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Ischemic stroke is a leading cause of disability and death. It imposes a heavy

economic burden on individuals, families and society. The mortality rate of

ischemic stroke has decreased with the help of thrombolytic drug therapy and

intravascular intervention. However, the nerve damage caused by ischemia-

reperfusion is long-lasting and followed by multiple organ dysfunction. In this

process, the immune responses manifested by systemic inflammatory responses

play an important role. It begins with neuroinflammation following ischemic

stroke. The large number of inflammatory cells released after activation of

immune cells in the lesion area, along with the deactivated neuroendocrine

and autonomic nervous systems, link the center with the periphery. With the

activation of systemic immunity and the emergence of immunosuppression,

peripheral organs become the second “battlefield” of the immune response after

ischemic stroke and gradually become dysfunctional and lead to an adverse

prognosis. The purpose of this review was to describe the systemic immune

responses after ischemic stroke. We hope to provide new ideas for future

research and clinical treatments to improve patient outcomes and quality of life.

KEYWORDS

ischemic stroke, immunosuppression, systemic immune response, neuro-immune
crosstalk, immune system disorder, neuroendocrine system, autonomic nervous
system, opportunistic infection
1 Introduction: From the center to the periphery

Stroke is a common disease worldwide, characterized by a high incidence, disability

rate and mortality, that poses a notable threat to human health (1). Stroke is divided into

ischemic stroke and hemorrhagic stroke, which present distinct pathological changes.

Thus, different treatment plans should be selected according to different conditions.

Ischemic stroke is caused by an embolus or local thrombosis when it interrupts the blood

flow to some areas of the brain (2, 3). On the contrary, cerebral ischemia in hemorrhagic
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stroke is caused by rupture of the responsible artery or vein.

About 80% of strokes are reported to be ischemic (4). Unlike

hemorrhagic stroke, ischemic stroke is often insidious and arises

without warning. When obvious neurological symptoms appear,

it means that nerve damage has occurred, which can become

irreversible (5, 6). In addition to neurological damage, patients

with ischemic stroke also suffer from multiple systemic

complications (7). However, the mechanisms of multiple organ

dysfunction after ischemic stroke are complex. Nevertheless,

long-term studies have indicated that the systemic inflammation

caused by immune system disorder is involved in the

pathophysiological mechanism of these complications (8).

For a long time, the nervous and immune systems have been

studied independently. Because of the blood-brain barrier

(BBB), the entire central nervous system (CNS) seems to be

separated from the peripheral immune system. However, no

system can exist and operate independently. The nervous and

immune systems interact with and regulate each other from the

embryonic stage (9, 10). As research has progressed, the classical

concept of separation of the CNS and peripheral immune system

is gradually giving way to dynamic intermodulation (11).

Normally, under the protection offered by the BBB

constructed by endothelial cells, the end-feet of astrocytes, and

pericytes embedded in the basement membrane of capillaries,

microglia play a key role in immunosurveillance as resident

brain macrophages (12–14). When ischemic stroke occurs, the

brain tissue responsible for the affected blood vessels is hypoxic

and damaged, and even dies. The damage-associated molecular

patterns (DAMPs) released by dying cells trigger a cascade of

signals that activates the innate immune system (15, 16). These

DAMPs stimulate microglial activation and polarize into

phagocytic, proinflammatory phenotypes, releasing a large

number of proinflammatory factors (17). The presence of a

large number of inflammatory factors, known as an

inflammatory cytokine storm, damage nerve cells and the BBB

and attracts peripheral immune cells to infiltrate the lesion area

(18). Many inflammatory cytokines circulate through the

bloodstream into the periphery, resulting in a cytokine storm

that can cause peripheral organ dysfunction and further

aggravate sys temic inflammat ion . Meanwhi le , the

neuroendocrine system (such as the hypothalamic-pituitary-

adrenal (HPA) axis, as well as the autonomic nervous system,

are deactivated after onset (9). On the one hand, their

dysfunction manifests itself in the abnormal function of target

organs. On the other hand, due to the close relationship with the

immune system, their abnormal function can often cause

immune system disorders, such as immunosuppression. As

such, they may contribute to the process of neuroimmune

crosstalk after ischemic stroke and link the center to the

periphery (19). In conclusion, the central-peripheral crosstalk

a f t e r t he ons e t o f i s chemi c s t r oke beg in s w i th

neuroinflammation and is mediated by neural and humoral

regulatory pathways, linking the central and peripheral
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regions. The existence of this crosstalk disturbs the normal

operation of many organs and leads to poor prognosis.

In this review, we explore the central-peripheral crosstalk

after ischemic stroke with neuroinflammation as the entry point

and neural and humoral regulatory pathways as the clues.

Subsequently, we explore the consequences of this crosstalk. In

these discussions, we also touch on systemic immune system

activation and immunosuppression after crosstalk. We hope our

work will provide insights for researchers in the field and

contribute to the development of new treatments in the future.
2 The bridgehead:
Neuroinflammation

Neuroinflammatory response after ischemic stroke is

involved in both early nerve damage and late nerve repair.

