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Molecular profile reveals
immune-associated markers
of medulloblastoma for
different subtypes
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Xiaohong Zheng1, Zehao Cai1, Lexin Pan2,
Feng Chen1 and Wenbin Li1*

1Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical
University, Beijing, China, 2School of Mechatronical Engineering, Beijing Institute of Technology,
Beijing, China
Medulloblastoma, a common pediatric malignant tumor, has been recognized

to have four molecular subgroups [wingless (WNT), sonic hedgehog (SHH),

group 3, group 4], which are defined by the characteristic gene transcriptomic

and DNA methylomic profiles, and has distinct clinical features within each

subgroup. The tumor immune microenvironment is integral in tumor initiation

and progression and might be associated with therapeutic responses.

However, to date, the immune infiltrative landscape of medulloblastoma has

not yet been elucidated. Thus, we proposed MethylCIBERSORT to estimate the

degree of immune cell infiltration and weighted correlation network analysis

(WGCNA) to find modules of highly correlated genes. Synthesizing the hub

genes in the protein–protein interaction (PPI) network and modules of the co-

expression network, we identify three candidate biomarkers [GRB2-

associated-binding protein 1 (GAB1), Abelson 1 (ABL1), and CXC motif

chemokine receptor type 4 (CXCR4)] via the molecular profiles of

medulloblastoma. Given this, we investigated the correlation between these

three immune hub genes and immune checkpoint blockade response and the

potential of drug prediction further. In addition, this study demonstrated a

higher presence of endothelial cells and infiltrating immune cells in Group 3

tumor bulk. The above results will be conducive to better comprehending the

immune-related pathogenesis and treatment of medulloblastoma.

KEYWORDS

MethylCIBERSORT, immune infiltration, WGCNA, PPI, medulloblastoma
Abbreviations: MB, medulloblastoma; WNT, wingless; SHH, sonic hedgehog; TIME, tumor immune

microenvironment; CAR-T, chimeric antigen receptor T cell; GEO, Gene Expression Omnibus; GO, Gene

Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; WGCNA, weighted correlation network

analysis; MM, module membership; PPI, protein–protein interaction; STRING, Search Tool for the

Retrieval of Interacting Genes; TF, transcriptional factor; imm-DEGs, differentially expressed immune

genes; GRN, gene regulatory network; CTLs, cytotoxic T lymphocytes; GAB1, GRB2-associated-binding

protein 1; CXCR4, CXC motif chemokine receptor type 4; ABL1, Abelson 1.
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Introduction

Medulloblastoma (MB) is considered to be a highly

malignant and fast-growing brain tumor among pediatric

central nervous system (CNS) malignancies, accounting for

8%–10% of all pediatric brain tumors and is becoming the

most common type (1). Classification of MB was primarily

based on histological features, age at diagnosis, tumor

resection range, and metastasis , while with recent

developments in high-throughput transcriptome data analyses,

the subclassification of MBs applied by a transcriptional

approach can be achieved (2, 3). The international consensus

destination of MB distinguished by advanced genomic research

was named as follows: wingless-activated (WNT-MB), sonic

hedgehog-activated (SHH-MB), Group 3, and Group 4, each

characterized by unique genetic alterations, transcription al/

methylation profiles, and clinical outcomes (4–7). These four

working groups are now considered to be individual

biological entities.

WNT-MBs are the most well-known subgroup of MB with

an activation of the WNT pathway and harbor mutations in

exon 3 of CTNNB1 and monosomy chromosome 6. Indeed, the

long-term survival rates for patients with WNT-MBs are likely

to exceed 90%; most patients often die as a consequence of

complications of therapy or secondary neoplasms rather than

from recurrent WNT-MBs (8). SHH-WBs, with an activation of

the SHH pathway, have largely been distinguished based on

transcriptional profiling. Immunohistochemical staining for

SFRPI, or GRB2-associated-binding protein 1 (GAB1), and

deletion of chromosome 9q are other approaches to

distinguish SHH-MBs. The overall prognosis of SHH-MBs is

similar to that of Group 4-MBs, between the WNT-MBs (good)

and Group 3-MBs (poor) (4). Survival among SHH-MB patients

was significantly worse for combined with chromosome loss

(such as chromosome 3p, 10q, and 17p) and PTCH1 mutations

(9). TP53 mutational status indicates distinct outcomes in SHH-

MBs: TP53 wild type tumors are more frequent among adults

and young children and are related to a favorable prognosis,

while TP53 mutation tumors are common among older children

and are linked to adverse outcomes (10). Unlike WNT-MBs and

SHH-MBs, group 3 and group 4 are not related to well-defined

activated signaling pathways. Group 3 has a high metastatic rate

that implies poorer prognoses particularly in those with

amplified MYC (11, 12). Structural aberration such as loss of

16q, 10q, and 9q and gain of 7 and 1q is most recurrent in group

3-MBs (13). Group 4-MBs are the most prevalent type of MB,

but their molecular pathogenesis is not well understood (14).

