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The glioma tumor microenvironment (TME) is complex and heterogeneous, and multiple
emerging and current technologies are being utilized for an improved comprehension and
understanding of these tumors. Single cell analysis techniques such as single cell genomic
and transcriptomic sequencing analysis are on the rise and play an important role in
elucidating the glioma TME. These large datasets will prove useful for patient tumor
characterization, including immune configuration that will ultimately influence therapeutic
choices and especially immune therapies. In this review we discuss the advantages and
drawbacks of these techniques while debating their role in the domain of glioma-infiltrating
myeloid cells characterization and function.

Keywords: glioblastoma, immunotherapy, macrophage, tumor microenvironment, single cell analysis,
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INTRODUCTION

Gliomas are composed of multiple distinct cell populations, each playing a unique role within the
tumor microenvironment (TME). Each of these cell types contains a spectrum of subtypes that
increase the level of heterogeneity and complexity of these tumors. In this context, antagonistic forces
promoting both tumor growth and suppression exist in the TME that influence clinical outcomes and
responses to therapies. Initiatives such as The Cancer Genome Atlas (TCGA) and the GLASS
consortium (1), have provided important information about the genetic variation and evolution
among gliomas, leading to the molecular classification for glioblastoma (GBM) (2). However, since
bulk genomic and transcriptome data averages the genetic alterations and gene expression patterns,
respectively, of individual tumors, the analysis of such data has limits regarding determining the extent
of cell subpopulation heterogeneity within a tumor and thus, response to therapeutic interventions. In
contrast, technologies such as single-cell RNA-seq (scRNA-seq) and cytometry by time-of-flight
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(CyTOF) are enabling the high-resolution characterization of
glioma cellular heterogeneity (3). Single-cell analysis is proving
informative about cell subpopulations in normal tissues and in
treated recurrent GBM, with the latter providing insights
regarding therapy-driven tumor evolution (4, 5). It is anticipated
that single-cell analyses will ultimately prove informative
regarding the individualization of glioma patient treatment
based on knowledge of a tumor’s cellular heterogeneity
combined with increased understanding of cell subpopulation
interactions. The myeloid compartment is the predominant
subset of immune cells within the GBM microenvironment (6).
This myeloid-rich environment is a hallmark of GBM, and these
cells exert pro- and anti-tumor influence under different
circumstances (6–8). Advances in understanding of glioma
cellular heterogeneity from single cell analyses have exemplified
the over-simplistic nature of the historically proposed pro-
inflammatory M1 and immune suppressive M2 categories.
Changes to the M1/M2 classification have been proposed by
others, but without the benefit of single-cell characterization
data (9). In this review, we discuss the current myeloid
classification and its shortcomings, as well as how emerging
single-cell technologies can be leveraged for increased
understanding of glioma-infiltrating myeloid cell function in
addition to impacting clinical outcomes in glioma patients.

Origins of M1/M2 Macrophage
Classification
It was widely accepted for many years that the origin of tissue
macrophages could be traced solely to circulating blood
monocytes, which would travel to the destination tissue and
differentiate into tissue-specific macrophages (i.e. microglia in
the central nervous system (CNS), alveolar macrophages in the
lungs, Kuppfer cells in the liver, etc.) (10–12). The current
understanding is that there is a subset of tissue macrophages
such as microglia derived not from circulating monocytes, but
rather from stem cell populations found in the yolk sac and fetal
liver during embryonic development that endure throughout life,
independent of the circulating monocyte population (13–17).
Evidence for this includes that these yolk sac-derived
macrophages do not rely on the transcription factor c-Myb,
which is necessary for differentiation of erythroid-myeloid
progenitors into monocytes prior to differentiation into
macrophages (18), providing a clear distinction from
monocyte-derived macrophages (19, 20).