Microglia, monocytes and neutrophils in the innate immune

system, along with astrocytes, traditionally considered to be the

major destructive factors after stroke, are also extensively

involved in brain repair after stroke. T and B cells in the

adaptive immune system have roles in CNS damage and repair

(20) (Figure 1).
2.1 Microglia

Microglia, as resident CNS macrophages, are the first line of

defense after brain damage (21). Under physiological conditions,

they play an important role in maintaining CNS homeostasis

and have no or only physiologically required phagocytic

function (22). Once brain damages occur, as nerve cells in the

central area of infarction die, a large number of DAMPs are

released and activate microglia (23).

Under physiological conditions, microglia show a resting

state characterized by a ramified morphology. With activation,

morphological changes in microglia are observed, accompanied

by upregulated expression of various cell surface markers (24).

In animal models, we can see that their numbers and phenotypes

change dynamically as the disease progresses. In a model of

permanent middle cerebral artery occlusion (MCAO), activated

microglia were detected at the boundary of ischemic lesions

30 min after stroke (25). In a photothrombotic stroke model,

neurons in the core lesion died within 2 h, accompanied by

activation of astrocytes and microglia (26). Despite a significant

decrease in the number of microglia in the core after stroke, the

number of microglia in the ischemic core and the boundary zone

increased within hours after IS and peaked at 2–3 days (27, 28).

At this stage, microglial responses can be characterized by

changes in morphology and act like amoeba (29). After

transient MCAO, these amoeboid microglia begin to appear in

ischemic lesions 2–10 h after reperfusion. These amoeba-like

microglia, along with rounded microglia, predominate in core
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lesions and mingle with highly branched microglia to the

boundary 22 h after reperfusion (30, 31). Subsequently,

amoeboid microglia in the core are further enriched 3–7 days

after stroke (30). In the photothrombotic model, more amoeba

cells infiltrate into the core by day 4. By day 7, amoeba cells are

present throughout the lesion. However, over time, when the

course of the disease enters the chronic stage, only a small

number of deformed cells are found in the peripheral and distal

areas of the infarct, and the microglial response decreases (27).

In addition to morphological changes, the phenotype of

microglia also changes during this pathophysiological process.

It is noteworthy that the activated microglia in animal models

with different functions can be divided into M1 phenotype

(proinflammatory) and M2 phenotype (anti-inflammatory),

which are involved in tissue damage and repair, respectively

(22, 32). The M2 phenotype can be further subdivided into three

subtypes (M2a, M2b and M2c) (33). Microglial activation and

different phenotypes can be determined by detecting different

surface markers. The classical markers of M1 microglia include

integrin alpha-M (CD11b), CD16, CD32 and CD86, while the

classical markers of M2 microglia include macrophage mannose

receptor 1 (CD206) (34).

After ischemic stroke, Toll-like receptor (TLR)4 on the

surface of microglia recognizes and binds with high mobility
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group box (HMGB)1 protein, heat shock protein, purine and

other substances (21). This promotes activation of the nuclear

factor (NF)-kB pathway and the M1 phenotype transformation

of microglia, which exists in a proinflammatory state and

secretes proinflammatory cytokines (35). Overexpression of

signal transducer and activator of transcription (STAT)1 and

interferon (IFN) regulatory factor 5 is correlated with M1

polarization (36, 37). In mice, the number of TLR4+ cells, as

well as NF-kB+ and interleukin (IL)-1b+ cells, increases

significantly 72 h after MCAO (38). At this stage, M1

microglia primarily serve a detrimental role by damaging the

BBB, aggravating brain edema and promoting neuronal

apoptosis by producing and secreting a large number of

inflammatory mediators (18). In mouse models, tumor

necrosis factor (TNF)-a secreted by M1 microglia increases

endothelial necrosis and BBB leakage and further promotes

neuroinflammation and cerebral edema, leading to poor

outcomes, while increased IL-17A levels exacerbate neuronal

death (39, 40). Expression of chemokines and ligands increases,

attracting peripheral immune cells to the lesion area and

exacerbating the inflammatory response (41).

In contrast, the M2 phenotype, primarily as a protective

phenotype, promotes resolution of inflammation by secreting

IL-4, IL-10 and transforming growth factor (TGF)-b, thereby
FIGURE 1

After cerebral ischemia-reperfusion injury, DAMPs released by necrotic cells activate innate immune cells in the CNS and attract peripheral
immune cells to activate adaptive immune responses.
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indirectly preventing inflammation-induced BBB destruction.

IL-4 and IL-10 inhibit the expression of IFN-g, TNF-a and IL-1b
by inhibiting activation of the NF-kB signaling pathway, while

increasing expression of other anti-inflammatory factors (42).

IL-10 plays a protective role by limiting the expression and

activity of matrix metalloproteinase (MMP) by protecting

endothelial cells (42, 43). TGF-b decreases the levels of TNF-a
and monocyte chemoattractant protein-1 through the ALK5-p-

Smad2/3 signaling pathway (44).

It is important to note that this dichotomy is not perfect

because these two phenotypes have many overlapping functions.

The M1 phenotype can also help the repair process, but the M2

phenotype can also cause damage. Whether microglia promote

damage or repair depends on the stimuli they receive (45). That

is why the spatiotemporal phenotypic variation has puzzled

researchers for a long time. After analyzing changes in the

expression of M1 and M2 markers, researchers have concluded

that the M1/M2 expression pattern changes dynamically after IS.

