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Surgery triggers a systemic inflammatory response that ultimately impacts the brain and
associates with long-term cognitive impairment. Adequate regulation of this immune
surge is pivotal for a successful surgical recovery. We explored the temporal immune
response in a surgical cohort and its associations with neuroimmune regulatory pathways
and cognition, in keeping with the growing body of evidence pointing towards the brain as
a regulator of peripheral inflammation. Brain-to-immune communication acts through
cellular, humoral and neural pathways. In this context, the vagal nerve and the cholinergic
anti-inflammatory pathway (CAP) have been shown to modify peripheral immune cell
activity in both acute and chronic inflammatory conditions. However, the relevance of
neuroimmune regulatory mechanisms following a surgical trauma is not yet elucidated.
Twenty-five male patients undergoing elective laparoscopic abdominal surgery were
included in this observational prospective study. Serial blood samples with extensive
immune characterization, assessments of heart rate variability (HRV) and cognitive tests
were performed before surgery and continuing up to 6 months post-surgery. Temporal
immune responses revealed biphasic reaction patterns with most pronounced changes at
5 hours after skin incision and 14 days following surgery. Estimations of cardiac vagal
nerve activity through HRV recordings revealed great individual variations depending on
the pre-operative HRV baseline. A principal component analysis displayed distinct
differences in systemic inflammatory biomarker trajectories primarily based on pre-
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operative HRV, with potiential consequences for long-term surgical outcomes. In
conclusion, individual pre-operative HRV generates differential response patterns that
associate with distinct inflammatory trajectories following surgery. Long-term surgical
outcomes need to be examined further in larger studies with mixed gender cohorts.
Keywords: surgery, innate immunity, heart rate variability (HRV), inflammation, neuroimmune alterations,
perioperative neurocognitive disorders (PND)
1 INTRODUCTION

The inflammatory response evoked by surgery rapidly spreads to
remote organs via a temporal cascade of molecular and cellular
signaling pathways within the innate immune system.
Orchestration of this trauma-induced immune activation is
dependent on molecular and neural regulatory pathways that
result in a multiphasic response, including pro- and anti-
inflammatory as well as resolving processes (1–3).

There is a growing body of evidence supporting an
important role of the brain in regulation of acute and chronic
inflammation through several molecular and cellular
mechanisms (4–6). The cholinergic anti-inflammatory
pathway (CAP) involves the vagal nerve in bidirectional
brain-to-immune communication. In brief, in-bound afferent
vagal-nerve signaling from the periphery provides information
about innate immune activity and systemic inflammation, while
the out-bound efferent vagal nerve activity provides counter-
balancing regulatory properties targeting systemic immune
cells (7, 8). This latter effect is achieved via vagal and splenic
nerve-mediated adrenergic and cholinergic transmission in the
spleen and other lymphoid tissues, ultimately promoting JAK-
STAT3 and NFkB-dependent downregulation of immune
signaling within blood-borne or resident macrophages (9–14).
The afferent and efferent limbs of this neural route thus form a
neural regulatory reflex pathway through which the brain
communicates with the peripheral immune system and can
modulate systemic inflammation.

Cardiac vagal nerve activity can be readily approximated by
monitoring heart rate variability (HRV) (15–17). There is a close
association between HRV and systemic inflammation, such that
changes in HRV patterns can be used to detect prodromal states
of acute illness in patients with systemic inflammation, as
reported for severe infection or sepsis (18–23). In addition, in
patients with chronic inflammatory disorders such as
rheumatoid arthritis (RA) and inflammatory bowel disease
(IBD), vagal nerve stimulation dampens systemic inflammation
and promotes inflammatory resolution with objective and
subjective clinical improvement (24, 25). Vagal nerve signaling
can thus be used for inflammatory sensing and monitoring, as
well as for inflammatory interventions.