The M1/M2 classification was originally proposed to
subclassify macrophages on the basis of immune activation
and functional role, with M1 referring to those that are
classically-activated and M2 referencing those that are
alternatively activated (21). As shown by Mills et al. specifically
in the context of differentiation of bone marrow-derived myeloid
cells, macrophages are activated in two different ways, yielding
two distinct phenotypes that have antagonistic effects on
inflammation (22). Classical activation via stimulation with
interferon (IFN)-g, lipopolysaccharide (LPS), or granulocyte-
macrophage colony-stimulating factor (GM-CSF), results in an
antitumor phenotype in which numerous pro-inflammatory
Frontiers in Immunology | www.frontiersin.org 2
cytokines are produced. Alternative macrophage activation via
interleukin (IL)-4, IL-10, IL-13, transforming growth factor
(TGF)-b, and colony-stimulating factor (CSF)-1 results in the
tumor-supportive phenotype characterized by macrophage
production of high amounts of anti-inflammatory cytokines
such as IL-10 and TGF-b (23). Tumor-supportive glioma-
associated macrophages (GAMs) cells suppress inflammation,
impairing the anti-tumor activity of effector cells such as T cells
and natural killer (NK) cells, in addition to inducing other
immunosuppressive cells such as Treg cells that ultimately
support tumor growth and metastasis. A higher ratio of
tumor-supportive GAMs to antitumoral GAMs is associated
with a worse prognosis for cancer patients (24).
DISCUSSION

Complex Heterogeneity of Tumor-
Associated Macrophages in GBM
A number of immune cell populations have been identified
throughout the glioma TME, specifically macrophages, resident
microglia, T and B lymphocytes, NK cells, and neutrophils,
implying that the CNS is far from immune-privileged as was
once thought to be the case (25–29). In fact, recent estimates
suggest that 30-50% of tumor tissue is composed of monocyte-
derived macrophages and microglia, which are the most
numerous immune cell populations in GBM (30). The
phenotypic profile of the TME immune population is subject
to multiple factors dependent not only on the glioma type, but
also on the location within the TME. Tumor mutational status
appears to have significant impact on TME macrophage state
and phenotype as well. In a comparison of isocitrate
dehydrogenase (IDH) wild-type to IDH mutant gliomas, one
study found that midkine (a neuroinflammatory cytokine that
promotes macrophage polarization to an M2 phenotype) was
preferentially upregulated in CD45+ myeloid cells of IDH wild-
type gliomas as compared to IDH mutated gliomas (6).
Additionally, GAMs in IDH wild-type tumors have been found
to express higher levels of anti-inflammatory annexin A1
(ANXA1) and glycoprotein NMB (GPNMB) that have
previously been found to be pro-tumorigenic (6). Regarding
immune cell composition, GAMs are the most abundant in
IDH wild-type tumors, while microglia were more common in
IDH mutant tumors (6). These findings further highlight the
need for a more granular investigation into the complex immune
dynamics at play within the glioma TME.

TCGA research has revealed three molecular classifications
for GBM: classical, proneural, and mesenchymal - each with
distinct expression patterns that influence local macrophage
polarization and gene expression (3, 25, 31, 32). Tumors of the
mesenchymal subtype exhibit the highest expression of
immunosuppressive genes that transcribe for galectin-3, IL-10,
IL-23, and TGF-b and pro-inflammatory genes that transcribe
for IL-2 and IFN (33). Conversely, recent evidence suggests that
macrophages influence the phenotype of GBM cells to a
mesenchymal-like state that involves the upregulation of MHC
June 2022 | Volume 13 | Article 907605
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class I and II (34). This preferential expression of pro- and anti-
inflammatory genes not only promotes macrophage polarization
within the TME but may also render the mesenchymal subtype
of GBM more amenable to immunotherapeutic approaches.
Prospective evaluation of this hypothesis requires GBM
molecular classification in clinical trials that test the efficacy of
immunotherapeutic treatments.

