC1 has more CD93 expression

than the wile group (Supplementary Figure 3F; P<0.001).
Immune characteristics of CD93 in the
tumor microenvironment

Next, to clarify the immune characteristics of CD93 in the

TME in these cancers, we explored the relationship between

CD93 expression and three scores (immune, estimate, and

stromal) in 33 cancers using the ESTIMATE algorithm

through the SangerBox website. CD93 expression positively

correlated with immune scores in almost all cancers, except

DLBC, KIRC, TGCT, THCA, and THYM (Supplementary

Figure 4; P<0.05). CD93 levels were strongly correlated with

estimate scores for almost all cancers except TGCT and THCA

(Supplementary Figure 5; P<0.01). High CD93 expression was

strongly associated with high stromal scores in all cancers

(Supplementary Figure 6; P<0.01). In addition, six immune

infiltration algorithms were applied, including EPIC, TIMER,

QUANTIAEQ, xCell, MCPCOUNTER, and CIBERSORT

(Supplementary Figure 7) to analyze the correlation between

CD93 and stromal cells in these cancers. The results indicated

that CD93 was closely associated with these stromal cells in the

TME of these cancers. Results indicated that CD93 is closely

related to these stromal cells in the TME in these cancers.

Especially, high CD93 levels were positively correlated with the

expression of endothelial cells, T cells (CD8+ and CD4+),

neutrophils, myeloid dendritic cells, macrophages, B cells, T

cell regulatory (Tregs), M1 and M2 macrophages, monocytes,

and hematopoietic stem cells in almost all cancers. On the

contrary, the expression of CD4+ T cell (Th1 and central

memory), T cell follicular helper, B cell plasma, and activated

NK cell was negatively correlated with CD93 levels.

Neoantigens, a group of tumor-specific antigens generated

by tumor cell mutations in the TME, have the potential to

become valuable targets for tumor immunotherapy (41, 42). The

expression of neoantigens kept a close correlation with CD93

levels in BRCA, STAD, CESC, THCA, and LGG (Supplementary

Figure 8; P<0.05). Moreover, we studied the correlation between
frontiersin.org
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CD93 and other classical immune checkpoints in these cancers.

Results showed that CD93 expression was closely associated with

the levels of several immune checkpoints in many cancers,

including NRP1, LAIR1, CD28, CD200R1, HAVCR2, CD276,

VSIR, and CD86 (Supplementary Figure 9; P<0.05).
Functional analysis based on
CD93 expression

Many immune-related pathways based on the GSVA

algorithm were significantly positively correlated with CD93

expressions in these cancers, such as lymphocyte activation

involved in immune response, fibroblast activation and

proliferation, fibroblast migration, fibroblast growth factor
Frontiers in Immunology 07
receptor signaling pathway, T cell extravasation, response to

macrophage colony-stimulating factor, macrophage cytokine

production, macrophage and macrophage-derived foam cell

differentiation (Figure 5A; P<0.05). These signaling pathways

play an irreplaceable role in tumor immunity in the TME,

especially in the infiltration and activation of T cells, CAFs,

macrophages, and mast cells. Additionally, the top three

negatively enriched pathways were focal adhesion, vascular

smooth muscle contraction, and leukocyte transendothelial

migration (Figure 5B; P<0.001), while the top four positively

enriched pathways were Huntington’s disease, proteasome,

Parkinson’s disease, and oxidative phosphorylation analyzed

from the KEGG database (Figure 5C; P<0.01). KRAS signaling

up, UV response DN, and complement were the top three

negatively enriched pathways (Figure 5D; P<0.001), while
B

C

A

D

FIGURE 3

Survival analysis of CD93 in pan-cancer from the GSCA database. Survival difference between CD93 mutant and WT (A). CD93 CNV and survival (B).
Correlation between CD93 methylation and mRNA expression (C). Survival difference between CD93 high and low methylation (D).
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B