Patients with absent chromosome 11 have an excellent clinical

outcome (exceeding 90%). While compared with WNT- or

SHH-MBs, adults with Group 4-MBs have a significantly

worse prognosis (15). These subgroups with specific genetic

alterations and clinical outcomes indicated that tumors with
Frontiers in Immunology 02
similar transcriptomes may behave in a similar biological

manner, providing direction for molecular targeted therapy

and clinical risk stratification.

The tumor immune microenvironment (TIME) is of major

importance to the evolution of tumors and can modulate the

response to chemotherapy and radiotherapy (16). However,

current immune therapies, including cancer vaccinations,

chimeric antigen receptor T cell (CAR-T) therapy, and

immune checkpoint inhibitors (ICIs), do not benefit all

patients (17). Targeted therapy has not yet been implemented

based on the classification of MBs. Moreover, current

chemotherapy is used for post-radiotherapy maintenance and

is poorly tolerated by adults and children (especially adults) (18).

Therefore, we explored the interaction between TIME and

tumors, aiming to provide the basis for taking full advantage

of the potential of immune-based therapeutic strategies (19).

Previous results that were based on preclinical animal models or

an immunohistology profiling of tumors are limited in sample

size and struggle to meet statistical requirements. Furthermore,

the existing markers for MB subgroup classification are not

highly indicative of immune infiltration. With the contribution

of high-throughput data analysis, we analyzed large gene

expression datasets of MB, including one dataset of 763 tumor

samples (20, 21), and dissected immune cell infiltration through

MB. In this study, we applied the deconvolution algorithm to

analyze the tumor infiltrating immune cells among MB

subgroups. We analyzed the differentially expressed immune

genes and explored the functional analysis among the MB

subgroups, aiming to reveal the immune infiltrative cell

distribution and functional pathway enrichment. We then

adopted the WGCNA to construct a co-expression network

and identify three hub genes according to the immune

infiltration of MB. Subsequently, we explored the potential of

hub genes for immune checkpoint blockade response and drug

prediction. In our study, different subtypes of immune

infiltrating cells and immune-related genes were screened for

the first time to fully reflect the TIME of MB. Our results aimed

to promote immunotherapy and individualize the treatment

for MB.
Materials and methods

Patients and data collection

All MB gene expression profiles were acquired from the

Gene Expression Omnibus (GEO) database and NCBI’s publicly

available genomics database (20). Dataset GSE85218 contains

DNA methylation and gene expression profiling of primary MB

samples from the same public cohort. Gene expression profiling

of MBs was from dataset GSE85217 across 763 primary samples

based on the platform GPL22286. DNA methylation profiling of
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763 primary samples was from dataset GSE85212 based on

platform GPL13534. Both GSE85217 and GSE85212 are

subseries belonging to the superseries GSE85218. Those 763

intertumoral heterogenic primary samples comprise four

distinct entities: WNT (n = 70), SHH (n = 223), Group 3 (n =

144), and Group 4 (n = 326). The immune gene profiles were

downloaded from the ImmPort database (http://www.immport.

org/, 36 Notes released, September 2020) and the InnateDB

(http://www.innatedb.ca/, Version 5.4), which contained 2,533

immune genes.
Analysis of tumor-infiltrating immune
cells among medulloblastoma subgroups

CIBERSORT is a support vector regression modeling to gene

expression microarray data, developed to permit the in silico

deconvolution of complex cellular mixtures and to estimate

tumor purity. MethylCIBERSORT is a CIBERSORT-based

deconvolution to the DNA methylation profile of tumor tissue

and is also able to estimate the degree of immune cell infiltration.

Analysis of variance was used to compare the degree of immune

cell infiltration among different subgroups and to identify the

differential immune infiltrating cells. p < 0.05 was considered to

be statistically significant.
The differentially expressed immune
genes among medulloblastoma
subgroups

Combined with the immune gene profile, the limma package

in the R software was applied to analyze differential gene

expressions (|FC| >1.5, adjusted p-value <0.05) in order to

screen the target immune gene [differentially expressed

immune genes (imm-DEGs)] among the four subgroups of

MB. MB is heterogeneous among subgroups. Aiming to screen

the unique differential genes of each subgroup, we compared

every single subgroup with the remaining three groups and then

took the intersection. The differences in analysis results were

visualized by using the ggplot2 and pheatmap package in the R

software. Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis were carried

out using the clusterProfiler package in the R software in order to

annotate the biological function of imm-DEGs (adjusted p-value

<0.05 as statistically significant).
Co-expression network construction

Weighted correlation network analysis (WGCNA) is a

powerful algorithm that can be used for uncovering highly

correlated genes with similar expression patterns, aiming to
Frontiers in Immunology 03
identify modules and genes related to disease phenotypes and

therapeutic targets. The co-expression network was constructed

using the WGCNA package (v.1.69) in the R software (22) and

identified the genes with similar expression patterns. The co-

expression network construction procedure included the

following main steps: 1) define the co-expression similarity

matrix; 2) transform the co-expression similarity matrix into

the adjacency matrix by a thresholding procedure; 3) use

topological overlap measure for network interconnectedness to

transform the adjacency matrix into a topological overlap matrix

(TOM); 4) perform hierarchical clustering to identify gene

modules with a method of constant-height cut based on

topological overlap matrix (TOM) dissimilarity. The key

modules were gathered using the genes with similar expression

patterns under the setting of 3 for soft threshold power, 0.25 for

the cut height, and 30 for the minimum module size.
Identification and correlation analysis of
hub genes