Recent observations in surgical patients suggest that surgery-
induced immune activation with impaired inflammatory
resolution might lead to long-term postoperative impact,
especially long-term deficits on higher brain functions
including neurocognition (26–28). However, we lack an
understanding of the role of the brain and the autonomic
org 2
nervous system during peripheral immune response to surgery
and related long-term post-operative outcomes.

The primary purpose of this study was to explore surgery-
induced temporal changes in vagal nerve activity and its
association with systemic innate immune molecular and
cellular activities. The secondary aim was to investigate
whether different vagal nerve response patterns are linked to
long-term postoperative neurocognitive outcomes.
2 METHODS

2.1 Subjects
This observational prospective study was approved by the
Stockholm Regional Ethical Review board (2016/1745-31/1),
registered at ClinicalTrials.gov (NCT03055325) and conducted
in accordance with the Declaration of Helsinki 2013.

Twenty-five patients, aged 45-75 years, scheduled for elective
robot-assisted laparoscopic prostatectomy (RALP) were included
after informed consent. Patients were defined as ASA I-II
(American Society of Anesthesiologists) and pre-operative
cognitive capacity was determined using Mini Mental State
Exam (MMSE). Data collection took place between January
2017 and October 2019 at the Karolinska University Hospital
Stockholm, Sweden.

Exclusion criteria include neurodegenerative diseases,
significant psychiatric illness or a MMSE score of ≤ 23,
previous stroke, cardiac illnesses including active arrhythmia,
chronic pain or inflammatory disease such as RA or IBD,
medication with steroids, statins, ß-blockers or anti-cholinergic
drugs, diabetes mellitus or any other condition known to cause
autonomic dysfunction, substance abuse and previous
splenectomy. Also, surgery within 6 months, cancer treatment
within 12 months or infectious disease treatment the previous
month and presumed uncooperativeness or legal incapacity were
grounds for exclusion.

2.2 Anesthesia, Surgical and Postoperative
Care
Patients ’ medical history was assessed at inclusion.
Complementary and perioperative information was extracted
from the medical record system (TakeCare) at Karolinska
University Hospital.

No routine premedication was administered. Prior to surgery,
patients received intrathecal bupivacaine (10 mg) and sufentanil
(5 mg) followed by induction of general anesthesia using
remifentanil, propofol and rocuronium. Anesthesia was
July 2022 | Volume 13 | Article 911744
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maintained using desflurane (0.7 – 1.0 MAC) and a continuous
IV infusion of remifentanil (B. Braun Perfusor® Space). All
patients received a radial arterial catheter for invasive arterial
blood pressure monitoring and serial blood sampling. The
laparoscopic robotic surgical procedure was performed in the
Trendelenburg position (30-45 degrees) with intra-peritoneal
insufflation of CO2 (12 mmHg). After completion of surgery
patients were transferred to the post-anesthetic care unit
(PACU). Intravenous ketobemidone combined with
acetaminophen was administered before emergence from
general anesthesia and repeated intermittently as needed to
achieve analgesia. All patients were prescribed oral oxycodone
and a 7-day treatment with subcutaneous low molecular weight
heparins (LMWHs) following hospital discharge.

2.3 Study Protocol
Serial blood sampling, HRV-recordings and cognitive tests were
performed starting before surgery and continuing for up to 6
months after surgery as outlined in Figure 1.

2.4 HRV and QTV
Five-minute 12-lead ECG recordings to achieve a minimum of
256 beats were acquired using a computer-assisted ECG device
(Advanced ECG, Space EKG Technology, Trélex, Switzerland
and Cardiax software IMED Kft. Budapest, Hungary).
Recordings were made in the supine position, in the morning
(except for the recording 5 hours post-skin incision), during
fasting conditions with patients resting for a minimum of 5
minutes before the start of recordings, and with numerical
response scale (NRS) score for pain <5.