The M2 phenotype is beneficial in the early stage and then

changes to harmful M1 phenotype in the late stage (34). This

microglia-targeting therapy provides insight that promotes early

M2 phenotype transformation and inhibits late M1

phenotype transformation.
2.2 Astrocytes

As the most abundant glial cells in the brain, astrocytes play

a CNS “steward” role in providing metabolic and nutritional

support, regulating synaptogenesis, ion homeostasis,

neurotransmitter buffering, maintaining the integrity of the

BBB, and promoting neural network activity patterns (46).

Astrocytes play a dual role in the pathophysiology of

ischemic stroke. Within minutes of onset, the astrocytes

activate and multiply in response to various inflammatory

factors released by ischemic/hypoxic cells. In this process,

known as reactive astrocyte hyperplasia, astrocytes exhibit cell

hypertrophy, proliferation, and increased expression of

intermediate proteins including glial fibrillary acidic protein

(GFAP), vimentin, and nestin (47). Among these markers, the

most prominent is upregulation of intermediate proteins,

especially GFAP, which is the main component of the

intermediate system of adult astrocytes (48, 49). Serum GFAP

level is positively correlated with the National Institutional

Health Stroke Scale (NIHSS), and may predict worse prognosis

(50). Within a few days, reactive astrocytes form glial scars

around ischemic lesions in the brain and confine the

inflammatory response locally (51, 52). The process of reactive

astrocyte proliferation is dynamic. Mild glial scars fade over time.

However, if the lesion is more extensive, more significant glial

scars may be permanent (53). With the accumulation of glial

scars, they go from helpers limiting inflammatory progression to

obstacles to axon growth and neuronal repair (54–56).
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As research progresses, astrocytes are not only bystanders of

the immune response after ischemic stroke, but also deeply

involved in the inflammatory response after ischemic stroke.

After reactive proliferation, astrocytes produce and release

various proinflammatory mediators, such as IL-6, TNF-a, IL-
1a, IL-1b and IFN-g, as well as free radicals (57). Astrocytes, on
the one hand, damage the integrity of BBB and aggravate neuron

damage through these proinflammatory factors. On the other

hand, they interact with microglia and recruit peripheral

immune cells to participate in the inflammatory response (57).

In the study of astrocyte and microglia interactions,

astrocytes induced by IL-1a, TNF-a and complement

component C1q secreted by activated microglia are classified

as A1 subtype. Although A1 subtype astrocytes have lost their

ability to promote neuronal survival, growth, synaptic

formation, and phagocytosis, they induce neuronal and

oligodendrocyte death (58). In contrast, the A2 subtype is

considered protective. This subtype secretes IL-2, IL-10 and

TGF-b, which accelerates inflammation resolution. In

particular, reactive astrocytes after transient MCAO show

increased transcription associated with the A2 subtype by

transcriptome analysis. This suggests that the A2 subtype is

more involved in inflammatory suppression and glial scar

formation (59).

A recent study found that the reactive-oxygen-species-

mediated NF-kB/STAT3 pathway can inhibit activation of A1

subtype astrocytes and increase activation of A2 subtype,

exerting neuroprotective effects (60). Although future

treatment regimens that reduce the A1 subtype and increase

the A2 subtype will help improve the outcome of IS patients, it

should be noted that the excessive accumulation of the A2

subtype may lead to the accumulation of glial scars, which

may lead to adverse results.
2.3 Neutrophils

Neutrophils are the first peripheral immune cells to respond

to ischemic brain injury (61). They infiltrate the ischemic area a

few hours after cerebral ischemia occurs, and accumulation of

neutrophils may peak in the first 3 days (62). Ischemic brain

tissue releases a large number of DAMPs that activate microglia

and astrocytes to release proinflammatory mediators (e.g. IL-1b
and TNF) (63). Typically, chemokines including CXC

chemokine ligand (CXCL)1, CXCL2 and CXCL5 (CXCL8 in

humans) contribute to the release of neutrophils from bone

marrow and recruitment to ischemic brain tissue (64).

Expression of neutrophil chemokine receptors is increased to

promote neutrophil activation (65). Animal studies have shown

that using CXC receptor (CXCR)1 and CXCR2 inhibitors can

significantly reduce neutrophil extravasation and infarct volume,

and improve functional outcomes (66). However, inhibition of

CXCR1 or CXCR2 alone does not reduce infarct size or improve
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function (67). Neutralizing the bioactivity of CXCL1 and CXCL2

only reduces neutrophil infiltration and does not reduce infarct

size or improve neurological deficits (68).

Expression of many endothelial adhesion receptors on

neutrophils is increased, including P-selectin glycoprotein

ligand-1, lymphocyte function-associated antigen 1 and

macrophage-1 antigen (69, 70). These components promote

the adhesion and infiltration of neutrophils. This process is

first mediated by selectin (P-selectin and E-selectin) to

neutrophil rolling. Secondly, neutrophils migrate to the

optimum anatomical location under the mediation of b2-
integrins lymphocyte function-associated antigen 1 (aLb2
integrin) and macrophage-1 antigen (aMb2 integrin) (71).