The threshold for hub genes was a gene significance (GS) >0.4

and module membership (MM) >0.6 based on the module

constructed by a co-expression network with WGCNA.

Meanwhile, the protein–protein interaction (PPI) network was

constructed by applying the Search Tool for the Retrieval of

Interacting Genes (STRING, https://string-db.org/) database.

Genes that have a degree of nodes in the PPI network ≥5 were

defined as hub genes of the PPI network. Cytoscape software was

applied to visualize the PPI network. VennDiagram package in the

R software was employed to compare the hub genes of modules

with that of the PPI network. Then, corrplot and ggplot2 packages

in the R software were also utilized to conduct a relevant analysis of

the immune hub gene and the differential immune infiltrating cells.
Subgroup marker identification based on
hub genes

The subgroup marker was identified based on the immune

hub gene expression pattern of the four MB subgroups and then

combined with the DNA methylation profiles to investigate the

difference in the methylation level of the immune hub genes

among the four subgroups.
Validation of subgroup markers

Dataset GSE37418 contained 73 MB samples that conclude

10 samples of SHH, 8 samples of WNT, 16 samples of Group 3,

and 39 samples of Group 4, downloaded from the GEO database.

The expression patterns of the subgroup markers among the 4

subgroups were then compared and analyzed.
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Construction of the multifactorial
regulatory network based on the hub
genes and the database

The multifactorial regulatory network that consists of

microRNA (miRNA), long-noncoding RNA (lncRNA), and

transcriptional factor (TF) was established by combining the

hub genes with public databases such as the starBase and

Harmonizome. miRNA–messenger RNA (mRNA) and

lncRNA–mRNA interaction network was applied by the

starBase (http://starbase.sysu.edu.cn/, version 3.0), while

mRNA–TF interaction network was applied by Harmonizome

(http://maayanlab.cloud/Harmonizome/) database.
Immunochemistry staining

CD4, CD31, S100A4, PRG2, GAB1, Abelson 1 (ABL1), and

CXC motif chemokine receptor type 4 (CXCR4) staining was

performed with formalin-fixed, paraffin-embedded MB tissue

microarrays. There are five samples in each group (SHH, WNT,

Group 3, Group 4). The details of the subgroups and the patients

for the tissue microarray were shown in Supplementary Data.

Tissue microarrays were deparaffinized, rehydrated, and washed

three times with phosphate buffered saline (PBS). After

performing antigen retrieval by soaking in sodium citrate

(pH6.0) and heating to 100°C for 15 min in the microwave

oven, the tissue microarrays cooled to ambient temperature.

Tissue microarrays were incubated with 3% hydrogen peroxide-

methanol for 15 min and 10% goat serum with appropriate

Triton X-100 in PBS for 30 min for the sake of blocking the

endogenous peroxidase and nonspecific binding, respectively.

They were incubated with CD4 (1:150), CD31 (1:1,500), S100A4

(1:250), PRG2 (1:100), GAB1 (1:500), ABL1 (1:100), and CXCR4

(1:400) antibodies overnight at 4°C and then washed with PBS

and incubated with the appropriated secondary antibodies for

1 h at ambient temperature. After being stained with 3,3'-

Diaminobenzidine (DAB) and counterstained with

hematoxylin, the tissue microarrays were mounted and

analyzed by inverted microscopy (Zeiss Vert.A1, Germany).
Correlation between the hub genes and
immune checkpoint molecules

We enrolled the genes of immune checkpoints to explore the

relationship between the hub genes and the immune

checkpoints. Correlation coefficients were evaluated by

Spearmen correlation analysis. Corrgram package in R

software was applied to demonstrate the correlation between

the hub gene expression and the immune checkpoint molecules

in each MB subgroup.
Frontiers in Immunology 04
Correlation between the hub genes and
IC50 of the targeted drug

We downloaded the response data of 192 antitumor drugs

on 1,000 human cancer cell lines from the Genomics of Drug

Sensitivity in Cancer (GDSC) database (www.cancerRxgene.

org). Correlation coefficients were supported by Spearman’s

analysis. The prediction was done using the pRRophetic

package of the R software. Ggplot2 package of the R software

was used to analyze the correlation between the hub gene

expression and IC50 of the antitumor drugs by box diagrams.
Statistical analysis

All statistical analyses and graph generation were conducted

with SPSS 23.0 (IBM, Armonk, NY, USA) and R software (R

version 3.5.3; https://www.r-project.org/). Differences among

groups were compared with one-way ANOVA. A p-value <0.05

was considered to be statistically significant.