Recent work using single-cell sequencing techniques has
shown significant insight into the phenotypic heterogeneity of
macrophages within the glioma TME. scRNA-seq of GBM and
low-grade gliomas (LGGs) has revealed that TAMs co-express
canonical markers associated with antitumor and tumor-
supportive macrophage polarization, with 66% of examined
GAMs expressing both the immunosuppressive marker IL-10
and the pro-inflammatory marker TNF-a (35, 36). These results
were consistent with the analytical techniques used, with flow
cytometry revealing co-expression of immune costimulatory
marker CD86 and the immunosuppressive marker CD206. The
findings of macrophage co-expression of heterogeneous pro- and
anti-tumor markers are corroborated by the results in a number
of other studies (37–39). It is worth mentioning here that the
expression of such markers can rapidly change in association
with treatment, as indicated by the results of studies in which
GBM patients received co-treatment with rapamycin and
hydroxychloroquine or concurrent stereotactic radiotherapy
with immune checkpoint blockade via programmed cell death
protein 1 (PD-1) signal disruption (40, 41).

Recent studies have revealed transcriptional variability among
monocyte-derived macrophages and microglia within the TME
of glioma and brain metastases, with expression profiles not
fitting into the classic M1 versus M2 polarization paradigm. One
study found that high levels of traditionally “M1 markers” such
as IL-6 and IL-1b were expressed by the same macrophages
express ing tradit ional ly “M2 markers” l ike matr ix
metalloproteinase (MMP)-1 and fibronectin 1 (FN1) (6). It has
been shown that CD45+ myeloid cells in the GBM TME express
markers of immune activation as well as immune suppression
(42). A preclinical study detailed that treatment with anti-PD-1
therapy induced macrophage and microglia polarization towards
a proinflammatory phenotype in glioma of CD8-/- mice,
suggesting that the therapeutic effect of PD-1 blockade may be
due to innate rather than adaptive immune system function (28).
These findings underscore the complex plasticity of glioma cells
to phenotypically adapt to different environments reflected in
distinct transcriptional and evolutionary patterns for each
pat ient . Nonethe less , th is variabi l i ty is subject to
subclassification categories that may have implications for
patient-specific treatments (3, 43–45).

Combined transcriptomic and proteomic approaches such as
CITE-seq have demonstrated the ability to define the
multidimensionality of myeloid cells and to delineate the
spectrum of functions that these immune cells can display in
the context of gliomas (46, 47). For instance, in applying single-
cell sequencing to GAMs from human GBMs, Pombo Antunes
proposed five distinct subtypes based on the activation state of
the macrophage: transitory (showing markers of both monocyte
Frontiers in Immunology | www.frontiersin.org 3
and macrophage genes); phagocytic with lipid metabolism;
hypoxic and glycolytic; SEPP1low, and SEPP1high (46). Notably,
this diversity of macrophage states was recapitulated in murine
gliomas analyzed with the same approach involving
simultaneous proteomic and transcriptomic characterization.
While this is but one way to further organize macrophage
s t a t e s , i t m a y p r o v i d e mo r e u t i l i t y t h a n t h e
existing classifications.

Another example of mouse and human data integration is an
scRNA-seq study that delineated differences in the
transcriptional networks between microglia and macrophages
derived from non-tumor bearing mice and those derived from
glioma-bearing mice. In this study, the expression of genes
encoding the MHC class II molecule were increased in GAMs
compared to myeloid cells isolated from non-tumor bearing
mice. This difference in expression of MHC class II-associated
genes was further appreciated in activated microglia from male
tumor-bearing mice and GBM patients (48). Although these data
show the potential antigen presentation capabilities of GAMs,
scRNA-seq analysis of murine and human gliomas has also
shown the immunosuppressive nature of these myeloid cells.
For instance, one study showed that ARG1/2 was upregulated
predominantly in glioma-associated macrophages as opposed to
microglia (49). This was further corroborated by elevated
arginase-1 levels synthesized by tumor-infi l t rat ing
macrophages from mouse and human gliomas that promote
the generation of polyamines and thus, T cell suppression (50).