C

D

E

F

G

H

A

FIGURE 4

The correlation between CD93 expression and gene mutation status. CESC (A), COAD (B), LGG (C), LUAD (D), LUSC (E), SKCM (F), STAD (G), and
UCEC (H).
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DNA repair, MYC targets V2, MYC targets V1, and oxidative

phosphorylation were the top four positively enriched pathways

analyzed from the HALLMARK database (Figure 5E; P<0.05).
Relationship between CD93 and tumor
and stromal cells analyzed by the single-
cell sequencing and multiplex
immunofluorescence staining

Then, we investigated the relationship between CD93 and

tumor and stromal cells in the TME of these cancers, including

GBM, HNSC, KIRC, LUAD, PAAD, PRAD, BLCA, BRCA,

CHOL, COAD, LIHC, OV, SKCM, and STAD (Figure 6 and

Supplementary Figure 10). Interestingly, microglial cells, M1

and M2 macrophages, macrophages, B cells, NK cells, astrocyte,

neurons, neoplastic, oligodendrocyte, CAFs, T cells, endothelial

cells, monocyte, neutrophils, smooth muscle cells, epithelial,

cancer cells, stellate cells, endocrine cells, acinar cells, ductal

cell type 1, TEC, and HPC-like were found to express CD93 in

these cancers.

Furthermore, we performed multiplex immunofluorescence

staining to identify the relationship between CD93 and CD8

(marker for T cells), CD68 (marker for macrophages), and

CD163 (marker for M2 macrophages) in these cancers. CD8 is

labeled in pink, CD68 is labeled in red, CD163 is labeled in

green, CD93 is labeled in rose red, and DAPI is labeled in blue

(Figure 7M). WHOIII gliomas have higher CD93 expression

than WHOII gliomas (Figure 7A). CD93 was found to be closely

related to CD8 in GBM (Figure 7B), UTUC (Figure 7C), and

PRAD (Figure 7L). CD93 was found to be closely related to

CD68 in UTUC (Figure 7C), THCA (Figure 7F), CESC (SCC)

(Figure 7G), PSCC (Figure 7I), OPV, and OV (Figure 7J), TGCT

(Figure 7K), and PRAD (Figure 7L). In addition, CD163 was

found to be closely related to CD93 expression in BLCA

(Figure 7D), CESC (Figures 7G, H), and TGCT (Figure 7K).

LSCC expressed more CD93 levels than the control (Figure 7E).

Interestingly, CD93 protein levels appear to be higher in GBM

than in LGG.
Prediction of tumor immunotherapy
value based on CD93 expression

Finally, to systematically clarify the underlying value of CD93

as an immunotherapy target in these cancers, we predicted the

immunotherapy response and sensitive drugs from the public

databases (Figure 8). Based on the predictive role of classical

biomarkers for response outcomes and OS in human

immunotherapy cohorts, we calculated the biomarker

correlation of CD93 by comparing it to these classical

biomarkers. Of the total 25 immunotherapy cohorts, CD93

alone showed an AUC above 0.5 in 8 immunotherapy cohorts
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(Figures 8A, C). The predictive value of CD93 was higher than the

B. Clonality with AUC value above 0.5 in seven immunotherapy

cohorts. CD93 had the same predictive value as the TMB with an

AUC value above 0.5 in 8 immunotherapy cohorts. The predictive

value of CD93 was lower than the T.Clonality, MSI score, IFNG,

and CD8, TIDE, and CD274, with AUC values above 0.5 in 9, 13,

17, 18, 18, and 21 immunotherapy cohorts, respectively. CD93

significantly predicted immunotherapy response in 4

immunotherapy cohorts, where responders were more likely to

have high CD93 levels (Figures 8B, D). The ROC Plotter dataset

analyzed the prediction of response to therapy targeting CD93 in

breast, OV, GBM, and colorectal cancer. Results showed that the

AUC of treatment with trastuzumab in breast cancer was 0.646

(Supplementary Figure 11A; P<0.05). The AUC of treatment with

capecitabine in colorectal carcinoma was 0.677 (Supplementary

Figure 11B; P<0.05). Therapeutic responses of CD93 in

mechanistic follow-up experiments in the core dataset,

immunotherapy dataset, CRISPR Screen dataset, and immune-

suppressive cell types were predicted from the TIDE

website (Figure 8E).