Results

Differences of immune cell infiltration
among medulloblastoma subgroups

Tumor-infiltrating immune cells in MB samples were

examined with MethylCIBERSORT package in the R software

based on the methylation data (23). Based on the transcriptome

expression data of tumor samples, the estimate score, immune

score, and stromal score are estimated by using estimates

according to the proportion of stromal and immune cells, which

are used to predict tumor purity. The higher the estimated score,

the lower the purity of the tumor. The degree of immune cell

infiltration, the immune scores, and the purity of tumors of 763

samples in GSE85212 are displayed in Figure 1A. It was evaluated

by transcriptomic data within the same group of the samples from

GSE85212. Variance analysis was employed to compare the

degree of immune cell infiltration among different subtypes of

MB and to establish the differential infiltrating immune cells.

Results indicated that among the four subgroups of MB, nine

kinds of infiltrating immune cells (such as CD14, Regulatory T

(Treg), CD58, CD8, and CD19) were statistically significant in the

degree of tumor infiltration (Figure 1B) (p < 0.001).
Differentially expressed immune gene
and functional analysis among
medulloblastoma subgroups

Merging the immune gene sets from ImmPort and InnateDB

databases, in total, 2,533 immune-related genes, consisting of 1,794
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immune genes from ImmPort immune gene set and 1,052 immune

genes from InnateDB immune gene set, were included. Limma, a

package for analyzing the differential expression, was utilized to

screen the imm-DEGs among the four subgroups of MB. A total of

293 immune genes that expressed differentially among the four

subgroups of MB were established (adjusted p-value <0.05). The

differential gene distribution and heatmap of differentially expressed

genes (DEGs) are illustrated in Figures 2A, B.

The biological function enrichment analysis, including GO

analysis and KEGG pathway enrichment analysis, was utilized.

The GO analysis results emphasized that 293 imm-DEGs were

associated with the regulation of chemotaxis, regulation of

protein serine/threonine kinase activity, and Mitogen-activated

protein (MAP) kinase activity in the BP category (Figure 2C);

receptor–ligand activity, growth factor binding, and cytokine

receptor binding in the MF category (Figure 2D); and
Frontiers in Immunology 05
transcription factor complex, nuclear transcription factor

complex, and membrane microdomain in the CC category

(Figure 2E). In the KEGG pathways, RAS signaling pathway,

Human cytomegalovirus infection, Chemokine signaling

pathway, and T-cell receptor signaling pathway were all

implicated (Figure 2F).
Construction of the co-expression
network based on differentially
expressed immune genes and identifying
key modules

WGCNA, based on the imm-DEG expression profiles, was

employed to construct the co-expression network and

distinguish the gene with a similar expression pattern. The
B

A

FIGURE 1

(A) The infiltration degree of infiltrating cells in medulloblastoma samples was evaluated by MethylCIBERSORT deconvolution. The abscissa
represents medulloblastoma samples, and the ordinate represents the cells existing in tumor samples for identification. (B) The differences of
immune cell infection among the four subgroups of medulloblastoma were analyzed by one-way ANOVA. Abscissa: the infiltrating cells
identified in tumor samples; ordinate: the proportion of each type of cell in tumor tissue. ns, p > 0.05; ****p ≤0.0001.
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parameters of the scale-free topology criterion (Figure 3A) were

used by setting the soft threshold power to 3, cut height to 0.25,

and the minimum module size to 30 to cluster the gene into

different modules with different reprehensive colors. In the end,

four gene modules were established (Figure 3B).

The degree of immune cell infiltration of samples was

collected as a trait, and module–trait relationships were

calculated according to the correlation in order to match the

modules to their strongly related traits. As shown in Figure 3C,

the blue module was significantly related to Fibroblast cells,

Eosinophils (Eos) cells, and Endothelial cells, which are

important components of the immune microenvironment, and
Frontiers in Immunology 06
their interaction with tumor cells plays an important role in the

growth of cancer (corr = 0.65, 0.55, -0.6; p = 5e-92, 1e-60, 3e-76,

respectively), and the correlation was stronger than that of other

modules. Thus, blue was chosen to be the key module.
Hub gene recognition and the
relationship with immune cell infiltration

Genes from the selected blue key module were used to

construct the PPI network, in which 18 hub genes were

established by setting the node degree value at ≥5 (Figure 4A).
B

C D

E F

A

FIGURE 2

GO and KEGG enrichment analysis of differentially expressed immune genes (imm-DEGs). (A) The distribution of differentially expressed genes
in group 3 vs. group 4 is depicted by the volcano plot. (B) The imm-DEGs clustered in the four subgroups of medulloblastoma. (C) Imm-DEGs
were enriched in the biological processes. (D) Molecular functions of Gene Ontology. (E) Cellular components of Gene Ontology. (F) Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of imm-DEGs.
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Twenty-five candidate hub genes from the blue module were

identified by setting the GS >0.4 and MM >0.6 (Figure 4B).