Activated neutrophils release various proteases (MMPs,

elastase, cathepsin G and proteinase 3) and reactive oxygen

species that strike the BBB with fatal force, allowing them to

cross the endothelial layer (72). Finally, under the cascade of

different chemical attractants, neutrophils reach the injured

brain tissue and disrupt neural function by further disrupting

the BBB through neutrophil extracellular traps and promoting

thrombosis (64, 73, 74). Although treatment regimens targeting

these molecules successfully interfere with neutrophil rolling and

adhesion in animal models, they can effectively limit neutrophil

accumulation and BBB leakage (18). However, clinical trials have

been disappointing. Compared with placebo, there was no

benefit and an increased risk of infection (74).
2.4 T cells

T cells originate in bone marrow, mature in the thymus and

play a central role in the adaptive immune system (75). T cell

transport marks the beginning of the T cell response in ischemic

stroke (76). At present, there are three ways that T cells infiltrate

pathological tissues: BBB, choroid plexus and meninges (77).

After binding, rolling, stagnation and adhesion stages, T cells

attach to endothelial cells by upregulating expression of specific

adhesion molecules on the membrane. Initial adhesion and

rolling of T cells are mediated by the binding between

endoselectin and its ligand (78). Subsequently, integrins

represented by very late antigen 4 and their ligands, such as

vascular cell adhesion molecule-1, help the T cells to stay firmly

on the endothelial cells (79). In animal models, during the first

24 h after MCAO, the CD3+ T cell margins were significantly

infiltrated into the diseased tissue (80). However, the peak of T

cell infiltration is correlated with disease severity. In the transient

MCAO model, the peak occurs 3–5 days after induction. While,

in permanent MCAO models, the peak is delayed, usually

around 7 days after onset (76).

It is important to note that T cells perform different

functions at different stages due to the existence of different

functional subtypes. In the acute phase of ischemic stroke, T cells

respond mainly in an antigen-independent manner and are
Frontiers in Immunology 05
closely related to the development of infarct volume (76). In

animal models, TCR-transgenic mice bearing 1 single CD8+ (2C/

RAG2, OTI/RAG1 mice) or CD4+ (OTII/RAG1, 2D2/RAG1

mice) T cell receptor (TCR), mice lacking accessory molecules

of TCR stimulation (CD28−/−, PD1−/−, B7-H1−/− mice) are as

completely susceptible to ischemic reperfusion injury as wild-

type mice are (81). In addition, certain T cell subtypes, including

gd T cells, do not naturally require antigenic stimulation for their

activation (82). After 3–7 days, the T cell response gradually

shifts to antigen-dependent with antigen recognition (83). The

classic antigen-dependent T cell response involves two steps:

initiation and reactivation. In ischemic stroke, soluble antigens

leak into the blood and surrounding tissues due to the

breakdown of the BBB. These soluble antigens promote the

activation, proliferation and differentiation of naive T cells into

effector cells after being treated by antigen-presenting cells (76).

Through expression of TCR on the surface, T cells can be

divided into CD8+ cytotoxic T cells and CD4+ helper T (Th)

cells (84). Cytotoxic T cells directly destroy target cells by

releasing cytotoxic perforin, granase and granulysin, or induce

apoptosis by the Fas–Fas ligand pathway (85). Th cells bind to

antigen-MHC class II molecules expressed on the surface of

APCs, which are stimulated and can further differentiate into

Th1, Th2, T regulatory (Treg) and other subtypes (86). Th1 cells

secrete proinflammatory cytokines and Th2 cells produce anti-

inflammatory cytokines (87). It is important to note that Treg

cells, which are identified by expression of transcription factor

forkhead box (FOX)P3, play a beneficial role in stroke (88, 89).

Treg cells are rare in the early stages of the disease. On day 14

after stroke, FOXP3+ Treg cells account for 30–40% of CD4+ T

cells, especially in and around the infarct area. In addition, the

number of Treg cells continue to increase and last for up to 1

month thereafter (90). Treg cells work mainly in the late stages.

They antagonize TNF-a and IFN-g production from infiltrated

immune cells, including microglia and T effector cells, by

secreting IL-10 (91). Promotion and maintenance of the anti-

inflammatory phenotype of microglia is another important

mechanism by which Treg cells play a neuroprotective role

(92). Hence, Treg cells could be an effective target for the

treatment of stroke in the future (89).

At present, compared with other immune cells, the

mechanism of T cells in ischemic stroke is still limited.

Although it is thought to be deleterious in the early stages of

ischemic stroke, its detailed function remains to be further

defined (76).
2.5 B cells

At present, there are different and controversial views on the

mechanism of B cells in ischemic stroke. Based on existing

research, the distinct functions may be related to the time after

stroke and different B cell subsets (93).
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IL-10+ regulatory B cells, which account for only 0.5–0.7% of

CD19+ B cells, have been shown to have CNS protective activity

after stroke. Injection of all CD19+ B cells into the lesion site in

B-cell-deficient mice reduced infarct volume 48 h later (94).

Specifically, mice injected with IL-10+ B cells showed a decrease

in infarct size and infiltrating cells, and a significant increase in

Treg cells (95, 96). Some studies have shown that B cells do not

play an important role in the acute phase of ischemic lesions,

especially in the impact of infarct volume (97, 98).