Time series for the RR and QT intervals were analyzed
according to the Task Force of the European Society of
Cardiology standards (16, 29). Specifically, analyses in the time
domain included the standard deviation of normal-to-normal
RR intervals (SDNN), the root mean square of the successive
interval difference of normal-to-normal RR (rMSSD) and the
first standard deviation (SD1) from the 256-beat Poincaré plot.
In the frequency domain, the very low (VLF, 0.0–0.04 Hz), low
(LF, 0.04–0.15 Hz), high (HF, 0.15– 0.40 Hz), and total (TP, 0.0–
0.40 Hz) frequency powers of RR interval variability in natural
Frontiers in Immunology | www.frontiersin.org 3
log-transformed units (ln ms2/Hz) were calculated using the
Lomb periodogram method (Figure 2) (30).

For QT interval variability (QTV), the QT variability index
(QTVI) was calculated for the entirety of each ~5-min recording
by utilizing the signals from lead II, specifically after the method
of Starc and Schlegel (29, 31, 32). In patients without heart
failure, supine resting (non-stressed baseline) QTV is believed to
mostly reflect cardiac vagal activity (33).
2.5 Whole Blood Analyses
On each study occasion blood was sampled and immediately
processed for ex vivo whole blood LPS stimulation. We also
centrifuged and stored plasma and serum (-80°C) for later
analyses. Furthermore, whole blood was processed for analysis
of peripheral blood mononuclear cells (PBMCs) and by certified
laboratories for T-cells and complete blood count (CBC).

2.5.1 Ex Vivo Lipopolysaccharide Stimulation
One-hundred µL of whole blood (arterial or venous) was added to
round-bottomed 96well plates (Nunc) containing 96µLDulbecco’s
Modified Eagle Medium (DMEM), within 30 minutes from each
sampling. Four µL of either LPS (E.Coli 0111:B4, Sigma, L2630,
0.5µg/mL) or phosphate buffered saline (PBS) alone was added to
triplicate wells, rendering a final concentration of LPS of 10 ng/ml
per well, where added. Blood cultures were incubated at 37°C, 5%
CO2 for 4 hours on a rocking board. Three mM ATP (Sigma,
A2383)was added for the last hour. Plates were then centrifuged for
10 min at 2000g and supernatants subsequently transferred to vials
and stored at -20°C until assayed for concentrations of relevant
inflammatory biomarkers content by Enzyme-linked
immunosorbent assay (ELISA) techniques, according to the
manufacturer instructions (R&D systems). OD values were
recorded using a plate reader and SoftMax software.

2.5.2 Cytokine Assessment
Serum biomarkers of systemic inflammation were analyzed using
a high-throughput, multiplex immunoassay (Proseek© Multiplex
FIGURE 1 | Clinical trial profile. CBC, complete blood count; LPS,
lipopolysaccharide.
FIGURE 2 | Derivation of Heart Rate Variability parameters. RRV, R-to-R
variability; SDNN, standard deviation of normal-normal heart beats; rMSSD, root
mean square of successive differences; LF, low frequency; HF, high frequency.
July 2022 | Volume 13 | Article 911744
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Inflammation) by PEA technology (Olink Proteomics AB,
Uppsala, Sweden). Analysis was conducted using one sample
(patient) per well. For each of 92 selected inflammatory proteins,
two separate oligonucleotide-marked antibodies were applied.
After binding by the antibody pair to its target, DNA
polymerization provides a protein-specific reporter DNA-
sequence for each detected protein molecule. The reporter
DNA strands were then quantified using qPCR. The acquired
Cq values were normalized and converted into Normalized
Protein Expression Units (NPX), expressed on a Log2 scale.

ELISA was used for high-sensitivity C-reactive protein
(hsCRP, Hycult Biotech, Cat no:HK369) and high mobility
group box protein 1 (HMGB1) concentration was measured
using a commercial kit (Tecan/IBL, Cat no: ST51011, Lot
no: EHMG147).