In sum, these studies show the resolution that emerging
single-cell technologies possess to characterize different
transcriptional states of glioma-associated microglia and
macrophages allowing the conceptualization of their
complexity and heterogeneity across species.

Deconvolutional Techniques for Immune
Characterization in GBM
Advanced single-cell analysis techniques like scRNA-seq and
CyTOF provide an unprecedented level of resolution in
characterizing the cellular composition of the TME. However,
there remain several limitations with these techniques,
particularly as they pertain to glioma research. CyTOF requires
the selection of cell-surface markers, and although the number of
detectable surface markers is rapidly growing, there is still a
limitation to the absolute number that can be analyzed at one
time, such that informative marker combinations can be missed
due to initial marker selection. In addition, there is no standard
technique for the processing of CyTOF data, leading to
differences in results between labs that have performed CyTOF
using the same set of markers. In particular, the randomization
transformation used to better visualize CyTOF results is
inherently different across analyses, and thus it has been
suggested that raw data and detailed methods be provided for
subsequent analysis whenever conclusions are reached from
CyTOF data (51).

New results from scRNA-seq, on the other hand, are more
easily compared against existing results given the vast amount of
accessible online data (GBMseq, Ivy GAP, TCGA). For example,
June 2022 | Volume 13 | Article 907605
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several novel techniques have been developed recently using
scRNA-seq to investigate cellular interactions and resulting
transcriptomes on a single cell level in the TME such as
RABID-seq and PIC-SEQ (52–54). However, considering that
the transcription of a portion of the genome occurs as episodic
and pulsatile bursts and that RNA collection and analysis is a
snapshot in time, differential clusters of RNA expression seen
during one analysis can be drastically different at another point
in time (55). Similarly, phenotypic states of the same cell type as
well as the immune cell composition within a TME changes with
time and tumor evolution (55). Another limitation inherent to
RNA expression analysis is that RNA expression does not
explicitly translate to protein expression, resulting in only
prediction of the potential cellular activities that might be
occurring in the TME. Therefore, transcriptomics should be
complemented with proteomics, functional assays, and spatial
analysis. Furthermore, as a deconstructive and disruptive
technique, the spatial relationships involving cell-cell
interactions that influence transcriptional states are lost during
the process of cell isolation, and accordingly are extrapolated
from imaging data, which, even if subject of a certain degree of
accuracy, is still at risk of error.

The spatial evaluation at the single-cell level along with
functional information is the next step in characterizing the
TME in finer detail. These will allow for more extensive
investigations into the genetic and cellular changes that occur
in response to therapeutic intervention within the TME, where
within the TME these changes are occurring, and how best to
exploit them to improve clinical response and outcomes.
Previous investigations have examined the spatial distribution
of immune cells throughout the infiltrating edge, proper tumor,
and necrotic core of glioma, and found that there is significant
heterogeneity throughout these areas in immune cell
composition, distribution, and interactions (43). However,
these spatial relationships between immune cells are only just
starting to be further investigated in GBM undergoing
microenvironmental change in response to therapy, allowing
for unique opportunities for single-cell techniques to provide
novel insight with the potential to advance therapeutic efficacy.

All shortcomings considered with respect to the different
types of single cell analysis, the best approach for maximizing
informative and accurate information yield is to utilize multiple
techniques combined with spatial mapping of sample
acquisition. Methods to integrate genomics, transcriptomics,
and spatial measurements are emerging and have increasing
influence on the way tumors are studied. Recently, Zhao et al.
described a promising spatial genomic technique that not only
allows for the detection of different clones of cells that harbor
distinct genomic signatures, but also correlates signatures with
cell location within the TME. For this particular study, spatial
genomic heterogeneity was focused on tumor cells, but the
approach can certainly be applied to other TME cell types such
as GAMs (56). With the continuing refinement of spatial
multiplex imaging technologies, detailed characterizations of
the immune proteome within the TME have become possible.
Using these techniques, one study found that myeloid cells
Frontiers in Immunology | www.frontiersin.org 4
localized to mesenchymal-like regions of GBM drive T cell
exhaustion via IL-10 release, and that this T cell function was
rescued with Janus kinase-signal transducer and activator of
transcription (JAK/STAT) inhibition, providing a potential
therapeutic opportunity (57). These techniques are allowing for
the discovery of wider and more heterogeneous populations of
immune cells with newly identified, previously unexploited cell
phenotypes with distinct functions that influence tumor biology.