B cells are either absent or harmful during functional

recovery. The delayed deleterious effects of B cells are

primarily seen in increased susceptibility to dementia, which

appears a few weeks after stroke (99). In mouse models, activated

B lymphocytes infiltrate infarcted tissue for several weeks after

stroke. At the same time, IgM, IgG and IgA antibodies are found

in nerve cells near the lesion. While directly impacting neuronal

function, the accumulation of antibodies is associated with

impairment in hippocampal long-term potentiation and leads

to short-term memory deficit a few weeks after stroke (100).

Although the use of regulatory B cells cannot reduce brain

injury in the acute stage, it can regulate long-term neurological

dysfunction. However, the evidence from recent studies makes it

difficult to clearly define the role of B cells in IS, and more studies

are needed in the future.
3 Bridges

3.1 Inflammatory cytokines

All kinds of immune cells activated after the onset, whether

proinflammatory or anti-inflammatory, will release a large

number of inflammatory factors. These inflammatory factors

are represented by ILs, TNFs and chemokines (101). They

circulate to the periphery and become the “invisible hand” that

connects the center to the periphery after an ischemic stroke.

3.1.1 ILs
ILs can be broadly classified as anti-inflammatory and

proinflammatory. IL-1, IL-8, IL-12, IL-15, IL-16, IL-20, IL-18 and

IL-23/IL-17 play proinflammatory roles after ischemic stroke (102).

IL-1, the best-known mediator of acute brain injury inflammation,

is not present in patients with high levels of IL-1b in serum or

plasma. IL-1 occurs in two forms: IL-1a (intracellular) and IL-1b
(secreted) (16). After onset, increased IL-1b secretion activates

phospholipase A2 to degrade arachidonic acid and destroy the

phospholipid bilayer, thereby undermining the integrity of the BBB

(103). At the same time, it stimulates the activation of microglia and

releases various inflammatory mediators (104). More importantly,

it can mediate apoptosis through two aspects: (1) activation of

glutamate-mediated excitatory toxicity (105); and (2) activating the

apoptotic cascade to activate the JNK/AP-1 pathway (106).
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The anti-inflammatory ILs mainly include IL-2, IL-4, IL-10,

IL-13, IL-19 and IL-33 (102). IL-10 has been the focus of

neuroprotection after ischemic stroke for a long time. Its

protective effect is mainly achieved by inhibiting the

inflammatory response. On the one hand, IL-10 reduces the

production of proinflammatory mediators by downregulating

proinflammatory immune cells, and on the other hand, it

upregulates anti-inflammatory immune cells and increases the

secretion of neuroprotective factors (107).

Beyond the two classes mentioned above, IL-6 seems to be a

special presence. It is also a neurotrophic cytokine, although its

serum concentration increases significantly after onset and is

associated with poor prognosis (108, 109). IL-6 acts as an

inflammatory factor in the acute phase and as a neurotrophic

mediator in the subacute and long-term phases.

3.1.2 TNFs
TNF-a may be one of the most widely studied cytokines in

the inflammatory response after ischemic stroke. TNF-a can be

secreted by a variety of immune cells, but it is mainly secreted by

microglia and monocytes after ischemic stroke (110). More

specifically, early TNF after permanent MCAO is primarily

derived from microglia, while sources are more mixed 12–24 h

after permanent MCAO in mice (111–113). TNF-a comes in

two forms: a transmembrane form (tTNF-a) that locally

regulates inflammation through intercellular interactions, and

a bioactive form (sTNF-a) that is soluble and produced by TNF-
a invertase.

Numerous studies have shown that TNF-a plays a double-

sided role in the pathophysiology of ischemic stroke. While

causing nerve damage, it also has a neuroprotective effect (114).

TNF-a acts by binding to two different glycosylated receptors

(TNFR-1 and TNFR-2). In particular, tTNF-a binds to TNFR-1

and TNFR-2, while soluble TNF-a binds to TNFR-1(101). In

animal models, the volume of cerebral infarction is significantly

reduced after injection of chimeric monoclonal antibodies

against TNF-a (115). Therefore, TNF-a may cause cell

damage by binding to TNFR-1. However, injection of

cannabidiol into the brain of transient MCAO models show

neuroprotective effects by activating the TNF-a/TNFR1/NF-кB
pathway (116).

In addition to being involved in neuroinflammatory

responses after ischemic stroke, TNF-a entering the

bloodstream helps trigger inflammatory cascades. Increased

TNF-a concentrations are observed in peripheral blood of

stroke patients 6–12 h after symptom onset. Its concentration

is directly correlated with NIHSS and infarct size (117, 118). In a

long-term follow-up study, serum TNF-a concentrations were

associated with poor long-term outcomes after stroke (119).

Patient prognosis is associated with TNF-a gene polymorphism

(120); therefore, TNF-a inhibition should be considered in the

treatment of ischemic stroke.
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3.1.3 Chemokines
Chemokines recruit immune cells to sites of inflammation.

They are divided into four subfamilies (CC, CXC, XC and

CX3C) based on the number and location of cysteine residues.

Accordingly, chemokine receptors can be divided into the

following categories: CRCCR, CXC-R and CX3C-R (121). It

should be noted that the same chemokine can combine with

different receptors to play a different role.

