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Coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, is an infectious disease
that poses severe threats to global public health and significant economic losses. The
COVID-19 global burden is rapidly increasing, with over 246.53 million COVID-19 cases
and 49.97 million deaths reported in the WHO 2021 report. People with compromised
immunity, such as tuberculosis (TB) patients, are highly exposed to severe COVID-19.
Both COVID-19 and TB diseases spread primarily through respiratory droplets from an
infected person to a healthy person, which may cause pneumonia and cytokine storms,
leading to severe respiratory disorders. The COVID-19-TB coinfection could be fatal,
exacerbating the current COVID-19 pandemic apart from cellular immune deficiency,
coagulation activation, myocardial infarction, and other organ dysfunction. This study
aimed to assess the pathogenesis of SARS-CoV-2-Mycobacterium tuberculosis
coinfections. We provide a brief overview of COVID19-TB coinfection and discuss
SARS-CoV-2 host cellular receptors and pathogenesis. In addition, we discuss
M. tuberculosis host cellular receptors and pathogenesis. Moreover, we highlight the
impact of SARS-CoV-2 on TB patients and the pathological pathways that connect
SARS-CoV-2 and M. tuberculosis infection. Further, we discuss the impact of BCG
vaccination on SARS-CoV-2 cases coinfected with M. tuberculosis, as well as the
diagnostic challenges associated with the coinfection.

Keywords: COVID-19, tuberculosis, coinfection, SARS-CoV-2-M. tuberculosis pathogenesis, BCG vaccination
INTRODUCTION

Coronaviruses (CoVs) are positive single-stranded RNA viruses that cause respiratory and
gastrointestinal tract infections in mammals, such as humans, amphibians, and birds. They are
important members of the Coronaviridae subfamily, Orthocoronavirinae. The International
Committee on Taxonomy of Viruses has classified CoVs into four important genera: a-CoV, b-CoV,
g-CoV, and D-CoV, which cause human diseases. All the identified seven human CoVs (HCoVs),
HCoV-NL-63, HCoV-229E, HCoV-OC-43, HCoV-HKU-1, SARS-CoV,MERS-CoV, and SARS-CoV-2
cause respiratory diseases in humans. The emergence of b-CoVs (SARS-CoV in 2002 andMERS-CoV in
2012) demonstrated the emerging possibility of new pathogenic CoVs in humans via zoonotic
org June 2022 | Volume 13 | Article 9090111
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transmission (1, 2). The pathogenic CoV, SARS-CoV-2, causes
coronavirus disease 2019 (COVID-19), first reported in Wuhan,
China, in late 2019, resulting in severe global public health issues
and substantial economic losses (3–5). Bats act as a reservoir for
CoVs; therefore, it is speculated that the SARS-CoV-2 originated in
horseshoe bats before transmitting to humans via an unknown
intermediate host (6). Because of its high contagiousness and the
presence of asymptomatic human carriers, this pathogen spreads
rapidly across the globe, claiming human lives and obstructing
social and economic activity (4, 7). According to the WHO 2021
report, over 246.53 million COVID-19 cases and 49.97 million
deaths are associated with this disease worldwide (8). The United
States has the highest COVID-19 prevalence, with 45.63 million
cases and a death rate of approximately 0.74 million, followed by
India with 34.29 million cases and 0.46 million deaths, Brazil with
21.80 million cases and 0.61 million deaths, and the United
Kingdom with 9.02 million cases and approximately 0.14 million
deaths (8).

It is true that the COVID-19 pandemic has dominated both
the printed and electronic media and scientific literature.
However, other infectious diseases such as tuberculosis (TB),
a contagious and airborne bacterial infection caused by
Mycobacterium tuberculosis, should not be neglected. TB has
been an ancient threat to public health since the prehistoric ages
and is one of the top 10 causes of human death (9). Further, TB is
the second leading infection after COVID-19. According to the
WHO 2021 report, nine out of ten people infected with TB
belong to the 30 countries with the highest TB burden, including
India, China, Indonesia, the Philippines, Pakistan, Nigeria, etc.
(10). WHO data from more than 200 countries shows that the
number of people who died from TB increased from 1.4 million
to 1.5 million (2019–2020). Aside from the increased global
death rate, the number of newly diagnosed TB cases reported to
the local governments fell from 7.1 million to 5.8 million in the
same period, which is an 18% decrease from 2012, with 1.3
million TB deaths (9). This report further stated that among the
9.9 million TB infections last year, 4.1 million were either
undiagnosed or not reported to the state in 2020 (9). TB affects
males and females of all ages, with adult men bearing the greatest
burden, accounting for approximately 56% of all TB cases in
2020, while women and children accounted for 33% and 11%. A
higher proportion of TB cases among adult men consistently
shows that TB affects adult men more than females, which is
most likely due to men’s having a higher detection and reporting
rate than females (9).

People affected by chronic respiratory, metabolic, or
cardiovascular diseases carry a higher risk of severe COVID-19
infection (11, 12). The COVID-19 signs and symptoms are
almost identical to those of TB and other influenza infections.
Therefore, SARS-CoV-2 coinfection with other viruses (13),
bacteria, and fungi (14, 15) frequently impedes COVID-19
prevention, diagnosis, and control strategies. Both COVID-19
and TB target the human respiratory tract, particularly the lungs,
and are transmitted via aerosol droplets from an infected person
to a healthy one. Evidence shows that COVID-19 patients
coinfected with TB (COVID-19-TB) have a higher risk of
Frontiers in Immunology | www.frontiersin.org 2
death than a single pathogen (9, 15). The COVID-19
pandemic has already challenged public health care systems
and impaired TB services for TB patients, increasing their
morbidity and mortality globally. M. tuberculosis interacts with
other pathogens such as HIV in coinfection to impair the host’s
defenses (16). However, the synergism between SARS-CoV-2
and M. tuberculosis is yet unclear. Thus, a comprehensive
investigation of COVID-19-TB coinfection ’s impact,
synergism, and pathogenesis is of great clinical importance (8,
9, 11). There have been few clinical studies on COVID-19-TB
coinfection (15, 17, 18), and some of the published case reports
and cohort studies have serious flaws. First, the sample sizes are
small, and most of the studies were carried out in low-TB-burden
countries with poorly described clinical features. The second
problem is a lack of understanding of previous comorbidities like
diabetes, hypertension, obesity, etc. Sometimes, it is difficult to
confirm whether TB was known before or after the COVID-19
diagnosis. Despite these flaws, studies have concluded that active
TB makes a patient more vulnerable to severe COVID-19.
However, it is worth noting that various social conditions,
history of diseases, comorbidities, and limited access to
healthcare influence the prognosis of TB patients to COVID-
19 coinfection.

The current study aimed to discuss the impact of COVID-19-
TB coinfection, the SARS-CoV-2 host cellular receptors (ACE2,
auxiliary, and alternative to ACE2 receptors), and pathogenesis.
We also discuss M. tuberculosis host cellular receptors (TLRs,
NLRs, CLRs, scavenger receptors) and pathogenesis. In addition,
we highlight the impact of COVID-19 on TB patients and the
pathological pathways that link SARS-CoV-2 andM. tuberculosis
coinfection. Further, we discuss the impact of BCG vaccination
on coinfection and the diagnostic problems associated with
COVID-19-TB coinfection.
SARS-COV-2 AND M. TUBERCULOSIS
HOST CELLULAR RECEPTORS AND
PATHOGENESIS