2.5.3 Cellular Analyses
CBC and T-cell analyses were performed by Karolinska University
Laboratory, Stockholm, Sweden, using Sysmex XN-9000 for CBC
processing. T-cell analysis for CD4+ and CD8+ expression was
performed using an Aquios CL (Beckman coulter) which utilizes a
direct volumetric single‐platform method with incorporated
sample preparation with a monoclonal antibody mixture (anti‐
CD45‐FITC [clone B3821F4A], anti‐CD4‐RDI [clone
SFCI12T4D11], anti CD8‐ECD [SFCI21thyD3], anti‐CD3‐PC5
[clone UCHT1]) Beckman Coulter.

For PBMC isolation, whole blood was sampled using BD
Vacutainer® CPT™ Mononuclear Cell Preparation Tubes and
processed within 3 hours of collection. PBMCs were then isolated
according to the standard procedure (centrifuged at 1500 g for
20 min at room temperature) and washed with cold PBS (440 g
for 10 min at 4°C). Single cell suspensions were plated in 96-well
V-bottomed plates and stained for 20 min at 4°C. The cells
were incubated with Alexa Fluor647 anti-human CX3CR1
(clone: 2A9-1, BioLegend), PerCP/Cy5.5 anti-human CD192
(CCR2) (clone: K036C2, BioLegend), APC/Cy7 anti-human
CD68 (clone: Y1/82A, BioLegend), PE/Cy7 anti-human CD11b
(clone: ICRF44, BioLegend), Alexa Fluor488 anti-human
CD16 (clone: 3G8, BioLegend) and PE anti-human CD14
(clone: 63D3, BioLegend). Cells were acquired using a Gallios
flow cytometer (Beckman Coulter) and analyzed using Kaluza
software (Beckman Coulter).

2.6 Serial Cognitive Testing and Test
Battery
Cognitive capacity was assessed using the International Study of
Postoperative Cognitive Dysfunction (ISPOCD) test battery (34).
The test was conducted at three time points by one of three
trained investigators. The test battery consists of four parts,
rendering seven variables for analysis. The visual verbal
learning test (VLT) tests word recall in 3 trials and 1 delayed
recall; the concept shifting test (CST) measures time (s) and
errors in part C of the trial; the Stroop color word test (SCWT)
measures time (s) and error in the third part of the test and
finally the number of correct answers were recorded in the letter
digit coding test (LDC).
Frontiers in Immunology | www.frontiersin.org 4
Individual test results were compared to baseline (prior to
surgery) rendering Z-scores for each test and a composite Z-score
for overall performance. Results were further adjusted to age-
matched controls to account for variability and practice effects
(34). The 30-minute test was altered at each temporal assessment
and conducted in a silent room. We defined poor cognitive
performance as either a composite Z-score of >1.0 or as a Z-
score of >2.0 in a single part of the test battery.

2.7 Statistical Analysis
Data are presented as mean value ± standard deviations (SDs)
unless otherwise specified. Differences in HRV, cell and cytokine
levels over time or between vagal subgroups were analyzed using
repeated measures ANOVA and mixed-effects model with
Bonferroni’s or Tukey’s tests for multiple comparisons. A
principal component analysis (PCA) was applied to analyze
systemic inflammatory and immune biomarkers to reduce
dimensionality and thereby reduce the problem of mass-
significance. The PCA was performed on the basis of the pre-
operative measurements, and subsequently the three first
principal components were identified. These construct
variables are three differently weighted averages of the
standardized measurements (i.e. having zero mean and unit
variance) of the included biomarkers. The pre-operatively
obtained weighting schemes were then applied to the
standardized post-operative measurements at each timepoint.
The obtained individual time trajectories of these construct
variables (PC1-PC3) were compared between HRV-groups by
mixed effects model analyses. The significance levels for the three
time-group interaction tests obtained were Bonferroni corrected.
An observed significant group-time interaction indicates that the
latent pre-operative biomarker pattern identified by PCA is
differentially affected by the surgical trauma in the HRV-
groups. Furthermore, when a significant interaction was
identified, analyses were performed on the subset of individual
biomarkers with the largest weights in the corresponding
construct variable (i.e >0.1 for PC2). Differences were
considered significant if p<0.05. We utilized software
GraphPad Prism version 8.00 software for Mac (GraphPad
Software, La Jolla, CA, USA) and SAS version 9.4 (SAS
Institute Inc., Cary, NC, USA).
3 RESULTS