After ischemic stroke, the sources of chemokines are diverse,

including neurons, astrocytes, microglia, oligodendrocytes and

cerebrovascular endothelial cells (122). For example, astrocytes

are the primary source of CCL2 in adult stroke models, while

damaged neurons are the primary source of CCL2 in neonatal

hypoxia/ischemia models (123).

After 24 h of MCAO, CCL2 and CCL3 expression increases

in ischemic regions of the MCA (124). CCL2/CCR2

interactions contribute to the recruitment of monocytes and

neutrophils after stroke (125). Subsequently, CCL2 expression

levels peak at 2 days and decrease after 5 days (126). In the

CCR2−/− knockout mouse model, a milder inflammatory

response was observed with reduced ischemic infarct loss,

reduced cerebral edema, and low BBB permeability (127).

CCL3 acts as a proinflammatory chemokine by binding to

CCR1 and CCR5 in conjunction with increased expression of

CCL2 (128, 129). CCL3 is also an effective chemoattractant for

neutrophils (130). It has also been shown to be involved in

microglial activation (131). In rat models, the use of

antagonists can reduce infarct volume in a dose-dependent

manner (132).

In addition to the two chemokines mentioned above, CCL5,

as an effective proinflammatory chemokine, selectively binds to

three different receptors, CCR1, CCR3 and CCR5 (133). Its

proinflammatory effects are associated with leukocyte

recruitment and plate le t adhesion to the cerebral

microvascular system. In a CCL5−/− knockout mouse model of

focal cerebral ischemia, there is a significant reduction in infarct

volume and improved BBB function (134). Recent studies have

shown that CCR5 is important in Treg-cell-dependent BBB

protection. CCR5 promotes Treg cells to upregulate PDL1 on

the cell surface, which interacts with PD1 expressed on

neutrophil surface to inhibit MMP9 expression and protect the

BBB (135).

Chemokines and their receptors act as nutritional and

protective factors in the nervous system, thereby improving

the survival rate of neurons. Importantly, they not only

regulate neuronal metabolism but also affect their synaptic

transmission (136). Mirabilie-Badenier et al. proposed that CC

and CXC chemokines are widely involved in key

pathophysiological processes after ischemic stroke (e.g.,

inflammatory cell recruitment and activation, neuronal

survival, and new angiogenesis) and may serve as potential

therapeutic targets (137).
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3.2 Neuroendocrine system

The HPA axis is one of the key components of the stress

system (138). Normally, neurons in the paraventricular nucleus

secrete corticotropin-releasing hormone (CRH), arginine

vasopressin and other neuropeptides that regulate the HPA

(139, 140). CRH stimulates the adrenocorticotropic cells in the

anterior pituitary to synthesize and secrete adrenocorticotropic

hormone (141), which stimulates the adrenal glands to secrete

cortisol to regulate normal physiology (142). After stroke, HPA

is activated under the stimulation of immune response and

pathological stress (143, 144). In particular, inflammatory

factors, such as IL-6, released by local inflammation of

damaged tissues stimulate the paraventricular nucleus to

release CRH (145). In stroke patients, serum IL-6 levels are

significantly increased and positively correlated with cortisol

levels, suggesting that IL-6 release after cerebral ischemia may

contribute to hyperactivation of the HPA (146).

Glucocorticoids play an important role in many biological

processes such as inflammation and immunity, biological

metabolism and water balance (147). Significantly, excess

secretion of glucocorticoids has a strong inhibitory effect on

the immune system. Glucocorticoids have been shown to inhibit

the production of proinflammatory cytokines and proliferation

of immune cells, and promote apoptosis (148). In the acute

phase, immunosuppression can serve as a protective mechanism

that counteracts excessive inflammatory responses to brain

damage. However, prolonged immunosuppression increases

the risk of infection in patients. Concurrently, glucocorticoid-

related toxicity also occurs in multiple organs (149). In the

context of systemic inflammatory responses, the HPA is

overstimulated and the immune system is further suppressed.

Under the vicious circle, the bad clinical outcomes finally

appears (150) (Figure 2).
3.3 Autonomic nervous system

The autonomic nervous system is another key pathway for

the CNS to communicate with the periphery. After ischemic

stroke, sympathetic and parasympathetic nerves, two important

components of the autonomic nervous system, are stimulated

and become dysfunctional (151).

3.3.1 Sympathetic hyperactivation
The sympathetic nervous system (SNS) maintains

homeostasis during all kinds of physiological activities and

prepares the body for emergencies at all times (152). In

patients with acute ischemic stroke, autonomic nerve damage,

characterized by sympathetic dysfunction, is the most common

(153). Plasma catecholamine levels increase significantly in

patients with acute brain injury and are inversely correlated
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with prognosis. The reason behind this may be paroxysmal

hypersympathetic syndrome, with clinical features such as

hyperthermia, sweating, tachycardia, high blood pressure,

shortness of breath, and dystonic posture (154). One of the

causes of sympathetic dysfunction in stroke patients is damage

to the brain’s norepinephrine-producing nucleus —— locus

coeruleus (LC) (155). After the CNS is damaged, the SNS is

overactivated and large amounts of norepinephrine are released

into the blood (156). Norepinephrine plays a variety of biological

functions in the CNS and peripherally through different affinity

for a and b adrenergic receptors (ARs) (157–159). In the CNS,

the SNS affects attention and memory by regulating neurons,

microglia and astrokeratinocytes. Concurrently, it can lead to

increased blood pressure and heart rate, and inhibition of

gastrointestinal activity (155).