SARS-CoV-2 ACE2, Auxiliary and
Alternative to ACE2 SARS-CoV-2
Receptors and Pathogenesis
The SARS-CoV-2 S protein comprises two subunits, S1 and S2,
that aid in viral attachment and entry into the host cell
cytoplasm. Subunit S1 has a receptor-binding domain that
promotes host receptor binding, whereas subunit S2 directly
fuses the virus with the host membrane (7, 19). The S1 attaches
to the angiotensin-converting enzyme 2 (ACE2) peptidase on the
target cell surface and invades via clathrin-mediated endocytosis
(20–22). Infection of susceptible cell lines (19, 23) and transgenic
mice expressing human ACE2 (24) demonstrated that the ACE2
protein in human cells primarily acts as a CoV receptor. Several
other researchers have confirmed these findings and reported
that ACE2 depleted Vero-E6 inhibited SARS-CoV-2 infection
(25), Huh-7 (hepatocyte cell line) (25, 26), Caco-2 (immortal
June 2022 | Volume 13 | Article 909011
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human cell line) (27), and Calu-3 (pulmonary cancerous cell
line) (28, 29). On the other hand, SARS-CoV-2 can infect ACE2-
deficient cells (30), and the reason behind this infection might be
mutations in the spike protein (31). ACE2 exists in two forms,
i.e., cell membrane-bound and soluble, which are released after
cleavage by the metallopeptidase domain 17 (ADAM17).
According to a recent finding, soluble ACE2 forms a complex
with the S of SARS-CoV-2 and vasopressin proteins to promote
infection (32). SARS-CoV-2 first infects respiratory epithelial
and alveolar cells (33), followed by infecting and replicating in
ciliated mucus-secreting bronchial epithelial cells (also called
type-2 pneumocytes of the lungs) (34), macrophages (35),
intestines, heart, kidneys, blood, liver, and brain (7). COVID-
19 infection increased ACE2 expression (threefold) in respiratory
epithelial cells (36), owing to the fact that the ACE2 gene
promotes interferon (IFN) production (36). Despite
discovering SARS-CoV-2 genomic mRNA in airway epithelial
cells that express ACE2 (36, 37), a correlation between SARS-
CoV-2 infection and ACE2 expression at a single-cell level needs
further investigation to reveal the viral pathogenesis mechanism.
Because SARS-CoV-2 damages multiple organs, it is also possible
that other host cellular factors aid in virus replication and
transmission in vivo. Several SARS-CoV-2 receptors act as
cofactors, allowing the virus to enter the host cell cytoplasm.
For example, heparan-sulfate polysaccharide expressed on host
cell surfaces binds to SARS-CoV-2 spike protein (38, 39),
indicating that heparan-sulfate depletion may reduce SARS-
CoV-2 attachment and infection (39). Like other influenza
viruses, SARS-CoV-2 may use heparan-sulfate to bind to the
host surface, increasing viral interactions with other host cellular
receptors for entry and pathogenesis (40). This is because many
influenza viruses attach to heparan-sulfate due to in vitro
adaptation to cell culture. Future research should determine
whether SARS-CoV-2 binding is a natural viral capability to
heparan-sulfate on the host cell. In addition to heparan-sulfate,
scavenger receptor B-1 is another host cellular receptor that
facilitates the uptake of high-density lipoprotein (HDL).
According to the evidence, SARS-CoV-2 S1 shows an affinity
for host HDL, and the increased HDL in cells increases viral
attachment and infiltration (41). Increased HDL levels may
overexpress the SCARB1 gene (which encodes scavenger
receptor B1), resulting in severe SARS-CoV-2 infection.
Conversely, SCARB1 knockdown cells showed reduced
infection, indicating that scavenger receptor B-1 facilitates
cellular uptake of HDL-bounded SARS-CoV-2. It has been
confirmed that SARS-CoV-2 is distinguished from SARS-CoV
(42) due to the presence of a unique furin cleavage site at the S1
and S2 domains. Two separate studies (43, 44) found that the
polybasic motif at the S1/S2 C terminal binds directly to the
neuropilin-1 receptor to promote SARS-CoV-2 pathogenesis. It
has been reported that scavenger receptor B-1 and neuropilin-1
receptors may overexpress ACE2 to promote viral entry into the
host cell cytoplasm (41, 43, 44), suggesting that scavenger
receptor B-1 and neuropilin-1 act as cofactors that enhance
SARS-CoV-2 attachment and penetration via ACE2 receptors.
In the absence of ACE2, several other potential candidate
Frontiers in Immunology | www.frontiersin.org 3
receptors allow SARS-CoV-2 attachment and penetration into
host cells. In a study, receptors such as host cellular tyrosine-
protein kinase (30), low-density lipoprotein, and C-type lectin
receptors (CLRs) (45) showed strong affinity for the SARS-CoV-
2 spike. Depleting these host receptors may reduce infection,
whereas overexpression of these proteins in ACE2-knockout cell
lines induced SARS-CoV-2 infection, indicating that these
cellular receptors and ACE2 have a similar function. Basigin
(BSG), also known as CD147 or EMMPRIN, is an alternative
widely expressed putative cellular receptor on the human cell
surface for SARS-CoV-2 attachment and entry (46), though a
study failed to confirm this finding (47). A study reported that
human BSG expression in mice allowed for severe COVID-19
infection because SARS-CoV-2 could not infect mice via ACE2
(23), implying that BSG may be an alternative to ACE2. SARS-
CoV-2 invades and enters the human lungs and avoids detection
by the host immune system, infecting and replicating in ciliated
mucus-secreting epithelial type-2 pneumocytes (34) and alveolar
macrophages (35).

M. tuberculosis TLRs, NLRs, CLRs, and
Scavenger Receptors and Pathogenesis
Like SARS-CoV-2, M. tuberculosis invades and replicates in
ciliated mucus-secreting epithelial type-2 pneumocytes and
alveolar macrophages (48, 49) using host pattern recognition
receptors (PRRs), complement receptors (CRs), toll-like
receptors (TLRs), CD14 receptors, dendritic cell-specific
ICAM-3-grabbing-non-integrin-1 (DC-SIGN), Fcg receptors,
mannose receptors, and scavenger receptors (49, 50). Alveolar
macrophages phagocytosed M. tuberculosis before being
transferred to lysosomes for destruction (48, 49, 51). A
successful mycobacterial infection depends on its encounter
with the host cell factors, particularly alveolar macrophages.
Mycobacteria are gram-positive and have been classified as
acid-fast bacilli due to the presence of a lipid-rich cell wall.
The physical features of pathogens and host factors significantly
affect mycobacterial pathogenesis (49, 52). Many immunological
peculiarities are attributed to glycolipid layers in the
mycobacterial wall, including lipoarabinomannan and mycolic
acid. M. tuberculosis uses various surface molecules (52–54) to
bind host surface receptors, including surfactant proteins, Fcg
receptors, CRs, CD14 receptors, and macrophage mannose
receptors (51). Several Fcg receptors bind immunoglobulin-G-
opsonizedM. tuberculosis, allowing the bacteria to enter the host
cell, promoting phagosome-lysosome fusion and reactive oxygen
intermediates (55, 56). One of the most intriguing aspects of M.
tuberculosis pathogenesis is the fate of macrophages. M.
tuberculosis communicates with macrophages via its various
receptors. In vivo responses of macrophages to M. tuberculosis
receptors are poorly understood, while in vitro studies show that
specific receptors may influence the macrophage response. For
example, Fcg receptor binding produces reactive oxygen
intermediates and phagosome-lysosome fusion, whereas M.
tuberculosis binding via CR3 or mannose receptor inhibits the
respiratory burst and prevents phagosome maturation almost
identical to the endosome (57), indicating that mycobacteria can
June 2022 | Volume 13 | Article 909011
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interact and penetrate the target cell cytoplasm via several
receptors. After inhaling M. tuberculosis, the bacterium
activates the alternative pathway and is opsonized by the CR3
within the alveolus, enhancing phagocytosis by alveolar
macrophage CR1 or CR3 protein (58, 59). Studies revealed that
CR3-deficient mice infected with M. tuberculosis showed similar
bacteria burden, granuloma formation, and survival rate (60, 61),
demonstrating CR3 redundancy. In another study, cholesterol
was essential for mycobacteria entry into alveolar macrophages
because cholesterol-depleted cells inhibited bacterial infection,
demonstrating that cholesterol probably mediates the
phagosome-associated tryptophan-aspartate proteins,
preventing phagosome maturation into phagolysosome (56, 62).