Then, we predicted the sensitive small molecule drugs

through CTRP (Figure 8F) and GDSC (Figure 8G) datasets.

The top five sensitive drugs were BRD-K30748066,

isoliquiritigenin, teniposide, PHA-793887, and CR-1-31B

based on CD93 expression from the CTRP dataset (Table S5;

P<0.05). The top five sensitive drugs were VNLG/124, XMD14-

99, CH5424802, TG101348, and 5-Fluorouracil based on CD93

expression from the GDSC dataset (Table S5; P<0.0001). The top

three sensitive compounds were PF2341066, PD-0332991, and

L-685458 based on CD93 expression from the CCLE dataset

(Table S6; P<0.05). Triostin a, sb-253226, toxin. delta.53l,

pederin, and euserotin were top-five sensitive compounds

based on CD93 expression from the CellMiner dataset. In

contrast, 2-[(3,4-dicloro) anilino]-3-phenyl-5,7-diamino

quinoxaline, janus red, juncusol deriv (compound 1), 1,4-

benzenediamine (9ci), n-butyl-n’-phenyl-, and 1-benzyl-3-

hexadecyl-2-methylimidazolium chloride were top-five

sensitive compounds based on CD93 methylation from the

CellMiner dataset (Table S6; P<0.05). These small molecules

have been found to play anti-tumor roles in several cancers. For

example, CR-1-31B, a synthetic rocaglate and a potent eIF4A

inhibitor, significantly reduced the growth and apoptosis of

neuroblastoma and gallbladder tumor cells (43, 44). PHA-

793887, a novel and potent inhibitor of CDK, showed

promising efficacy in the human ovarian A2780, colon HCT-

116, and pancreatic BX-PC3 cancer xenograft models (45, 46).

VNLG/124 exhibited potent anti-proliferative effects in both

hormone-insensitive/drug-resistant breast cancer cell lines and

the hormone-insensitive PC-3 prostate cancer cell lines (47).

Computational models for drug sensitivity prediction indicated

XMD14-99 could act as a kinase inhibitor to exert efficacy in

several cancer cell lines (47). Excitingly, our results indicated

that CD93 expression is associated with prognosis. These results
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FIGURE 5

Functional analysis based on CD93 expression. Correlation analysis of CD93 from the GSVA algorithm (A). Top three negative (B) and top four
positive (C) enriched pathways using the KEGG database. The top three negative (D) and four positive (E) enriched pathways using the
HALLMARK database.
Frontiers in Immunology frontiersin.org10

https://doi.org/10.3389/fimmu.2022.907182
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2022.907182
B

C

D

E

F

A

FIGURE 6

Single-cell sequencing analyzing the co-expression of CD93 on tumor and stromal cells in the TME. Co-expression of CD93 on tumor and
stromal cells in GBM (A), HNSC (B), KIRC (C), LUAD (D), PAAD (E), and PRAD (F).
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FIGURE 7

Multiplex immunofluorescence staining identified the relationship between CD93 expression and CD8, CD68, and CD163 in tumor and normal
samples. LGG (A), GBM (B), UTUC (C), BLCA (D), LSCC (E), THCA (F), CESC (G, H), PSCC (I), OPV and OV (J), TGCT (K), and PRAD (L). Staining
for CD8, CD163, CD93, CD9, and DAPI (M). Scale bar=100um.
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FIGURE 8

Immunotherapy value and sensitive drug prediction of CD93 based on the public datasets. Immunotherapy response (A) and biomarker
relevance (B) of CD93 in immunotherapy cohorts. Notes for the immunotherapy response (C) and biomarker relevance (D) of CD93.Therapeutic
responses of CD93 in mechanistic follow-up experiments in the given datasets (E). Sensitive small compounds predicted from the CTRP (F) and
GDSC (G) websites based on CD93 levels.
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provide a theoretical basis for our preclinical and clinical cancer

experiments targeting CD93 expression in the TME. However,

there are also some limitations in our study. First, due to the

relatively small samples of certain cancer types on the tissue

microarray, it is difficult for us to quantify and perform

statistical analyses. Second, the exact relationship between

CD93 and tumor immunity and related signaling pathways in

these cancers were not revealed through in vivo and in vitro

study, more validated experiments are needed in the future.
Discussion

The previous study has demonstrated the critical role of

CD93 in tumor vascularization and upregulated CD93 in tumor

vessels as a potential malignant biomarker in several cancers.