Leveraging Data From Single-Cell
Technologies in Gliomas
Single cell technologies are providing opportunities to leverage
data for clinical trial design and especially for treatment response
interpretation (Figure 1). In instances where biopsy sampling of
tumor prior to the initiation of treatment is possible, cellular
profiles of pre-treatment specimens and corresponding on-
therapy specimens obtained during surgical resection can be
compared for determining the effect of treatment on TME
cellular composition, as well as for determining the presence or
absence of treatment anti-tumor activity. Single-cell analyses can
also be used in a retrospective manner to study patient outcomes.
One can conduct a retrospective analysis of tissue from patients
that have received a common treatment, and in instances where
tumor is collected post-mortem, the data obtained from end-
stage tumors would prove informative regarding tumor
evolution in response to a specific therapy. Importantly, mass
cytometry and multiplex immunofluorescence can be used when
specimen availability is limited to fixed tissues. In instances
where frozen tissue is available, there are protocols for isolating
nuclei that, in turn, enables single-nuclei RNA-seq (58). An
example of this type of retrospective strategy that used fixed
tissues found an association of extracellular signal-regulated
kinases (ERK) 1/2 phosphorylation, an indicator of mitogen
activated protein kinase (MAPK) pathway activation, with
increased response and survival to adjuvant anti-PD-1 therapy
in independent cohorts of recurrent GBMs (59). The integration
of single-cel l transcriptome analysis and multiplex
immunofluorescence showed that tumors with an abundance
of p-ERK contained GAMs with high major histocompatibility
complex (MHC) class II gene and protein expression.

A final application of single cell analyses concerns
immunoediting whereby GBM cells acquire an immune escape
phenotype. Following treatment with standard-of-care
temozolomide (TMZ) and radiotherapy (RT), changes in
macrophage differentiation and polarization, as well as
alterations in T-lymphocyte populations have been observed
(60). Further, scRNA-seq data was used to investigate changes
in GAM populations in response to radiotherapy specifically,
finding that there was an increased ratio of macrophage:
microglia as well as increased alternative activation in both
populations leading to a predominantly immunosuppressive
phenotype. The same study found that blocking these
radiation-induced changes via administration of CSF-1R
inhibitors significantly increased survival in preclinical models
(61). Another study showed that tumors treated with
neoadjuvant PD-1 immune checkpoint blockade contained
June 2022 | Volume 13 | Article 907605
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higher numbers of CD3+ T cells, with further analysis of the T
cell receptor repertoire showing that signatures from peripheral
and tumor-infiltrating T cells overlapped, suggesting that T cells
from the circulation infiltrated these gliomas (62). Importantly,
PD-1 blockade induced an IFN-g gene signature in glioma-
infiltrating monocytes and macrophages that was reflected by
the expression of CXCL9/10 and PD-L1. While the use of single-
cell technologies has not yet become routine in patient care, these
findings all suggest multiple applications of such single-cell
techniques to provide novel avenues for therapeutic intervention.
CONCLUSION

The complexity of intratumor heterogeneity represented by
diverse gene expression programs of cancer and immune cell
populations in the TME has yet to be exploited for the benefit of
patients. The analysis of tumor and immune cells, using single-
cell technologies such as scRNA-seq and CyTOF, either before or
after therapy, has the ability to dissect in detail the mechanisms
of therapeutic response and resistance. In the future, we expect
Frontiers in Immunology | www.frontiersin.org 5
that integrative approaches involving the application of these
methods will provide data that advance personalized treatments
for cancer patients, and that will lead to improved
treatment outcomes.
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