Host surface PRRs, including TLRs, CLRs, NOD-like
receptors (NLRs), scavenger receptors (such as MARCO,
CD36, and MSR1), aryl hydrocarbon receptors, CD14, and
AIM2-like receptors, recognize M. tuberculosis pathogen-
associated molecular patterns (PAMPs) during phagocytosis
(63). Much research has been done on mycobacteria-derived
PAMPs with TLRs on the host cell surface. In TB patients, TLRs
are responsible for recruiting MYD88, TIR adaptor-inducing
interferon (TRIF), Toll/IL-1, and TRIF. TLRs have been classified
into two groups: endosome localized (TLR3, TLR9, TLR7, TLR8)
or surface localized (TLR1, TLR6, TLR2, TLR5, TLR4, TLR10),
which help in the recognition of bacterial surface antigens,
particularly the LPS layer (64). After pathogen infection, TLR
recruits different adapter molecules to relay signals for activating
signaling pathways like NF-kB, MAPK, PI3K, and Akt, further
inducing pro-inflammatory cytokines and type-1 IFN. TLR
expression and activation are useful indicators of the immune
response in TB patients (65). Mice lacking the MYD88 signaling
adaptor molecule are extremely vulnerable to M. tuberculosis
infection (66), implying the importance of MYD88 against M.
tuberculosis infection (66). In another experiment, TLR2
deficient mice showed defective granuloma formation after M.
tuberculosis infection and were much more susceptible to
infection than WT mice. People with TLR2 genetic
polymorphisms were more susceptible to pulmonary
tuberculosis (67) , whereas TLR4 , TLR7 , and TLR8
polymorphisms were more susceptible and severe to TB in
Asians, particularly Indians (68), implying that blocking
phagosome-lysosome fusion increased phagocytosis in addition
to a weak immune response (69). Mice lacking TLR9 expression
die soon after M. tuberculosis infection (70). Conversely, a study
found that only MyD88 (not TLR2/4/9) was a key factor for
macrophage activation in TB patients (71). A study also
discovered that cytokines could be produced during M.
tuberculosis infection using TLR or caspase-1 (71). M.
tuberculosis expresses various lipoproteins to recognize TLRs
on the host cell. For example, lipoprotein lpqH recognizes TLR2
(72), while TLR3 promotes an IL10 response via the PI3K/AKT
signaling pathway in TB patients (73). The leucine-responsive
regulatory protein of M. tuberculosis regulates the TLR2-
mediated PI3K/AKT pathway, inhibiting inflammatory
cytokine production and de-regulating macrophage antigen
presentation (74). Previously, it was discovered that the M.
Frontiers in Immunology | www.frontiersin.org 4
tuberculosis-secreted proteins Mce3E and PtpA target MAPK
and NF-kB pathways to modulate TLR signaling (75, 76).
Mycobacterial phagocytosis into macrophages was also
promoted by activating the signaling pathways ERK and
MAPK, which are likely to be involved in mycobacterial
pathogenesis (77). More research is required to investigate the
potential molecular interactions of TLR activating signaling
pathways with M. tuberculosis receptors. Apart from TLRs,
several intracellular NLRs, i.e., NOD1, NLRC4, NOD2, and
NLRP3, recognize bacterial components and activate
inflammatory pathways against invading pathogens (78). In
response, M. tuberculosis can escape from phagosomes via an
ESAT-6 system-1 (ESX-1)-associated pathway (79). In contrast,
a study found that NOD2 deficient mice increased susceptibility
to M. tuberculosis infection (80). Simultaneously, activation of
NOD2 in alveolar macrophages with muramyl-dipeptide derived
from the mycobacterial cell wall prevents bacterial movement of
autophagy-related polypeptides to the autophagosome, implying
the importance of PRR in autophagy (81). In another study, three
NOD2 gene polymorphisms in African American people were
linked to TB susceptibility (82). It has also been reported that the
NOD2 single-nucleotide polymorphism showed increased
susceptibility to TB (83). Many recent studies have looked into
the roles of other NLRs, particularly the NLRP3 inflammasome,
during M. tuberculosis infection. M. tuberculosis ESAT-6 system
activates the NLRP3 inflammasome in macrophages, resulting in
the production of IL1-b and pyroptosis (84). The NLRP3 gene,
an adaptor protein, and caspase-1 mediate immune responses
against M. tuberculosis infection in mice. In the presence of
NLRP3, caspase-1, and PYCARD, M. tuberculosis-infected
macrophages showed induced IL1-b, indicating that IL1-b
production makes mice more susceptible to M. tuberculosis in
vitro. However, in vivo, NLRP3, Casp-1 depleted, and WT mice
produced the same amount of IL1-b during M. tuberculosis
infection (85). Thus, M. tuberculosis may activate the
inflammasomes to promote persistent TB. Despite discovering
the preventive role of novel NLRs against M. tuberculosis, more
research is needed to explore the NLR-induced signaling
pathways. Further, it is unknown whether M. tuberculosis
effectors interact with NLR domains (e.g., the PYD domain) to
regulate signaling pathways. In the future, it will be fascinating to
investigate the potential underlying regulatory mechanisms in
host cells that control NLR signaling pathways in TB patients.
Based on phylogeny and structure, CLRs have been classified into
17 groups, including collectins, endocytic, selectin receptors,
proteoglycans, and phagocytic receptors. The CLRs identified
include mannose receptor, mincle, DC-SIGN, dectin-1-3/
macrophage, dendritic cell immune receptor (DCIR), and
collectin CL-L1, CL-K1 are all critical factors for mycobacterial
invasion. Important immune regulators are CLRs that bind toM.
tuberculosis carbohydrates, lipids, or proteins. In addition, CLRs
direct ly recognize M. tuberculosis mannose-capped
lipoarabinomannan (ManLAM) and cord factors and are
essential immune modulators in TB patients (86), apart from
promoting mycobacterial phagocytosis by alveolar macrophages
(87). Mycobacteria that target DC-SIGN generate intracellular
June 2022 | Volume 13 | Article 909011
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signals to stimulate dendritic cells to produce IL10, implying that
the mycobacteria-targeted DC-SIGN suppresses the host
immune response during infection (88). Trehalose 6, 6′-
dimycolate, and cord factor are lipid-rich cell wall components
in virulent mycobacteria, which act as a macrophage-inducible
CLR in humans (89). Evidence shows that Dectin1 and TLR2 can
regulate pro-inflammatory macrophages against invading
mycobacteria (90). In another study, Dectin1 contributes to M.
tuberculosis susceptibility in mice (91). In contrast, Dectin2 acts
as a receptor for M. tuberculosis ManLAM to prevent infection
(92). Surprisingly, both Dectin-3 and Mincle are required for the
host immune response, with Dectin-3 stimulating Mincle
expression and thus amplifying the mincle-mediated immune
response against M. tuberculosis (93, 94). Collectin CL-LK was a
novel soluble CLR capable of binding to M. tuberculosis
ManLAM (95). In addition, Dectin-2 and DCIR modulate
immune responses against M. tuberculosis by sustaining IFN-1
signaling in dendritic cells (96). More research on human CLRs
recognizing M. tuberculosis components and their interactions
with other immune cells is needed to gain insight into M.
tuberculosis-induced innate immunity.
IMPACT OF SARS-COV-2 PANDEMIC
ON TB PATIENTS