Three immune hub genes (GAB1, ABL1, CXCR4) were obtained

by synthesizing the hub genes in the PPI network and the

candidate hub genes in the blue module (Figure 4C).

The corrplot package in the R software was employed to

investigate the correlation within the 3 hub genes. Results

indicated that hub gene GAB1 was positively correlated with

CXCR4 (Pearson corr = 0.77); ABL1 was negatively correlated

with both CXCR4 and GAB1 (Pearson corr = -0.55, -0.47,

respectively); these three hub genes were related to each

other (Figure 4D).

The correlation between the three hub genes and the differential

immune infiltrating cells was also scrutinized. Since the three
Frontiers in Immunology 07
immune hub genes were from the fibroblast-related module, we

explored the correlation between the three hub genes and the

marker genes of the cancer-associated fibroblasts (CAFs) (24).

Both the hub genes GAB1 and CXCR4 were positively correlated

with the CAF marker genes (including ACTA2, VIM, PDPN, and

FAP), while ABL1 was negatively correlated with the CAF marker

genes (Supplementary Figure S2). As for other immune cells, both

hub genes GAB1 and CXCR4 have a significant positive correlation

with CD4_Eff cells (p < 0.01) and a negative correlation with

Endothelial cells and Eos cells (p < 0.001), while hub gene ABL1 has

an opposite trend (Figure 4E). In addition, we selected the

characteristic markers of these correlation immune cells, and the

immune hub genes and immune cells were confirmed by

immunohistochemistry (Supplementary Figure S1). Due to the
B

C

A

FIGURE 3

Construction of the co-expression network. (A) The parameters for the scale-free topology criterion. (B) Cluster the genes into different
modules with different reprehensive colors among different modules. (C) The degree of immune cell infiltration of samples was collected, and
module–trait relationships were calculated according to the correlation.
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B

C D

A

E

FIGURE 4

The correlation analysis of the hub gene and its relationship with different immune infiltrating cells. (A) The protein–protein interaction (PPI)
network was constructed by genes in the blue module. The nodes with a green color on the PPI network represent the hub genes. (B) The
distribution of gene significance (GS) and module membership (MM) in the blue module. (C) The intersection of the immune hub gene set of
the PPI network (node degree value ≥5) and the hub gene set of blue modules (GS >0.4, MM >0.6). (D) Correlation analysis of the four hub
genes. Blue represents a positive correlation, and red represents a negative correlation. The larger the sectorial area of the pie graph, the higher
the correlation between the two genes. (E) The correlation between hub genes (GAB1, ABL1, CXCR4) and immune infiltrating cells (CD4_Eff,
Fibroblast cells, Endothelial cells, and the Eos cells).
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limited number of tissue samples, we will accumulate more samples

for verification in the future.
Medulloblastoma subgroup marker
recognition based on hub genes

Three hub gene expression patterns in the subgroups of MB

were also studied, and markers of the subgroups were recognized. It

was indicated that immune hub genes GAB1 and CXCR4 were

expressed higher in the SHH subgroup than in the three other

subgroups; immune hub gene ABL1 was expressed weakly in the

SHH subgroup, while it was expressed strongly in the three other

subgroups (Figure 5A). Themethylation level of immune hub genes

among the four subgroups was established by combining the
Frontiers in Immunology 09
immune hub gene with the DNA methylated data. The results of

one-way ANOVA showed that the methylation levels of GAB1 and

CXCR4 were significantly different among the four subtypes (p <

0.001) (Figure 5B).
Further verification of hub genes in the
independent data set and at the
histological level

GSE37418 was downloaded from GEO databases, which

contained 73 MB samples. GSE37418 consisted of 10 samples

of SHH subgroup, 8 samples of WNT subgroup, 16 samples of

Group 3 subgroup, and 39 samples of Group 4. Comparison and
B

A

FIGURE 5

Medulloblastoma subgroup marker recognition based on hub genes. (A) Three hub gene expression patterns in the subgroups of
medulloblastoma. (B) The methylation level of immune hub genes among the four subgroups was established by combining the immune hub
gene with the DNA methylated data. ns, p > 0.05; *** p ≤ 0.001; **** p ≤ 0.0001.
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analysis of the expression patterns of subgroup markers were

achieved. We found that the expression of GAB1 and CXCR4

was higher in the SHH subtype than those in the three other

subtypes, while ABL1 was expressed lower in the SHH subtype

and higher in the three other subtypes (Figure 6A). Next, the

immune hub genes were confirmed by immunohistochemistry

(Figures 6B, C). The expression of CXCR4 and GAB1 was

apparently high in SHH subgroups compared with the other

subgroups. As Figure 6B illustrates, the expression of ABL1 was

lower compared with CXCR4 and GAB1. Results of
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immunochemistry staining were consistent with the result of

our bioinformatic analysis.
A multifactor regulatory network of
medulloblastoma based on immune hub
genes