Of the twenty-five patients included, twenty-four had complete
data sets and one patient was lost during follow up. Demographic
and perioperative information is presented in Table 1.

3.1 HRV and QTV
The six HRV domains (rMSSD, SD1, HF, LF, LF:HF and SDNN)
and IIQTVI were first characterized by exploring their reciprocal
associations. Notably, SDNN, rMSSD, SD1 and HF all strongly
correlated (R 0.9-1.0), as expected, while LF and especially
IIQTVI changed in a distinctly different pattern (see
Supplementary Figure 1, for coefficients). The pre-operative
July 2022 | Volume 13 | Article 911744
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correlations were consistent over time. During anesthesia, HRV
declined significantly, with SDNN -36% and LF -72% versus their
respectivebaselines, andwith IIQTVI increasingby34%.At 5hours
after skin incision, HRV values had recovered from anesthesia
(Figure 3). At an individual level, however, patients with a higher
Frontiers in Immunology | www.frontiersin.org 5
pre-operative variability displayedhigher variability throughout the
study period compared to patientswith less dynamic variability, the
20% of patients with highest pre-operative variability in RMSSD
having temporal coefficients of variation (CV) of 32-102%whereas
the lowest 20% had CVs of 10-35%.
TABLE 1 | Patient characteristics and perioperative data.

patients n = 25

Age, years 59 (45, 75)
Sex, male, n (%) 25 (100)
Weight, kg 84 (65, 97)
Height, cm 181 (164, 194)
Body Mass Index, kg/m2 25 (21, 30)
Comorbidities
Hypertension, n (%)
Diabetes, n
Nicotine use, n (%)

2 (8)
0

4 (16)
ASA classification
I, n; II, n; III & IV, n 14; 11; 0
Mini Mental State Exam, score 30 (27, 30)
Pre-operative laboratory results
Blood hemoglobin, g/L 146 (133, 168)
Serum creatinine, µmol/L 87 (66, 109)
WBC count, x10^9/L 5,5 (3,7, 8,3)
Ongoing medication
Angiotensin converting enzyme inhibitor, n 2
Opioids, n 1
Educational level, years in school
<9 yrs, n (%), high school 1 (4)
9-12 yrs, n (%), gymnasium/college 10 (40)
>12 yrs, n (%), higher education 14 (56)
Perioperative data

SPA, n (%) 25 (100)
Propofol induction, mg 180 (70, 350) n=24
Remifentanil, total amount, mg 3,14 (0,25, 5,02) n=13
Rocuronium, mg 50 (40, 60) n=18
Vasopressor, n 24
Phenylephrine, tot amount, mg 0,2 (0,05, 0,65) n=13
Ephedrine, tot amount, mg 27,5 (5, 45) n=21
Duration of surgery, min 156 (76, 212)
Bleeding, ml 100 (0, 400)
Intravenous fluids, Acetated Ringer, ml 1650 (500, 2500) n=22
Albumin, ml 250 (100, 250) n=7
Post-operative data