Given that the molecular characteristics of CD93 in pan-cancer

remain unexplored, we performed large-scale single-cell and

bulk sequencing analysis to identify the prognostic value and

immune features of CD93 in these cancers. In our paper, we

observed the mRNA expression of CD93 in 38 cancer cell lines,

31 cancer samples, and counterparts based on public databases.

By combining TCGA and GTEX datasets, CD93 levels were

higher in GBM, PAAD, STAD, CHOL, LGG, LIHC, KIRC,

LAML, HNSC, TGCT, and SKCM than in normal controls.

CD93 levels were lower in COAD, KIRP, ACC, CESC, UCEC,

BRCA, BLCA, LUAD, PRAD, KICH, THCA, LUSC, and UCS

than in controls. At the same time, the immunofluorescence

staining showed that CD93 protein was upregulated in PSCC,

LSCC, and TGCT than control samples while downregulated in

THCA, UTUC, BLCA, and CESC than control samples. CD93

protein levels appear to be higher in GBM than in LGG. In

addition, CD93 can serve as a stable prognostic biomarker in

almost all cancers except ACC, BRCA, CHOL, DLBC, PAAD,

PRAD, SKCM, and UCS. The survival difference between CD93

mutants and WT, CNV of CD93 and survival, the correlation

between CD93 methylation and mRNA levels, and the survival

difference between CD93 low and high methylation in pan-

cancer were analyzed.

The pathological process of tumor formation, growth, and

migration is regulated by genetic mutations in tumor cells and

the dynamic interactions of the components in the TME

(48, 49). Cancer cells, stromal cells, vascular system and

extracellular matrix such as fibronectin, laminin, enzymes, and

glycoproteins together form a complex and interconnected

tumor microenvironment (50, 51). The tumor stromal cells are

composed of CAFs, adipocytes, endothelial cells, pericytes, and

immune cells, including M1 and M2 macrophages, T cells, B

cells, neutrophils, microglia, monocyte, and NK cells (52, 53).

These stromal cells play a crucial role in developing tumor,

metastasis, immune infiltration, and chemoresistance by

producing growth factors, cytokines, chemokines, pro-

tumorigenic and anti-tumorigenic factors (54, 55). For
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example, CAFs are essential for the TME to remodel the

extracellular matrix and mediate leukocyte infiltration (56).

Increasing evidence showed that activated CAFs could regulate

tumor cell invasion and growth by secreting soluble factors

(exosomes, HGF and GAS6) and depleting metabolic factors

(lactate, amino acid, alanine, and aspartate) (57). Meanwhile,

CAFs induced the infiltration and activation of macrophages,

endothelial cells, and T cells by producing VEGF, TGFb, IL-6,
CCL2, and CXCL12. Cancer-associated endothelial cells play an

irreplaceable role in tumor cell growth and migration. A study in

breast cancer treatment found that cancer-associated endothelial

cells contribute to the production of CXCL1/2 and S100A8/9,

which eventually led to breast cancer cell survival and drug

resistance (58). Macrophages have the function of phagocytosing

and digesting foreign antigens, and play a crucial role in clearing

away cellular debris and tumor cells (59). Tumor-associated

macrophages (M2) lose their ability to kill tumors due to the

absence of phagocytosis, which eventually leads to the spread of

tumor cells to other tissues and organs (60). The intratumoral T

cells, a significant component of the infiltrated immune cells in

the TME, comprises CD4+, CD8+, naïve, memory, effector, and

regulatory T cells. These different T cell subtypes are essential

mediators of anti-tumor immunity, recognizing and responding

to tumor-expressed antigens (61).