The Global TB Network reported COVID-19-TB coinfection in
several countries (15, 97, 98). Both pulmonary and
extrapulmonary TB (disseminated TB: evidence of TB in bone,
central nervous system, gastrointestinal and genitourinary tracts,
larynx, lymph nodes, peritoneal, pleural, spinal cord, etc.)
patients have been found coinfected with COVID-19 (15, 99).
Eight studies reported 80 COVID-19-TB coinfected humans
from nine countries, with Italy reporting the highest cases
(51%) of active pulmonary TB (100). Some of the COVID-19-
TB coinfections reported in different countries are shown in
Table 1. Belgium, Spain, Brazil, Singapore, France, Switzerland,
Italy, India, Russia, and China reported COVID-19-TB
coinfections. Due to the recent COVID-19 rise, we can expect
increased COVID-19-TB infections in people of all races, ages,
and genders. According to clinical evidence, COVID-19 occurs
with or without TB, i.e., before, after, or during concurrent TB
(126). COVID-19-TB coinfection was more common in
migrants and men, i.e., > 80% of male cases (98, 127). Both
COVID-19 and TB are highly infectious diseases (128); for
example, a single COVID-19 patient may infect approximately
2.5 people in only five days, whereas an active pulmonary TB
patient may infect upto 15 people per year (may be due to long
incubation period) (129). The reported predisposing factors in
COVID-19-TB patients were comparable to those in TB patients
without COVID-19. Diabetes, kidney failure, liver disease, and
smoking are comorbidities for COVID-19-TB infections (15). A
study found that 41% of the COVID-19-TB patients were
smokers, 31% were unemployed, and 20% had a history of
alcohol use (98, 127). According to human studies, COVID-19
in TB patients is more common, particularly in high-TB burden
Frontiers in Immunology | www.frontiersin.org 5
countries, such as India, Vietnam, etc. (130), while Brazil and
Argentina, with high COVID-19 cases, experienced varying
degrees of healthcare system disruption (131). Similarly,
COVID-19-TB cases within a country differ depending on
people’s socioeconomic status and disease preventive measures.
In addition, several COVID-19-TB risk factors, such as age,
malnutrition, and comorbidities such as pre-respiratory
disorders, diabetes, etc., have been identified (126). Studies
also revealed that older and younger people, with or without
pre-existing clinical complications, a previous history of TB or
lung injury, are at risk of COVID-19 infection (132). A clinical
study revealed a similar dysregulated immunological response in
COVID-19-TB patients, implying that coinfection poses a dual
risk of disease worsening (132). In addition, poor hygiene,
overcrowding, and other autoimmune diseases are risk factors
for developing both diseases (133, 134). A study that developed a
model of pathogen dissemination showed that high-risk
influenza patients are at high risk of M. tuberculosis infection
(135). The WHO reported that the COVID-19 social and
economic losses could be more severe in the highest TB
burden regions (136). Another serious issue of COVID-19 is
TB nature, patient’s long treatment (usually 6–24 months), poor
treatment outcomes (i .e . , drug-resistant TB), drug
discontinuation, and other stringent pandemic isolation
measures (137). Treatment discontinuation risks and other
issues confronting TB clinical trials in COVID-19 cases have
raised concerns (138). To address these issues, self-administered
anti-TB therapy monitoring with digital technology or video-
assisted administration has been recommended (139).
Hypoxemia, respiratory disorders, glucose abnormalities,
prolonged hospitalization, superimposed bacterial infection,
and multiple organ failures have been reported in COVID-19-
TB cases (98, 140).

COVID-19 and TB are the two leading causes of death among
respiratory diseases (12, 141). In a cohort of 49 COVID-19-TB
cases from eight countries, i.e., Brazil, Singapore, Russia, Spain,
Switzerland, Belgium, France, and Italy (15), 26 patients were
detected as TB positive before COVID-19, and COVID-19 was
diagnosed in 14 patients before TB treatment. Of the total, 42
patients had active pulmonary TB, and seven developed TB
complications. Similar findings were confirmed by a study
conducted in India (110). In a similar study conducted in
Sondalo Hospital, Italy, clinical, laboratory, and radiological
characteristics showed that SARS-CoV-2 infected 20 of the 24
hospitalized TB patients. Four patients received only
hydroxychloroquine at the time of hospitalization. A single TB
case later coinfected with COVID-19 died, whereas the
remaining 19 people experienced severe medical outcomes
such as pneumonia (113). In a case-control study from
Shenyang Primary-Care Hospital, China, 13 out of 36 COVID-
19 people tested positive for TB (142), implying that M.
tuberculosis infection increases host susceptibility to SARS-
CoV-2 infections. Therefore, routine TB coinfection diagnosis
in COVID-19 cases is advised. Moreover, a large-scale clinical
research study should evaluate the negative impact of severe TB
on COVID-19 coinfection. The mortality rate was higher in aged
June 2022 | Volume 13 | Article 909011
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TABLE 1 | Studies assessing the impact of the COVID-19 pandemic on TB patients.

Country Number of
COVID-19-TB

cases

Clinical features Main outcomes Ref

A multinational study,
including Belgium, Brazil,
France, Italy, Russia,
Singapore, Spain,
Switzerland

49 COVID-19-TB
patients

COVID-19 cases: 5 asymptomatic, 43 symptomatic,
(36 pulmonary TB, 13 extrapulmonary TB)

After treatment, 18 recovered, 25 were under
treatment with follow-up, while six patients died

(15)

China Three COVID-
19-TB cases

Respiratory distress, hypoxia, hemoptysis, low
peripheral blood count, reduced immunity, CT scan
showed significant ground-glass opacities in lungs

After 14 days of treatment, all three patient’s
conditions were stabilized and discharged

(101)

China Three COVID-
19-TB cases

Fever, cough, chest tightness/pain, dyspnea After 24–37 days of treatment, all three patients were
recovered and discharged

(97)

China 15 COVID-19-TB
cases

Fever, cough, dyspnoea, chest pain, headache,
fatigue

After treatment, ten patients recovered while the rest
five died

(102)

China Four COVID-19-
TB cases

Fever, cough, chest distress, myalgia, shortness of
breath

One died while the rest three health status was
recovered (103)

China Eight COVID-19-
TB cases

Fever, fatigue, sputum production, cough, dyspnoea After treatment, all eight patients were recovered (104)

China Nine COVID-19-
TB cases

Fever, fatigue, cough, dyspnea, chest tightness Four severe and five mild cases were hospitalized for
treatment (105)

China Three COVID-
19-TB cases

Fever, cough, fatigue, wheeze, weight loss, etc. One severely ill patient died of respiratory and
circulatory failure, and two recovered

(106)

India Single COVID-
19-TB case

Fever, cough, shortness of breath, etc. Anti-TB medications; however, the patient’s health
status deteriorated with increased dyspnoea worse
respiration and died

(107)

India Single COVID-
19-TB case

Fever, cough, chills, night sweats, loss of appetite,
chest pain, breathlessness

The patient was given anti-TB treatment and is under
treatment

(108)

India Single COVID-
19-TB case

Headache, dizziness, vomiting, CNS TB The patient was discharged after 28 days of anti-TB
medications; he was asymptomatic on the second
visit after two weeks. Rifampicin, isoniazid, and
pyridoxine were continued

(109)

India 22 COVID-19-TB
cases

Fever, cough, breathlessness After treatment, sixteen cases recovered and were
discharged follow-up, while six died

(110)

America Single COVID-
19-TB case

Fever, cough, hypertension, diabetes, atrial
fibrillation, increased leukocytosis, high inflammatory
markers, CRP, IL6, LDH, ferritin, fibrinogen

After 51 days of anti-TB drugs treatment, the patient
was recovered and discharged (111)

America Single COVID-
19-TB case

Fever, headache Death of brain herniation (112)

Italy 69 COVID-19-TB
cases (60 were
migrants and 9
were Italian)

The majority were elderly with comorbidities,
hypertension, prostatic hypertrophy, liver disease,
fever, cough, vomit, etc.

After treatment, eight died, and 61 recovered and
were discharged with follow-up

(98)

Italy 20 COVID-19-TB
patients

Fever, cough, chest pain, and dyspnoea were
common among patients

After treatment, twelve recovered along with a case
with chest pain, and vomit was unchanged, while
seven severe cases were treating

(113)

Brazil Two COVID-19-
TB cases

Fever, cough, mild respiratory distress, myalgia,
headache

After anti-TB medications for one week without giving
antiretroviral therapy, all the patients were clinically
stable and discharged with follow-up

(114)

Bangladesh, India, Nepal Six COVID-19-
TB cases

Fever, fatigue, cough, myalgia After treatment, patients were recovered and
discharged with follow-up

(115)

Philippines 113 COVID-19-
TB patients

Of the total, 22 suffered from hypertension, 14
diabetes, 5 cancers, 8 cardiac diseases, 4 asthma,
and 3 COPD

Of the 70 hospitalized, 22 non hospitalized, and 21
unknown, 32 died, and 57 recovered (116)

South Africa 115 COVID-19
with HIV 510
COVID-10
without HIV

Most individuals suffer from hypertension, diabetes,
chronic kidney disease, chronic lung diseases,
previous TB, current TB, HIV, etc.

of the 115 COVID-19 diseased combined with HIV,
42 had previous TB history and 16 current TB,
whereas, among 510 COVID-10 without HIV, 45 had
previous TB history and 10 current TB

(117)

Haiti Single COVID-
19-MDR-TB
case

Isoniazid and rifampin resistance was evident; chest
radiograph revealed a large lobe cavity with lobe
opacity; before hospitalization and treatment, the
patient left and was not followed up

unknown
(118)

Singapore Four COVID-19-
TB cases

Fever, cough, dyspnea, pleuritic chest pain After treatment, the patient was stabilized and
discharged

(119)