In addition to conventional functions, the SNS regulates the

immune system and inflammatory response to protect the body

from foreign pathogens and endogenous inflammatory damage

factors (156). It is well-known that both aAR and bAR are

expressed by both innate and adaptive immune cells, especially

b2AR, which is most expressed. After binding to catecholamines,

they activate adenylate cyclase through the coupled stimulant

protein G (Gas), leading to an increase in intracellular cAMP

levels (160).

In peripheral blood, the continuous elevation of

catecholamine can promote apoptosis of lymphocytes and
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transformation of the Th1 immune response to Th2. These

decrease TNF-a levels and the ratio of IFN-g/IL-4 production

(161–164). The SNS releases norepinephrine, which activates

b2-AR and limits T cell autoimmunity in the CNS through a

mechanism mediated by suppression of IL-2, IFN-g and

granulocyte–macrophage colony-stimulating factor production

via inducible cAMP early repressor (165). In current clinical

practice, b-blockers have been widely used to treat CNS injuries

(166). Although b-blockers are effective in reducing mortality,

they significantly increase infection rates and require longer

ventilator support, intensive care management, and hospital

stay (167).

3.3.2 Parasympathetic activation
Previous studies have shown that activation of the

parasympathetic nervous system can antagonize various

pathological mechanisms. In particular, vagus nerve

stimulation (VNS) can effectively improve various brain

diseases (168). Continuous VNS increases norepinephrine and

acetylcholine (169, 170). Acetylcholine inhibits inflammation

through inhibition of the NF-kB pathway mediated by neuronal

acetylcholine receptor subunit alpha-7 (nAChRa7) (171).

nAChRa7 is an important target for inhibiting the release of

proinflammatory cytokines by macrophages and dendritic cells

and is expressed in peripheral and CNS macrophages (such as

microglia) (172). In response to acetylcholine, macrophages
FIGURE 2

Hyperactivation of the HPA after ischemic stroke results in the release of large amounts of cortisol into the blood. Long-term elevated cortisol
inhibits the immune system and can cause dysfunction and even apoptosis of immune cells. A dysfunctional immune system makes peripheral
organs vulnerable to damage and produces a large number of inflammatory mediators, resulting in systemic inflammatory response. A storm of
inflammatory factors follows. On the one hand, it can further stimulate the HPA, and on the other hand, it disrupts the normal function of nerve
cells and has profound effects on the CNS.
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significantly reduce the release of secretory proinflammatory

cytokines such as TNF, IL-1b, IL-6 and IL-18, but not anti-

inflammatory cytokine IL-10 (171). A recent study showed that

vanniclan, a high affinity agonist of nAChRa7, reduces brain

inflammation and improved motor function when given to

experimental mouse models (173). Although targeting a1/b2-
ARs or nAChRa7 may be a nove l app roach to

neuroinflammation, overstimulation of these receptors may

increase the risk of infection (156, 174). Animal experiments

have shown that electrical stimulation of VN for 15–20 min after

transient ischemia significantly reduces extracellular glutamate

levels in ischemic tissues (175). VNS significantly inhibits

ischemia-induced immune activation and reduces the degree

of tissue damage in rats without any reduction in infarct size

(176 ) . I t i s wor th no t ing tha t VNS can r educe

neuroinflammation after ischemic stroke by inhibiting the

TLR4/MyD88/NF-kB pathway in microglia while promoting

M2 polarization and inhibiting M1 polarization (177).

VNS has been widely used in the postoperative rehabilitation

of patients with ischemic stroke. VNS can significantly improve

motor function in patients with ischemic stroke, especially in the

subchronic stage (178, 179). Therefore, VNS, especially

noninvasive VNS, may be a promising adjunctive therapy for

ischemic stroke (180).
4 The end of the bridge: Systemic
immune system disorder

4.1 Systemic immunosuppression

During the 24 h following ischemic stroke, circulating levels of

cytokines, chemokines and proinflammatory mediators increase in

response to systemic immune activation. However, stroke-induced

immunosuppression develops 2 days after stroke. The specific

manifestations are lymphocytopenia, splenic atrophy and elevated

levels of anti-inflammatory cytokines (181, 182). Stroke-induced

immunosuppression is considered to be a compensatory

mechanism that prevents autoimmunity against CNS antigens

(183, 184). Peripheral circulating concentrations of CNS antigens

such as myelin basic protein, creatine kinase, neuron-specific

enolase, and S100 are significantly elevated within 24 h after

stroke. This is consistent with the size of the infarction and

associated with higher NIHSS baseline scores (185). Particularly,

in response to these CNS antigens, T cells develop a strong cell-

mediated inflammatory Th1 type response (186). As the immune

system adapts to these antigens, T cells shift from Th1 response to

humoral, anti-inflammatory Th2 response to protect the brain from

further inflammatory damage and promote tissue repair and

neuronal regeneration (187). IL-10 secreted by monocytes,

dendritic cells and Treg cells is increased and acts on many

immune cell types to avoid proinflammatory responses (188).
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Another explanation is that it may be due to abnormal

sympathetic nerve function, the parasympathetic nerves and the

HPA (163, 189). Sudden increases in circulating levels of

norepinephrine and glucocorticoids impair lymphocyte

development, transport and function (189). Activation of b-
AR inhibits cytotoxic T lymphocyte-associated protein 4

expression on T cells, reduces IFN-g production and induces

apoptosis (163, 190). When propranolol was used to block b-
ARs, IFN-g production was increased and bacterial burden was

reduced in mice after stroke (191). The spleen, the largest

peripheral immune organ, contracts in response to

sympathetic nerve stimulation. Spleen shrinkage may be

negatively correlated with stroke infarct volume and there can

be marked differences in the size and shrinkage of the spleen

among patients of different ages and ethnicities (192, 193).