A multifactor regulatory network consisting of miRNA,

lncRNA, and TF was designed and combined with public
A

B

C

FIGURE 6

Further verification of hub genes. (A) The expression of GAB1, ABL1, and CXCR4 in different subtypes from the independent data set. (B) Further
verification by immunohistochemistry (n = 5) (** p ≤ 0.01, *** p ≤ 0.001). (C) Average positively stained area percentage of ABL1, GAB1, and
CXCR4.
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databases (such as starBase, Harmonizome) and immune hub

genes. Interactions among genes and their following products

play a crucial role in many biological processes (25). In the

present study, a multifactor network regarding hub genes

combined with public databases (such as starBase, and

Harmonizome) was designed and constructed, which included

miRNA, lncRNA, mRNA, and TF. Figure 7 shows the

multifactor regulatory network of immune hub genes ABL1,

GAB1, and CXCR4 in MB. We found that CXCR4 is mainly

involved in the regulation of lncRNA. GAB1 is related to the

regulation of miRNA. ABL1 is not only involved in the

regulation of lncRNA and miRNA but also the regulation of

TFs. miRNA, lncRNA, and TF participate in the regulation of

gene expression at the transcriptional and posttranscriptional

levels and play a crucial role in gene expression. Therefore, they

can be used as potential drug targets to indirectly regulate the

expression of hub genes by acting on miRNA, lncRNA, or TF.
The immune hub genes are interrelated
with other checkpoint members

Programmed cell death ligand 1 (PD-L1) is one of the

ligands of PD-1, and PD-L2 is also engaged in programmed cell

death 1 (PD-1) (26). Moreover, CD80, as a costimulatory

molecule, can inhibit T-cell activation during the activation

stage (27). Thus, we performed Pearson correlation analysis

with the expression of the immune hub genes (ABL1, GAB1, and

CXCR4), PD-L1, PD-L2, PD-1, and CD80 (Figure 8A).

Furthermore, the combination therapy of other oncogenic

pathway inhibitors with immune checkpoint blockade therapy

has shown clinical benefits (28). Thus, we explored the

correlation of other immune checkpoint genes (B7-H3, BTLA,
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IDO1, LAG3, TIM-3, CTLA4, and SELPLG/PSGL-1) with the

immune hub genes (Figure 8B).
The correlation between the immune
hub genes and drug sensitivity

Since the treatment management of MB is stratified and

systemic, chemotherapy is often in addition to resection and

radiotherapy. The IC50 level of nine antitumor drugs was related

to the expression of the immune hub genes (Figure 9A). We found

that cytarabine and GDC.0449 were closely related to the immune

hub genes (Figure 9B). Cytarabine was positively correlated with the

expression of ABL1 (r = 0.498, p = 3.65E-49), while cytarabine was

negatively correlated with the expression of GAB1 (r = -0.476, p =

1.85E-44) and CXCR4 (r = -0.661, p = 5.72E-97). GDC.0449 was

positively correlated with the expression of ABL1 (r = 0.524, p =

3.78E-55), while GDC.0449 was negatively correlated with the

expression of GAB1 (r = -0.334, p = 2.78E-21) and CXCR4 (r =

-0.590, p = 2.78E-21). The IC50s of cytarabine and GDC.0449 were

higher in the high ABL1 expression groups than in the low ABL1

expression groups. However, in the high GAB1 and CXCR4

expression groups, the IC50s of cytarabine and GDC.0449 were

lower than those in the low GAB1 and CXCR4 expression groups.
Discussion

MB is the most frequent malignant pediatric brain tumor

originating from the posterior fossa, while 30% of cases occur in

adults. In the past 20 years, the standard treatment for MB patients

is surgery, radiotherapy, and chemotherapy. With the increase in

clinical trials of pediatric MB, progression-free survival has
FIGURE 7

The medulloblastoma multifactor regulatory network is based on immune hub genes. In the multifactor regulatory network of immune hub
genes ABL1, GAB1, and CXCR4 in medulloblastoma, each node represents a gene; red circles represent mRNA, yellow diamonds represent TF,
blue triangles represent lncRNA, and orange arrows represent miRNA.
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gradually improved. However, the treatment for adults and large

children with MB needs to be updated urgently (18, 29, 30). The 5-

year survival rate was 75%–85%. One of the main complications of

surgery is cerebellar reticence. Radiotherapy may cause severe

adverse reactions such as cognitive function changes, vascular

lesions, and hearing loss. Chemotherapy may have the risk of

bone marrow suppression and organ dysfunction. A recent study

used SIRT1 and AROS to improve drug resistance in the treatment

of neuroblastoma (31). There is an urgent need for more safe and

effective adjuvant therapy for MB. Tumor-infiltrating immune cells

have been proven to be the criteria for predicting the prognosis of

solid tumors and predicting chemotherapy response (32). Thus, the

potential of immunotherapy for MB has been discussed for many

years (33). However, despite the profound molecular characteristics

of MB, the progress of immunotherapy is slow, which may be due

to the limited understanding of the tumor microenvironment.