(Continued)
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people (> 70 years old) and COVID-19-TB patients, whereas the
migrants had lower mortality rates, which may be attributed to
their younger age and the absence of clinical comorbidities (15,
98). COVID-19 is associated with higher mortality among TB
patients (98, 140) who acquired COVID-19 through nosocomial
transmission. According to a meta-analysis, COVID-19
coinfection increases the risk of TB patient death (1.4 times)
(143). The findings of 69 patients from eight countries (98)
suggest a COVID-19-TB fatality rate of 11.6% and 14.3% (15).
Mortality is likely to occur in old COVID-19-TB patients having
medical comorbidities. For example, 5% of the old cases with
comorbidities in Italy (113). According to evidence, migrants
had lower mortality rates and comorbidities, most likely due to
their younger age (144). However, patients with severe TB or
MDR-TB could experience increased mortality, particularly
younger individuals (144). A longitudinal cohort study looked
at the risk of COVID-19 patient deaths when they were also
infected with TB, and it was discovered that the COVID-19-TB
death rate was higher (2.17 times) than the single COVID-19
death rate. In comparison, nearly 25% of COVID-19-TB patients
recovered, which was lower than single COVID-19-infected
individuals (116), highlighting the need to prioritize routine
TB testing for COVID-19 patients. To understand this
coinfection interaction, the Global TB Network and WHO
jointly launched a study on TB and COVID-19 patients.
COVID-19-TB clinical comorbidities have been described in
597 cases studied from 132 centers in 36 different countries/
states (145).

Studies have also elucidated the molecular interactions of the
host with COVID-19-TB, and it was found that this viral-
bacterial coinfection worsens respiratory disorders (12, 141).
Clinical manifestations such as hemoptysis, cough, weakness,
and fever are common among people suffering from COVID-19-
TB, making an accurate diagnosis difficult. As COVID-19-TB
causes an unbalanced inflammatory response in severely infected
individuals; therefore, understanding the molecular interactions
Frontiers in Immunology | www.frontiersin.org 7
between SARS-CoV-2-M. tuberculosis and their host will be
critical for developing anti-COVID-19-TB therapeutic agents
(141). A study also examined the immunological status in
COVID-19-TB cases, i.e., increased C-reactive protein (CRP),
d-dimers, ferritin, neutrophils, lymphocytes, cytokine storm, and
chemokines have been linked to COVID-19 severity and patient
mortality (146, 147). The bronchoalveolar fluid from severe/mild
COVID-19 patients showed increased chemokine (C-C motif
ligand-2: CCL-2) and CCL-7, attracting the CCL2-associated
monocytes. In addition, severe COVID-19 patients revealed
increased mononuclear phagocyte counts (accounting for 80%
of total bronchoalveolar fluid cells) compared to 60% in mild
cases and 40% in healthy controls (147, 148). Phagocyte
activation can induce pro-inflammatory cytokines (cytokine
storm), which increases alveolar epithelial infection (149).
Increased pro-inflammatory cytokine, IL6, IL1-b, and IP10
expression in COVID-19 patients promotes neutrophil
proliferation and infiltration into the lung for injury (150,
151). Severe TB patients showed increased pulmonary immune
cell (macrophages, dendritic cells, etc.) responses. These immune
cells overproduce cytokines like IL1, IL10, IL18, IFNa, and IL6
(152, 153). In brief, COVID-19 coinfection with TB promotes
cytokine storms that cause multiple organ injuries, particularly to
the lungs, heart, or liver (5, 150, 151). These two pathogens
induce cytokine storms with similar features but different
magnitudes and outcomes. For example, M. tuberculosis
infection elicits a lower immune response than SARS-CoV-2.
In addition, cytokine storm causes respiratory distress in
COVID-19 patients, whereas it causes long-term organ
damage/failure in chronic cases. In addition to cytokine storm,
lymphocytopenia (decreased lymphocyte counts) is another
notable feature of the immune response in COVID-19 and TB
patients. Lymphocyte counts of less than 1.5×109 per liter have
been observed in severe COVID-19 cases (154, 155). After
penetration, SARS-CoV-2 may directly invade lymphocytes
and destroy them. The damaged lymphatic system in severe
TABLE 1 | Continued

Country Number of
COVID-19-TB

cases

Clinical features Main outcomes Ref

Panama Two COVID-19-
TB cases

Pneumonia, confusion, urea, respiratory rate, blood
pressure, mild neutrophilia, anemia, and CRP,
ferritin, and procalcitonin levels were increased

After 14 days of treatment, both patients recovered
and were discharged with follow-up (120)

France Single COVID-
19-TB case

Fever, acute/severe respiratory disorders After 14 days of treatment, the patient recovered and
discharged

(121)

South Africa Single COVID-
19-TB case

Fever, cough The patient received oral prednisone doses and is
under-observation (122)

South Africa Single COVID-
19-TB case

Hydrocephalus, arterial ischemic stroke, extensive
cerebral sinus venous thrombosis, induced pro-
inflammatory cytokines response, d-dimers,
fibrinogen, and ferritin

Required neuro-rehabilitation for a month. after
treatment, the patient was recovered, discharged with
home occupational and physiotherapy

(123)

Saudi Arabia Single COVID-
19-TB case

Hypertension, diabetic, severe/acute pneumonia After anti-TB medications for four months along with
oxygen supportive care, the patient recovered and
was discharged with followed-up

(124)

Turkey Single COVID-
19-TB case

Fever, cough, elevated neutrophil count, creatinine,
d-dimer levels

After administration of multi-task clinical management
approaches (including antiretroviral and anti-TB
medications), the patient recovered

(125)
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COVID-19 patients further promotes lymphocytopenia (156).
Increased pro-inflammatory cytokine levels of IL6 and TNFa
can also cause lymphocytopenia in severe COVID-19 patients
(156). Moreover, T lymphocyte dysregulation was observed in
TB cases. For example, a study also reported that the host defense
response is dependent on CD4+ cell responses against M.
tuberculosis infection (157, 158). A low CD4+ cell count
increases the risk of TB reactivation, resulting in severe
radiological lesions or patient death (48). Immunosuppression
caused by CD4+ cell depletion in SARS-CoV-2-TB cases may
increase the disease severity and patient morbidity. Therefore,
prolonged clinical consideration should be given to all the
above concerns.
PATHOLOGICAL PATHWAYS THAT
CONNECT SARS-COV-2 AND M.
TUBERCULOSIS COINFECTION

Since the first SARS-CoV-2 outbreak in Wuhan city (133), there
has been little data on M. tuberculosis coinfection, probably due
to M. tuberculosis’s prolonged incubation from exposure to
symptoms (134, 159). Based on the population study findings
and the published data about the etiology of COVID-19 and TB,
it is possible to discuss some aspects of COVID-19-TB
coinfection (160). Both COVID-19 and TB have airborne
transmission primarily affecting the lungs and share the same
social determinants and symptoms (Figure 1). However, SARS-
CoV-2 andM. tuberculosis present significant differences in their
pathogenesis, and learning about their interactions with the host
may aid in the development of new COVID-19-TB treatment
strategies. SARS-CoV-2 and M. tuberculosis may act
synergistically in infected host cells (141). During latent TB
infection, M. tuberculosis interacts with the pulmonary
microenvironment and induces immune responses (141).
Concrete evidence suggests that SARS-CoV-2 may cause
hostile pro-inflammatory responses, including IL2, IL1-b, IL4,
IL6, IL10, IFNg, and TNFa in the infected cells (133). In
addition, several stimuli probably add up in COVID-19-TB
coinfection, leading to a cytokine storm. The necrosis and
pyroptosis of the lung may cause damage-associated molecular
pattern dispersion. SARS-CoV-2 presents a much more
aggressive pyroptosis and promotes immunopathology and
tissue damage (161, 162). Pulmonary alveoli are like battlefields
for both SARS-CoV-2 and M. tuberculosis. M. tuberculosis
silently infiltrates the lungs and avoids an exaggerated host
immune response. In the case of mild infection, individual
immune responses successfully eliminate both pathogens (163).
Sometimes, the damaged lungs of TB patients influence local
immunity and make the host more susceptible to COVID-19 and
other airborne pathogens (15). It has been shown that SARS-
CoV-2 aggravates the pulmonary TB status, causing latent TB to
become active, which further deteriorates lung function (164).
Further, inflammatory cytokine responses play a vital role in host
resistance to M. tuberculosis infection as revealed in murine
models (165), which was also validated in TB patients with
Frontiers in Immunology | www.frontiersin.org 8
mutations (blocking) in the IFNg and IL12 signaling pathways
(165, 166). According to the findings of a cohort of 49 COVID-
19 TB patients, the possibility that SARS-CoV-2 infection may
increase the occurrence of TB coinfection (15). A meta-analysis
showed that patients with a TB history are not more likely to
contract COVID-19; however, TB may increase the risk of
contracting COVID-19 (143). Active TB patients in an Italian
hospital had higher COVID-19 coinfection and clinical
characteristics (113). COVID-19 coinfection worsened TB
status and increased death in a group of 69 patients (98). In
contrast, 20 COVID-19-TB coinfected people had benign clinical
manifestations, with only one death. A chest X-ray revealed that
TB lesions had not been aggravated; only four of the patients had
recently developed pneumonia. In a quantitative study
conducted in Belarus, 844 COVID-19 confirmed patients
admitted to hospitals were tested for TB. Of the total, 47
patients had TB and were resistant to rifampicin (167). A
study including 36 COVID-19 cases from China discovered
that a history of pulmonary TB increases a patient’s
vulnerability to severe SARS-CoV-2 infection (142), implying
that TB status should be routinely checked in COVID-19 cases
(135). According to findings from a developed pathogen model,
populations at high risk of contracting SARS-CoV-2 may have a
higher M. tuberculosis prevalence (135).
IMPACT OF BCG ON COVID-19 PATIENTS