In current paper, we observed the co-expression of CD93 on

tumor and stromal cells based on bulk and large-scale single-cell

sequencing and tumor chips. Many stromal cells expressed high

CD93 levels in the tumor microenvironment of pan-cancer, such

as endothelial cells, B cells, T cells, neutrophils, myeloid

dendritic cells, macrophages, monocyte, and hematopoietic

stem cell. Notably, CD93 expression significantly correlated

with these scores (immune, stromal, and estimate) in almost

all cancers. Moreover, large-scale single-cell sequencing analysis

demonstrated that macrophages, astrocytes, CAFs, T cells, B

cells, endothelial cells, neutrophils, and cancer cells are the

primary cells that expressed CD93 in the TME. Furthermore,

the relationship between CD8, CD68, and CD163 in these

cancers was verified by multiplex immunofluorescence

staining. Furthermore, the functional signaling analysis

indicated that many tumor immune-related pathways were

enriched according to CD93 expression, such as immune cells

(fibroblast, macrophages, and T cells) activation and migration,

focal adhesion, leukocyte transendothelial migration, oxidative

phosphorylation, and complement. These results invariably

illustrate the pivotal role of CD93 in tumor immunity.

Immunotherapy, focusing on inhibiting immune

checkpoints, has undoubtedly been the highest achievement of

cancer treatment in the last decade. The programmed death 1

(PD-1)/programmed cell death-ligand 1 (PD-L1) and cytotoxic

T-lymphocyte–associated antigen 4 (CTLA-4)/B7 are two

classical immune checkpoint signaling pathways, which

negatively mediate T cell immunity during the activation and

proliferation of T cells under pathological conditions. Targeting
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PD1/PD-L1 and CTLA-4/B7 with specific inhibitors has

demonstrated exciting preclinical and clinical efficacy in

several cancers. This paper studied the correlation between

CD93 and other classical immune checkpoints in pan-cancer.

Data showed that the many immune checkpoints positively

correlate with CD93 expression in many cancers, particularly

NRP1, LAIR1, VSIR, and CD86. Predicting the immunotherapy

value and the optimal individualized therapeutic drugs from

public databases and computational models has been

increasingly attractive in recent years (62–64). Biomarker

correlations for CD93 were calculated in more than 20

immunotherapy cohorts to validate its predictive value. Out of

a total of 25 immunotherapy cohorts, eight immunotherapy

cohorts had AUC values above 0.5. The predictive value of CD93

was higher than the B.Clonality with AUC value above 0.5 in 7

immunotherapy cohorts. CD93 had the same predictive value as

the TMB with an AUC value above 0.5 in 8 immunotherapy

cohorts. Moreover, the predictive value of CD93 was lower than

the T.Clonality, MSI score, IFNG and CD8, TIDE and CD274,

with AUC values above 0.5 in 9, 13, 17, 18, 18 and 21

immunotherapy cohorts, respective. GDSC and CTRP are free,

publicly available databases of over 500 small molecule

compounds based on the therapeutic response of over 1000

genetically characterised human cancer cell lines. Ultimately, we

discovered a lot of sensitive small molecules according to CD93

levels from the public datasets, such as CR-1-31B, PHA-793887,

SR-II-138A, cytarabine hydrochloride, narciclasine, VNLG/124,

XMD14-99, TG101348, CH5424802, and 5-Fluorouracil. These

data will provide theoretical support for future clinical trials

targeting CD93 in these cancers.
Conclusion

In this project, we comprehensively analyzed the prognostic

value and immune profile of CD93 in pan-cancer using large-scale

single-cell and bulk sequencing analysis. CD93 is highly involved in

tumor immunity and may act as a novel immune checkpoint in

immunotherapy of these cancers. Therefore, therapeutic strategies

that block CD93 in the tumor microenvironment are expected to

benefit patients with malignancies.
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