PACU length of stay, minutes 239 (145, 455)
Hospitalization total, hours 32,2 (30,6, 58,1)
Intravenous fluids, 24 hrs including OR, ml 2300 (1200, 3600)
Medications
IV opioid, mg oral morphine equivalents PlPACU to 24 hrs post-surgery 17 (7,5, 35)
NSAID, n 1
Clonidine (a-receptor antagonist), n 1
Benzodiazepine, single dose pre-op, n 2
Benzodiazepine, single dose post-op, n 1
Droperidol, n 1
Post-operative NRS score Pain Nausea
5 h 3 (0, 4) 0 (0, 4)
24 h 3 (0, 5) 0 (0, 6)
72 h 1 (0, 5) 0 (0, 3)
14 d 0 (0, 3) 0 (0, 0)
6-8 w 0 (0, 4) 0 (0, 0)
6 months 0 (0, 3) 0 (0, 0)
July 2022 | Volume 13
Values are median (min, max). Age in years. SPA, spinal anaesthesia; NMBA, neuro muscular blocking agents; PACU, Post-Anaesthesia Care Unit; NRS, Numeric Rating Scale; OR,
operating room.
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3.1.1 HRV Phenotypes
Based on the preoperative HRV characteristics, patients were
assigned to one of three phenotypical groups, specifically to
HIGH, LOW or INTERMEDIATE heart rate variability. In order
to differentiate among groups, the median cut-off of RMSSD of
HRV, and of IIQTVI, were uniformly used. Patients with higher
than median RMSSD, and lower (healthier) than median
IIQTVI, were allocated to the HIGH variability group, whereas
patients with lower than median RMSSD and higher than
median IIQTVI were allocated to the LOW variability group.
The remaining patients were grouped into INTERMEDIATE
variability. In order to contrast higher versus lower HRV, the two
groups HIGH and LOW were used for comparison.

Comparing the temporal aspects of HRV with respect to
patients’ pre-operative HRV-characteristics revealed distinct
differences in response patterns. Patients in the HIGH group
exhibited a more dynamic HRV response pattern to surgery over
time whereas patients in the LOW group displayed an overall
impaired response pattern to surgery throughout the
perioperative period. Although with different baselines, the
groups converged with lower variability after induction of
anesthesia but followed by a steady increase starting 24 hours
post-surgery for only the HIGH group (Figure 4).

3.1.2 HRV Phenotypes and Molecular Inflammatory
Response Patterns
To explore the relationship between pre-operative vagal nerve
activity pattern and temporal systemic inflammatory response, a
principal component analysis (PCA) was conducted. Based on
their high fraction of measurements above baseline 77/92 serum
biomarkers were included in this analysis. The PCA was
performed on pre-operative values and the three first principal
components (PC1-PC3) were identified, explaining 44% of the
pre-operative biomarker variation. When the obtained principal
Frontiers in Immunology | www.frontiersin.org 6
components were applied to the postoperative standardized
marker measurements, PC2 showed significant group-time
interaction for HIGH versus LOW HRV-groups (Figure 5).
The relative contribution of individual biomarkers to the
separation of the inflammatory trajectories in PC2 was further
explored among the 36 markers with loadings >0.1 (see
Supplementary Table 1, for included markers). Defined
molecular drivers underlying the earlier separation of
molecular patterns were TGF-a and S100A12/EN-RAGE, and
the later separation was characterized by CX3CL1, MMP1, NT-3,
CXCL6 and FGF-21, all with nominal significance (see
Supplementary Figure 4 for individual marker trajectories).

3.2 Ex Vivo LPS Stimulation & Systemic
Inflammatory Markers
There was a multiphasic response in ex vivo LPS-induced TNF-a
release after surgery, with an initial pronounced depression
(-79%) at 5 hours after skin incision followed by a secondary
depression at 14 days, a pattern sustained both with and without
adjustment for WBC (Figure 6). Systemic TNF-a levels,
however, neither showed phasic reaction patterns nor dynamic
changes over time. In parallel, there was a marked increase in
WBC (+135%) and IL-6 (+135%), with peaks at 5 h post skin
incision. hsCRP rose to a maximum (+2338%) at 24 hours after
surgery. HMGB1 (non-stimulated serum) increased significantly
at 5 h (+131%) and peaked at 24 hours after surgery (+158%),
also with a biphasic temporal pattern. All patients had a
significant rise in platelet counts at 14 days post-surgery
(+57%). Systemic biomarkers of inflammation were normalized
by 6-8 weeks post-surgery (Figure 7).