Previous immunological studies have shown that BCG vaccination
prevents TB, DNA, and RNA viral infections, such as herpes and
influenza viruses, resulting in lower morbidity and mortality (168,
169). The BCG vaccine stimulates the host immune response to
produce antibodies that protect against TB infection and prevent the
spread of the invaded M. tuberculosis (170). BCG vaccination in
adults may increase non-specific pro-inflammatory cytokines IL1-b
and IL6 against other bacterial pathogens (171) by stimulatingCD4+
and CD8+ cells against non-targeted antigens, modulating
lymphocyte responses against secondary infections. BCG
administration also promotes innate immune cell responses,
including monocytes, natural killer cells, and alveolar macrophages,
increasing host resistance to future bacterial/viral infections (172,
173). For example, BCG vaccination induces a protective humoral
immune response against the negative-strand RNA pneumovirus
that causes respiratory disorders (174). Based on previous research,
the BCG vaccination may boost the host’s immunity to reduce the
severity of COVID-19 (175). Subsequently, increased pro-
inflammatory cytokines TNFa, IL1-b, IL6, IFNg, alveolar
macrophages, T-lymphocytes, and antibody titers have been
observed in BCG vaccinated people (168). Based on the host
immune responses, BCG vaccination may prevent or reduce SARS-
CoV-2 infection, particularly in BCG vaccinated children (176, 177).
Althoughthesefindingsarehypothetical, anationwideBCGprogram
mayreduceCOVID-19 severity andmortality; however, clinical trials
on large datasets are recommended for BCG’s efficacy against the
COVID-19 pandemic. Following BCG administration, healthy
people will experience an immune response to SARS-CoV-2
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infection, likely reducing viral loads, inhibiting viral replication,
reducing pro-inflammatory cytokine responses, and inducing
lymphocytopenia (176). Australia’s Muldron Children’s Research
Institute started a phase III trial to determine if a healthcare worker’s
BCG immunization program affects SARS-CoV-2 infection.
National BCG vaccination programs in countries like Asia, Africa,
and America have resulted in fewer COVID-19 cases (177, 178),
Frontiers in Immunology | www.frontiersin.org 9
necessitating further investigation to reveal the BCGconnectionwith
mild COVID-19 infections. BCG vaccination most probably
stimulates innate immune responses against SARS-CoV-2.
Following BCG vaccination, epigenetic programming trains
monocytes and natural killer cells to clear many viral infections,
particularly SARS-CoV-2 (176). More clinical data is required to
understand the trained innate immune response and the adverse
BA

FIGURE 1 | Pathophysiological effect of SARS-CoV-2 and M. tuberculosis on the host cell. SARS-CoV-2 enters the host via aerosol, travels to the alveoli, and
interacts with the host’s innate immune cells. SARS-CoV-2 and M. tuberculosis-infected alveolar macrophages secrete cytokines to activate other immune cells, i.e.,
monocytes, macrophages, CD4+, CD8+ lymphocytes, neutrophils, dendritic cells, and natural killer cells to the infected site. (A) In severe COVID-19 infections, the
exuberant pro-inflammatory cytokine response may result in lung injury. The lungs of severely infected COVID-19 patients showed an elevated immune response,
which resulted in pneumonia, respiratory distress, lung fibrosis, and lymphocytopenia (decreased lymphocyte count). SARS-CoV-2 virulence factors interact with the
host lungs, eliciting an immune response. These interactions may weaken the innate immune response, leading to increased mycobacterial attachment, growth, and
dissemination. (B) In severe TB infection, activated lymphocytes produce excessive pro-inflammatory cytokines response called cytokine storms. Infection with M.
tuberculosis causes symptomatic TB in people who have weakened immune systems or are immune-compromised. Cytokine storm-mediated inflammation causes
multiple organ dysfunctions. M. tuberculosis infection and colonization may predispose the lungs to SARS-CoV-2 by down-regulating the host immune responses,
allowing virus survival, growth, and pathogenesis. The suppressed host immune response in COVID-19-TB coinfection may cause exacerbated TB. In addition,
reactivation of latent to active TB indicates that SARS-CoV-2 infection can exacerbate M. tuberculosis pathogenesis.
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effects of potential innate and adaptive immunity in BCG-vaccinated
COVID-19 cases. However, increased immunosuppression and
cytokine storms were linked to severe complications in COVID-19
patients (179). Given the increased global TB and SARS-CoV-2
burden, particularly in developing and underdeveloped countries,
BCG vaccination that could aid in the fight against both TB and
COVID-19 would be highly desirable. Previously, recombinant
adenoviral vectors were designed to boost patient immunity with
humoral and cellular immune response enhancement (180). Adults
with or without prior BCG vaccination should receive ChAdOx1-
85A(181). In addition toBCGvaccination, scientists are struggling to
develop an effective SARS-CoV-2 therapeutic agent to treat severe
cases, particularly people who have pre-comorbidities. Isoniazid,
ethambutol, pyrazinamide, and rifampin drugs are used to treat
resistantTB(98,140),whereasbedaquiline, clofazimine, levofloxacin,
and linezolid can be combined with pyrazinamide for the treatment
of MDR-TB cases. COVID19-TB coinfection can be treated with
azithromycin, hydroxychloroquine (an anti-rheumatic drug), and
protease inhibitors (lopinavir, ritonavir, darunavir, etc.) (15, 98).
Moreover, enoxaparin and parnaparine anticoagulants may prevent
the formation of blood clots (15).
DIAGNOSTIC CHALLENGES AND
MANAGEMENT OF COVID-19-TB CASES

Many governments imposed lockdowns to prevent SARS-CoV-2
transmission (182). People were forced to stay indoors, which
affected their lives and health. Because of the similarity in
symptoms between COVID-19 and TB, most people probably
experience delayed TB with almost similar symptoms to
COVID-19. In addition, the COVID-19-TB coinfection may
have discouraged people from getting a diagnosis even if they
experienced disease symptoms. These undiagnosed people were
mostly from the region with lower socioeconomic status,
struggling to make ends meet and eat. As a result, their pre-
existing misery would have been exacerbated by the additional
fear of quarantine. Furthermore, COVID-19-TB transmission
could be a major concern due to close interactions at home.