Meanwhile, studies have found that the spleen volume is also

negatively correlated with the total number of white blood cells,

which may mean an increase in the inflow of white blood cells

from the spleen into the blood (194, 195). In tracking splenic cell

migration after IS using carboxyfluorescein diacetate

succinimide, researchers found that splenic cells such as

lymphocytes, monocytes, neutrophils, and natural killer cells

could migrate to the brain via the circulation (196). However,

splenic macrophages/monocytes have been shown to lack very

late antigen 4, which prevents these cells frommigrating to other

tissues. At the same time, the induction of Treg cells and the loss

of B cells in the spleen further impair the host-pathogen

defense (188).

Previously, it was believed that early splenectomy may

alleviate acute brain injury and provide early brain protection.

However, some studies have shown that early splenectomy may

temporarily improve function but not bring long-term

protection to damaged brain tissue. Analogously, delayed

splenectomy also brings no benefit to long-term motor and

sensory function recovery (197).
4.2 Opportunistic infection

Severe peripheral immunosuppression makes the body

vulnerable to both exogenous and endogenous pathogens

(Figure 3). Pneumonia and urinary tract infection are the

main types of exogenous infection after stroke. The former has

a high incidence of 57%, while the latter has an incidence of 11–

27% (198). In particular, stroke-associated pneumonia (SAP),

the most common type of infection after stroke, often indicates

deterioration of the disease and poor prognosis (199). There are

currently two definitions of SAP. One is described as pneumonia

occurring < 3 days after stroke. A broader definition classifies

SAP as acute (when pneumonia occurs within 1 month of a

stroke) and chronic (when it occurs after 1 month). Clinically,

SAP is usually defined using broad criteria (200). Through
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numerous clinical studies, aspiration and its associated risk

factors, such as impaired levels of consciousness and

dysphagia, have been identified as important risk factors for

SAP (200, 201). The immunosuppression that accompanies

ischemic stroke also contributes to lung injury (202).

The intestinal flora that co-exists with us and the viruses that lurk

in the body are predictable consequences of immunosuppression

after stroke (203). Compared with healthy people, the gut microbiota

is significantly dysregulated in stroke patients, manifested as having

more bacteria producing short-chain fatty acids, such as Odoribacter,

Akkermansia, Ruminococcaceae_UCG_005 and Victivallis (204).

Short-chain fatty acids produced by these bacteria induce

differentiation of naive T cells towards the functional Treg cell

phenotype and away from the proinflammatory Th17 phenotype

(205). Although Treg cells are closely related to neuroprotective

function by inhibiting pathogenic T cells, some cytokines produced
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and secreted by they may associated with neurotoxicity (206, 207). In

addition, species diversity of intestinal microecology decreases after

stroke (208). Specifically, alterations are observed within the highly

abundant phyla Firmicutes, Bacteroidetes and Actinobacteria (209).

Immunosuppression creates conditions for the displacement of

intestinal flora and causes infection (203).
5 Conclusion

Ischemic stroke is not only an acute and severe neurological

disease but also a multiorgan and systemic disease. Throughout

the course of the disease, immunoreactivity is involved at

every stage.

Initially, the innate immune system in the CNS is activated

in response to ischemia–reperfusion injury of brain tissue. As the
FIGURE 3

Immunosuppression after stroke increases the risk of infection. Exogenous pathogens can infect the lungs and urinary tract. Translocation of
intestinal flora is also a potential risk.
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disease progresses, the large number of inflammatory mediators

produced by neuroinflammatory responses activate the adaptive

immune system to further damage nerve cells. In this process, in

addition to the physical function of the damaged brain area, the

inflammatory factors produced by neuroinflammation interfere

with other normal neural pathways. In particular, dysfunction of

the HPA and autonomic nervous system affects the function of

the immune system and peripheral organs. They not only cause

immune disorders but also lead to dysfunction of peripheral

organs. Eventually, all of these feed back into the CNS and lead

to a vicious cycle.

In theory, regulating the immune system or blocking

inflammatory pathways from the center to the periphery is a

promising therapy for improving the prognosis of ischemic stroke.

However, with current technology, it is difficult to reduce systemic

inflammation without increasing the risk of endogenous and

exogenous infection. In addition, the neuroendocrine axis and

autonomic nervous system are important pathways linking the

center and the periphery. They also play an important role in

regulating immune system function. Although researchers have

been working in this area for a long time, the detailed mechanism

remains unclear. These may be breakthrough points for designing

treatment strategies in the future.
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