Hence, we used the bioinformatic method to quantify eight

immune cell populations and two stromal cell populations as well

as hub genes in a MB dataset including 763 samples. Our study

includes the following aspects: 1) The immune infiltrating cells in

each subtype of MB are heterogeneous; 2) Group 3-MBs have a

higher presence of immune infiltrative cells (CD8, CD19, and Treg)

and endothelial cells compared with those in the other subgroups

(Figure 1B); 3) Three immune-associated hub genes (ABL1, GAB1,

and CXCR4) were identified mostly based on WGCNA algorithm

and verified by immunohistochemistry (IHC) technique within

patient samples (Figure 6); 4) A multifactor regulatory network was

built based on the hub genes, miRNAs, lncRNAs, and TFs

(Figure 7); 5) The immune hub genes are interrelated to immune
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checkpoint molecules; 6) ABL1 was positively correlated with

cytarabine (r = 0.498, p = 3.65E-49) and GDC.0449 (r = 0.524, p

= 3.78E-55) sensitivity, while GAB1 (r = -0.476, p = 1.85E-44; r =

-0334, p = 2.78E-21, respectively) and CXCR4 (r = -0.661, p =

5.72E-97; r = -0.590, p = 2.78E-21, respectively) were negatively

correlated with cytarabine and GDC.0449 sensitivity.

Both transcriptional regulations and posttranscriptional

regulations are essential regulatory mechanisms for the cell

cycle, including DNA replication, mitosis, and mitotic exit

(34). The gene regulatory network (GRN) refers to the

network formed by the intercellular gene to gene interaction,

and it also refers specifically to the gene-to-gene interaction

based on the regulation of gene expression. In addition, more

and more research focuses on tumor-infiltrating immune cells

and related immunotherapy (33). A previous study showed that

a high number of activated cytotoxic T lymphocytes (CTLs) had

a worse survival in MB patients (35). Murata et al. (36) suggested

that CD8+ tumor-infiltrating lymphocytes (TILs) are protective

factors of MB. Using a deconvolution analysis based on

methylation expression profiles, we firstly noticed immune

infiltrating cells and two stromal cell populations that were

statistically different among subgroups. According to the

characteristics of the microenvironment, Bockmayr et al. (37)

also found significant differences in the aggregation of MB

subgroups. Former studies used methods based on expression

data such as CIBERSORT, TIMER, and ESTIMATE to

approximate the abundance within the immune fraction and

scores of enrichments, and they also performed low-resolution

deconvolution (38, 39). However, distinguishing cellular subsets
BA

FIGURE 8

The correlation between the immune hub genes and immune checkpoint genes. (A) The correlation between the immune hub genes (ABL1,
GAB1, and CXCR4) and the Programmed cell Death 1 (PD-1), Programmed cell Death Ligand 1 (PD-L1) pathway. (B) The correlation between the
immune hub genes and the other immune checkpoint molecules. Programmed cell Death 1 (PD-1), Programmed cell Death Ligand 1 (PD-L1),
Programmed cell Death Ligand 2 (PD-L2), Cluster of Differentiation 80 (CD80), P-selectin glycoprotein ligand-1 (SELPLG), Cytotoxic-T-
Lymphocyte-Antigen-4 (CTLA4), T cell immunoglobulin and mucin domain 3(TIM-3), lymphocyte activation gene-3 (LAG3), B- and T-
lymphocyte attenuator (BTLA), B7 homolog 3 protein (B7-H3), Indoleamine 2,3-dioxygenase 1 (IDO1), Abelson 1 (ABL1), GRB2-associated
binding protein 1 (GAB1), CXC motif chemokine receptor type 4(CXCR4).
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and their correlation would be more detailed with more intricate

deconvolution using DNA methylation data (23). Thus,

MethylCIBERSORT was used first to derive estimates for

different immune infiltrating cell populations among

subgroups of MB when both DNA methylation and gene

expression data can be obtained.

To investigate the immune infiltration of MB, the GO and

KEGG enrichment analyses were carried out to explore the

biological function of imm-DEGs among subgroups of MB and

revealed that the overlapped DEGs were associated with the
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chemokine signaling pathway. Chemokines and their receptors

play an important role in physiological and pathological processes

(40). The relationship between chemokines and tumor biology is a

subject of great concern in the scientific community. Significant

results have been achieved in the treatment of MB by using

chemokines and their receptors (41); combined with our analysis,

they indicate the important role of chemokines in MB and the

possible therapeutic ability. From the perspective of tumor

immune infiltration, we have a novel viewpoint in group 3-

MBs: group 3-MBs have a grim outcome result from multiple
B

A

FIGURE 9

The antitumor drug sensitivity correlated with the immune hub genes. (A) Nine antitumor drug sensitivities are correlated with the immune hub
genes (* p < 0.05, ** p < 0.001). (B) The IC50 of cytarabine and GDC.0449 showed the difference between the high-expression hub gene group
and the low-expression hub gene group (*** p ≤ 0.001).
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adverse prognostic factors, such as MYC amplification, presence