The implementation of city lockdowns delayed TB diagnosis
among those seeking medical advice, as non-emergency services
were suspended in most parts of the world. Along with the
restriction on accessing government and private clinics,
laboratories were primarily dedicated to processing COVID-19
patient specimens (183), resulting in decreased COVID-19-TB
detection and notification, as demonstrated by the 2020 Global
TB Report. According to this report, the patient reporting rate was
reduced by 25% in the three highest TB burden countries
(Indonesia, India, and the Philippines) in only six months
(January to June 2020) compared to 2019. COVID-19 has
disrupted TB services globally, particularly in countries with the
highest TB prevalence. For example, data from sixteen countries
showed that COVID-19 disrupted TB services, particularly during
the first four months of the pandemic (184). According to reports,
deaths from TB are expected to increase by almost 13% in the
coming years (185), which is probably a significant setback in the
Frontiers in Immunology | www.frontiersin.org 10
global fight against global TB. Due to COVID-19 restrictions,
patients who have already been diagnosed with TB will also
suffer. Sputum microscopy and bacterial culture growth primarily
used for pulmonary TB follow-up patients were lost due to
lockdowns. As a result, those with anti-TB therapy failure or
multi-drug resistance to TB may have continuous health
deterioration (183). Counseling and patient motivation are
required to cope with TB clinical consequences and long-term
anti-TB medication. Both COVID-19 and TB primarily affect the
human lungs; however, TB symptoms shortly appear after COVID-
19 infection (186, 187). Given the clinical complications of COVID-
19 and TB, including cough, fever, breathing problems, and lung
lesions (186, 187), proper diagnostic facilities are encouraged to
avoid the misdiagnosis of one disease over the other. Tuberculin
tests are less expensive and more widely used, whereas IGRAs are
rarely used to diagnose TB (188). However, due to host immunity
againstM. tuberculosis or the BCG vaccine (189), a potential error in
disease diagnosis may exist in immune-compromised people (190).
Increased age, lymphocytopenia, and immunosuppressive therapies
have also been linked to false-negative IGRAs (181), resulting in a
false TB diagnosis. Furthermore, excessive inflammatory marker
production may interfere with the IGRA testing, and increased CRP
levels may confound the false-negative QuantiFERON-TB Gold In-
Tube Test (191). In another study, severe COVID-19 patients had a
lower peripheral lymphocyte count, natural killer cells, high CRP
levels, and pro-inflammatory cytokines IL6, IL8, TNFa, IL2-R, IL1-
b, etc. This unusual cytokine production may destroy host immune
responses, i.e., low lymphocyte infiltration into infected lungs and
multiple organ damage (192). Because SARS-CoV-2 is a novel CoV
and has no specific treatment (5), suspected people must be tested
accurately to prevent virus transmission. Apart from traditional
diagnostic testing for detecting viral antigens or antiviral antibodies,
the nucleic acid detection method has been developed for routine
testing (193). To identify COVID-19 clinical manifestations (such as
fever, dyspnea, cough), radiological features, and rapid virus
transmission among people (194), doctors may encounter
difficulty in differential diagnosis or overlook TB. In addition,
scientists are struggling to develop an effective SARS-CoV-2
therapeutic agent to treat severe cases, particularly people who
have pre-comorbidities. A lack of TB-specific radiological findings is
likely to be missed due to the non-specific COVID-19-TB features.
Another reason could be immunomodulators (a class of drugs that
target pathways to reduce immune response) in mild/severe
COVID-19 cases that may reactivate latent TB in endemic areas
(107). Based on clinical, radiological, and laboratory findings, a
patient in Russia developed pulmonary TB in the infiltration phase
and COVID-19, which was complicated by spontaneous
pneumothorax of the left lung. A TB specialist, an infectious
diseases specialist, and a thoracic surgeon discussed the case
condition. Due to his severe condition, he was given
detoxification, bronchiolitis, and antibiotics (azithromycin,
ceftriaxone, levofloxacin). Following TB confirmation, the patient
was started on anti-TB antibiotics; rifampicin, ethambutol, and
pyrazinamide. The chest drain was removed from the left pleural
cavity, and lung function quickly recovered. The postoperative
wound area had residual subcutaneous emphysema. Two nucleic
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acid tests for SARS-CoV-2 yielded negative results, and the patient
was transferred to a TB hospital for further management (195).

Access to COVID-19 and TB diagnostic testing is a critical first
step toward reducing disease transmission. As a result, there is a case
to improve access to COVID-19 and TB testing through the
implementation of simultaneous testing, particularly in countries
with a high TB burden, to reduce the impact of the current
pandemic on TB patients. Several countries, including Indonesia
(196), South Africa (197), Nigeria (198), and India (199), began
concurrent diagnostic testing for COVID-19 and TB during the
pandemic. Notably, India’s Ministry of Health and Family Welfare
issued guidelines to reduce the impact of the COVID-19 pandemic
on TB control and management, including COVID-19 screening
for TB confirmed patients or TB screening for COVID-19
confirmed patients (199). FIND, a non-profit global alliance,
develops low-cost diagnostic tests for COVID-19 and TB. The
project allows for rapid integrated testing for COVID-19 and TB for
improved detection of both diseases. Rapid antigen testing for
COVID-19 or TB symptoms assists in patient management by
identifying coinfection hotspots. In addition, the private healthcare
sector collaborated with the Joint Effort for the Elimination of TB
(JEET) to improve access to affordable TB and COVID-19 testing
services and educate people about coinfection precautions and
symptoms and treatment. These experiences have demonstrated
the importance of concurrent COVID-19 and TB testing in
increasing access to coinfection diagnostics. The difficulties
encountered during the simultaneous COVID-19-TB testing were
primarily related to staff deficiencies and a lack of personal
protective equipment. Huge gaps exist in the area of simultaneous
COVID-19-TB testing, for example, the development of integrated
COVID-19-TB testing for the same sample would increase the
integrated system’s cost-efficiency. Other key areas that require
additional research include evaluating a community for
simultaneous testing and the cost-effectiveness of simultaneous
testing (200). Future efforts should include the development and
validation of COVID-19 and TB-related symptom-screening apps,
considering factors like geography, age, risk factors, and research
into the optimal sampling strategy for COVID-19-TB testing.
CONCLUSIONS AND FUTURE
PERSPECTIVES

In the current scenario, TB coinfection should always be
suspected in COVID-19 patients, whether or not they exhibit
specific respiratory symptoms”– the data presented above
indicate that TB coinfection contributes to COVID-19 severity
and worse outcomes. Thus, rather than all patients, COVID-19
and TB coinfection may be suspected in severe TB patients, those
Frontiers in Immunology | www.frontiersin.org 11
resistant to therapy, or those from countries with a high
prevalence of TB infection.

The COVID-19 pandemic has significantly affected human life
and substantially lost the global economy. Available data shows a
high mortality rate among COVID-19-TB coinfected individuals.
SARS-CoV-2-M. tuberculosis coinfections impair host immunity. It
is reasonable to assume that COVID-19 and TB harmful synergism
contribute to severe clinical manifestations, most likely affecting
patients, causing respiratory disorders via cytokine-mediated
responses and an increased risk of latent TB reactivation.

To avoid COVID-19 coinfection, severe TB patients should
only be hospitalized. Despite increasing COVID-19-TB cases,
comprehensive global clinical trials are required to investigate
the potential effect of COVID-19 on TB cases deeply. The current
COVID-19 cases undermine theWHO goal of reducing the global
TB burden. To lessen the impact of the COVID-19 pandemic on
TB patients, consistent practices are needed to highlight the global
TB burden while taking urgent steps to support and organize
innovative TB control programs and minimize hospital visits to
prevent COVID-19 coinfection (201). TB patients’ follow-up in
their homes should be encouraged to ensure proper anti-TB
medications. In addition, the implementation of smartphone
technology might be an excellent choice for assessing and
monitoring anti-TB medications. Collaboration of WHO anti-
TB programs with local governments in developing countries is
also recommended to prevent COVID-19-TB coinfection.
Increasing testing capacity helped the healthcare system in high-
risk areas. Implementing effective strategies to identify new TB
hotspots and ensure continuous anti-TB drug transportation and
distribution will be beneficial, especially in high-risk areas (202).
Advanced preventive measures can also be taken to control
COVID-19-TB coinfection. Despite the COVID-19 pandemic’s
social and economic challenges, proper healthcare systems,
effective social policies, and equal health facilities should be
provided to control and prevent TB coinfection.
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Assao-Neino MM, et al. Worldwide Effects of Coronavirus Disease
Pandemic on Tuberculosis Services, January-April 2020. Emerg Infect Dis
(2020) 26:2709–12. doi: 10.3201/eid2611.203163