3.3 Monocytes, T-Cells & Platelets
The total number of monocytes (systemic CD14+ cells) after skin
incision increased at 5 hours (+70%) and returned to baseline at
FIGURE 3 | Temporal HRV trajectories. Mean values, SD. For the indexed parameter IIQTVI and the ratio LF : HF, a greater value implies less variability. * P-values ≤0.05,
Tukey´s multiple comparison test.
July 2022 | Volume 13 | Article 911744
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72 hours (Figure 7). Further subtype analysis revealed that the
number of intermediate type monocytes (CD16+CD14+) was
markedly depressed at 5 hours post-surgery, the non-classical
type were significantly reduced, while the classical monocyte
number increased in the circulation at the same time point (see
Supplementary Figure 3, for subtype data). T-cell (CD3+)
numbers were significantly reduced at 5 hours compared to 2
Frontiers in Immunology | www.frontiersin.org 7
hours post skin incision. Platelet numbers rose significantly in all
patients between 72 hours and 14 days and were normalized by
6-8 weeks after surgery (Figure 7).

Subgroup analysis revealed a difference in hsCRP resolution,
where the HIGH HRV group had significantly lower values 72
hours post-surgery compared to the LOW HRV group (data not
included). No other significant differences were evident between
subgroups in inflammatory markers or cell numbers.

3.4 Cognitive Results
At 72 hours post-surgery five patients (20%) exhibited cognitive
impairment (composite Z-score >1.0) and at 6-8 weeks two
patients (8%) demonstrated the same impairment. In subtests,
7 patients (28%) at 72 hours and 9 patients (38%) at 6-8 weeks
had a Z-score >2.0 in one of the seven derived variables. Four
patients significantly improved their cognitive performance by 6-
8 weeks post-surgery as compared to their preoperative results.

In the HIGH HRV group 2/6 individuals (33%) had a
cognitive impairment at 72 hours, all with recovered
performance by 6-8 weeks post-surgery. In the LOW HRV
group, however, 4/7 patients (57%) had poor cognitive
performance post-surgery, with two of these retaining
cognitive impairment 6-8 weeks post-surgery and one fulfilling
criteria for Post-op Neurocognitive Disorder (NCD).
Considering poor performance on any individual ISPOCD
subtest, 50% and 71% performed poorly (Z-score >2) in the
HIGH and LOW HRV groups, respectively. However, these
group differences were not statistically significant.
FIGURE 4 | Temporal HRV subgroup trajectories. Mean values, SD. Dotted line is level at start of ‘response time’ (24hr.). * Bonferroni’s multiple comparison test,
** Group x time effect (mixed effect model). For the variable IIQTVI – the more negative the value, the stronger the variability. For all timepoints, see Supplementary
Figure 2.
FIGURE 5 | Principal component 2. The second PC showed a significant
group-time interaction assessed by a mixed-effects model (P = 0.013 < 0.05/
3 = 0.017, i.e. after Bonferroni correction).
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4 DISCUSSION

In this study we performed an extensive temporal characterization
of the human immune response to a standardized surgical
procedure and corresponding associations with HRV. Profound
changes in systemic inflammatory markers, immune cell counts
and systemic immune reactivities occurred in the immediate
postoperative period, with biphasic response patterns being
observed. Furthermore, temporal recordings of HRV revealed
distinct differences in HRV response patterns depending on the
Frontiers in Immunology | www.frontiersin.org 8
preexisting individual baseline HRV before surgery. Moreover, a
PCA outlined that the pre-op HRV pattern associated with a
differential molecular immune response pattern after surgery.
HRV characteristics also exhibited a tendency to associate with
cognitive outcomes, although the current study was insufficiently
powered to yield statistically significant correlations.