of metastases, and large cell/anaplastic histology (13), while our

study indicates the higher presence of endothelial cells and

infiltrating immune cells (CD19, CD8, and Treg) in tumor bulk

of group 3-MBs compared with the other subgroups. This

phenomenon implies that estimating the TILs and endothelial

cells can contribute to identifying the progression and prognosis

of MB. A previous study showed that the DIME (Differential

Methylation Analysis for immune Cell Estimation)-TIL score was

a negative prognostic factor in MB (42), which laterally supported

our hypothesis. Furthermore, tumor endothelial cells are required

for tumor angiogenesis, which is crucial for tumor progression

and metastasis (43). Thus, our studies reveal that the tumor

immune and tumor endothelial cell infiltration may play a role

in pathogenesis underlying the group 3-MBs, which is important

to control this fatal subtype of MB and provide a basis

for immunotherapy.

The module identified by WGCNA is highly related to a

certain personality, and the genes that make up this module are

likely to participate in a certain pathway or biological process;

through the construction of the PPI network and the identification

of the hub gene, we can further screen out some genes that may

play a key role in this process to provide more accurate

identification of subtype markers (22); therefore, WGCNA was

used to identify the gene modules that are specifically associated

with similar expression patterns in MBs. A total of 294 imm-

DEGs were investigated and categorized into five modules. The

blue module was chosen as the key module and included in the

construction of the PPI network based on its significant

correlation with the trait of immune infiltration. According to

the results of the blue module and the PPI network, we have

identified three hub genes, CXCR4, GAB1, and ABL1, as immune

infiltration markers among subgroups of MB; a multifactor

regulatory network was also set up based on the three hub genes.

Sengupta et al. (44) found that CXCR4 only exhibited

overexpression in the SHH-MBs when compared with

normally high levels found in the fetal cerebellum, and it was

essential for SHH pathway activation in MB. It has been

demonstrated by Yang et al. (45) that the inhibition of CXCR4

blocked the intracranial growth of MB cell lines. Similarly, Ward

et al. (46) combined CXCR4 and SHH pathway antagonism,

which produced an enhanced therapeutic effect. In the present

study, CXCR4 was significantly highly expressed in SHH-MBs

compared with the three other subgroups, which is encouraging,

as this confirmed the close relationship between CXCR4 and

SHH at the transcriptional level. Also, CXCR4 was associated

with the immune response of other tumors, and anti-CXCR4

union and anti-PD-1 immunotherapies are used in treating

other CNS tumors, which further confirmed that CXCR4 is

related to immune infiltration (47). GAB1, a member of the

GAB/DOS family of adapter proteins, is tyrosine-

phosphorylated when stimulated by various growth factors

and cytokines (48). Immunoreactivity for GAB1 was found
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specific in SHH-MBs in a cohort (n = 235) of MB patients

aged between 0.4 and 52 years and related to a worse survival

outcome (49). Although the role of GAB1 in the SHH pathway

in MBs and other central system tumors is still not elucidated,

the current study discovered a higher expression of GAB1 in

SHH-MB compared with the other subgroups, which is

consistent with the above literature. ABL1, a non-receptor

tyrosine kinase, is involved in various biological functions. Zhu

et al. (50) identified that ABL1 with 11 other genes can construct

a prognostic nomogram predicting the overall survival for MB

patients. In our study, ABL1 was initially thought to be expressed

lowly in SHH-MB, while high in the three other subgroups.

Unfortunately, the present study has not explored the

multifactor regulatory network constructed by the hub gene

in-depth. This is due to the lack of clarification on the

mechanism of the three hub genes, leaving us room for

further investigation.

In conclusion, the present study has proposed bioinformatic

results of the imm-DEGs, three immune hub genes (CXCR4,

GAB1, ABL1), and the multifactor regulatory network from

datasets of GEO and immune gene profiles by algorithms

(melthyCIBERSORT, WGCNA), PPI network, and public

databases (starBase, Harmonizome). The three immune hub

genes with differential expressions among subgroups of MB

emphasize the heterogenicity of the tumor immune infiltration

microenvironment inMB subgroups.With the rapid development

of high-throughput analysis, molecular stratifications are

gradually becoming the main trend in molecular targeted

therapy and prognostic risk assessment model. Our research is

just a step toward exploring tumor immune infiltration and

provides the framework for the identification of immune

infiltration markers and multifactor regulatory networks in

MBs. The analysis based on immune differences has important

clinical significance for molecular typing and immunotherapy.

However, there are still some limitations in this study.

Transcriptome analysis only reflects some aspects of the

immune state rather than the overall changes. The number of

samples for verification via immunohistochemistry is limited,

since the restrictions on obtaining patient samples. We will

further explore this in the follow-up study.
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