185. WHO. Global Tuberculosis Report 2020. Geneva: WHO (2020) p. 1–232.
Frontiers in Immunology | www.frontiersin.org 16
186. Golli AL, Nitu̧ MF, Turcu F, Popescu M, Ciobanu-Mitrache L, Olteanu M.
Tuberculosis Remains a Public Health Problem in Romania. Int J Tuberc
Lung Dis (2019) 23:226–31. doi: 10.5588/ijtld.18.0270

187. Raoult D, Zumla A, Locatelli F, Ippolito G, Kroemer G. Coronavirus
Infections: Epidemiological, Clinical and Immunological Features and
Hypotheses. Cell Stress (2020) 4:66–75. doi: 10.15698/cst2020.04.216

188. Di L, Li Y. The Risk Factor of False-Negative and False-Positive for T-
SPOT.TB in Active Tuberculosis. J Clin Lab Anal 32 (2018) 32:e22273. doi:
10.1002/jcla.22273

189. Lu LL, Smith MT, Yu KKQ, Luedemann C, Suscovich TJ, Grace PS, et al.
(2019). IFN-g-Independent Immune Markers of Mycobacterium
Tuberculosis Exposure. Nat Med 25:977–87. doi: 10.1038/s41591-019-
0441-3

190. Yamasue M, Komiya K, Usagawa Y, Umeki K, Nureki SI, Ando M, et al.
Factors Associated With False Negative Interferon-g Release Assay Results in
Patients With Tuberculosis: A Systematic Review With Meta-Analysis. Sci
Rep (2020) 10:1607. doi: 10.1038/s41598-020-58459-9

191. Kwon YS, Kim YH, Jeon K, Jeong BH, Ryu YJ, Choi JC, et al. Factors That
Predict Negative Results of QuantiFERON-TB Gold In-Tube Test in Patients
With Culture-Confirmed Tuberculosis: A Multicenter Retrospective Cohort
Study. PLos One (2015) 10:e0129792. doi: 10.1371/journal.pone.0129792

192. Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. The Use of Anti-
Inflammatory Drugs in the Treatment of People With Severe Coronavirus
Disease 2019 (COVID-19): The Perspectives of Clinical Immunologists From
China. Clin Immunol (2020) 214:108393. doi: 10.1016/j.clim.2020.108393

193. Li JY, You Z, Wang Q, Zhou ZJ, Qiu Y, Luo R, et al. The Epidemic of 2019-
Novel-Coronavirus (2019-Ncov) Pneumonia and Insights for Emerging
Infectious Diseases in the Future. Microbes Infect (2020) 22:80–5.
doi: 10.1016/j.micinf.2020.02.002

194. Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. Coronavirus
Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in
919 Patients. AJR Am J Roentgenol (2020) 215:87–93. doi: 10.2214/
AJR.20.23034

195. Starshinova A, Guglielmetti L, Rzhepishevska O, Ekaterincheva O, Zinchenko
Y, Kudlay D. Diagnostics andManagement of Tuberculosis and COVID-19 in
a Patient With Pneumothorax (Clinical Case). J Clin Tuberc Other Mycobact
Dis (2021) 24:100259. doi: 10.1016/j.jctube.2021.100259

196. XINHUANET.com. Indonesia Steps Up Battle Against Tuberculosis Amid
COVID-19 Pandemic (2020) (Accessed May 10, 2022).

197. Devidiscourse, Provinces Experimenting With Combining TB and COVID-19
Screening (2020) (Accessed December 20, 2021).

198. WHO-Africa. Kaduna State and WHO Scale Up COVID-19 and TB Search
With Mobile Testing in Communities (2020) (Accessed December 20,
2021).

199. Government-of-India and Government of India Ministry of Health and
Family Welfare. Rapid Response Plan to Mitigate Impact of COVID-19
Pandemic on TB Epidemic and National TB Elimination Program (NTEP)
Activities in India-Reg (2020) (Accessed December 20, 2021).

200. Ruhwald M, Hannay E, Sarin S, Kao K, Sen R, Chadha S. Considerations for
Simultaneous Testing of COVID-19 and Tuberculosis in High-Burden
Countries. Lancet Glob Health (2022) 10:e465–6. doi: 10.1016/S2214-109X
(22)00002-X

201. Moran A, Mphahlele M, Mvusi L, Dlamini C, Ahmedov S, AlMossawi HJ,
et al. Learning From Tuberculosis: COVID-19 Highlights the Need for More
Robust Infection Control Policy. J Glob Health (2020) 10:020328. doi:
10.7189/jogh.10.020328

202. Bardhan M, Hasan MM, Ray I, Sarkar A, Chahal P, Rackimuthu S, et al.
Tuberculosis Amidst COVID-19 Pandemic in India: Unspoken Challenges
and the Way Forward. Trop Med Health (2021) 49:84. doi: 10.1186/s41182-
021-00377-1

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
June 2022 | Volume 13 | Article 909011

https://doi.org/10.1111/j.1365-2249.2010.04146.x
https://doi.org/10.1111/j.1365-2249.2010.04146.x
https://doi.org/10.3390/ijerph19074370
https://doi.org/10.1016/j.cmi.2019.04.020
https://doi.org/10.1111/j.1525-1470.2012.01848.x
https://doi.org/10.4103/bbrj.bbrj_5_19
https://doi.org/10.3389/fimmu.2019.02806
https://doi.org/10.1159/000355628
https://doi.org/10.1126/science.aaf1098
https://doi.org/10.3389/fimmu.2018.02875
https://www.euro.who.int/__data/assets/pdf_file/0003/446340/Factsheet-May-2020-Vulnerable-populations-during-COVID-19-response-eng.pdf
https://www.euro.who.int/__data/assets/pdf_file/0003/446340/Factsheet-May-2020-Vulnerable-populations-during-COVID-19-response-eng.pdf
https://www.euro.who.int/__data/assets/pdf_file/0003/446340/Factsheet-May-2020-Vulnerable-populations-during-COVID-19-response-eng.pdf
https://doi.org/10.1038/s41577-020-0337-y
https://doi.org/10.3390/ijerph17155589
https://doi.org/10.1186/s40794-020-00117-z
https://doi.org/10.1016/S0140-6736(20)30628-0
https://doi.org/10.1016/S0140-6736(20)31604-4
https://doi.org/10.1016/S0140-6736(20)31604-4
https://doi.org/10.1155/2020/1401053
https://doi.org/10.1186/s40001-020-00456-9
https://doi.org/10.1177/20499361211016973
https://doi.org/10.3201/eid2611.203163
https://doi.org/10.5588/ijtld.18.0270
https://doi.org/10.15698/cst2020.04.216
https://doi.org/10.1002/jcla.22273
https://doi.org/10.1038/s41591-019-0441-3
https://doi.org/10.1038/s41591-019-0441-3
https://doi.org/10.1038/s41598-020-58459-9
https://doi.org/10.1371/journal.pone.0129792
https://doi.org/10.1016/j.clim.2020.108393
https://doi.org/10.1016/j.micinf.2020.02.002
https://doi.org/10.2214/AJR.20.23034
https://doi.org/10.2214/AJR.20.23034
https://doi.org/10.1016/j.jctube.2021.100259
https://doi.org/10.1016/S2214-109X(22)00002-X
https://doi.org/10.1016/S2214-109X(22)00002-X
https://doi.org/10.7189/jogh.10.020328
https://doi.org/10.1186/s41182-021-00377-1
https://doi.org/10.1186/s41182-021-00377-1
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shah et al. Pathogenesis of Co-Infection
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Shah, Shah, Yasmeen, Baloch and Xia. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
Frontiers in Immunology | www.frontiersin.org 17
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.
June 2022 | Volume 13 | Article 909011

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Pathogenesis of SARS-CoV-2 and Mycobacterium tuberculosis Coinfection
	Introduction
	SARS-CoV-2 and M. tuberculosis Host Cellular Receptors and Pathogenesis
	SARS-CoV-2 ACE2, Auxiliary and Alternative to ACE2 SARS-CoV-2 Receptors and Pathogenesis
	M. tuberculosis TLRs, NLRs, CLRs, and Scavenger Receptors and Pathogenesis

	Impact of SARS-CoV-2 Pandemic on TB Patients
	Pathological Pathways That Connect SARS-CoV-2 and M. tuberculosis Coinfection
	Impact of BCG on COVID-19 Patients
	Diagnostic Challenges and Management of COVID-19-TB Cases
	Conclusions and Future Perspectives
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