The immune response to surgery is a robust, multilayered
cascade of events that mirrors the responses to trauma or sepsis
(35, 36). It can be argued that the characteristic surgery-induced
inflammatory surge is a developmental reaction to microbial
B CA

FIGURE 6 | Analyses of TNF-a. (A) TNF-a release ex vivo following LPS stimulation divided by systemic WBC at same timepoint. (B) TNF-a release ex vivo following LPS
stimulation without adjustment for WBC. (C) Systemic TNF-a in circulation (serum) expressed as normalized units (NPX) on a log scale. * P-values ≤0.05 Tukey´s multiple
comparison test, not all significant differences between timepoints are outlined. LPS, lipopolysaccharide; WBC, white blood cell count; NPX, normalized protein units.
FIGURE 7 | Systemic cytokines, alarmins (serum), cellular systemic trajectories and ex vivo LPS challenge-induced TNF-a release. For Ex vivo LPS challenge, TNF-a
(pg/ml) is divided by WBC (x10^9) in order to describe the ‘reactivity per white blood cell’ to endotoxin. *P values ≤0.05 from the preceding timepoint or interval
when present (Tukey´s multiple comparison test). Not all significant changes between timepoints are outlined.
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intrusion or tissue injury that triggers a purposeful change in
behavior termed ‘sickness behavior’, that ultimately facilitates
healing independent of the exact nature of infection or injury (5).
There is growing evidence that this crucial response is partly
regulated through complex neuro-immune reflex pathways. The
CAP is a powerful reflex arc that participates in the regulation of
peripheral inflammation (12, 37). In support of this peripheral
immune regulation, we determined the novel finding of a close
association between pre-operative HRV and postoperative
inflammatory molecular response patterns.

HRV has been widely used to explore parasympathetic activity
and the CAP in a range of clinical conditions of acute and chronic
inflammation (18, 38–40). Moreover, baseline HRV has been
suggested as a predictor of cardiovascular risk and all-cause
mortality, especially in elderly cohorts (41, 42). Our finding that
pre-operative HRV associates with differential inflammatory
response patterns strongly suggests that HRV has the potential to
identify patients at risk for adverse surgical outcomes. In a recent
studyof recovery fromorthopedic surgery,Grote et al, reported that
patients with a higher pre-operative HRV displayed a more rapid
HRV-recovery and even enhancement of HRV post-surgery
compared to patients with lower pre-op values (43). Similarly, our
results indicate an increased variability during the weeks following
surgery, but only in the HIGH HRV group. There is reason to
believe that a healthy and dynamic HRV associates more with a
timelier restoration of inflammatory homeostasis than does a lower
andmore staticHRV (44). The exact connection betweenHRVand
overall vagal tone, cardiac vagal tone or more localized vagal nerve
activity is yet not fully elucidated (45).

The use of PCA in the exploration of HRV in relation to the
immune response aims at unmasking subtle biological patterns
that are not detectable when analyzing separate inflammatory
markers due to the apparent risk of mass significance with the
high number of explanatory variables in the data set. This PCA
uncovered seven inflammatory biomarkers (TGF-a, S100A12/
EN-RAGE, CX3CL1, MMP1, NT-3, CXCL6 and FGF-21)
driving the HRV subgroup differences in the temporal immune
response. As evident, these biomarkers represent regenerative,
neurotrophic, and inflammatory pathways that warrant further
in-depth exploration in larger patient samples to assess their
individual relevance.

Recent studies reveal that the CAP relies on sympathetic nerves
(i.e. the splenic nerve) as well as cholinergic neurons and targets
more lymphatic tissues than the spleen (9–11).Not only the activity
of the vagal nerve but also the balance of theANS therefore needs to
be considered when assessing neuroimmune regulation. However,
as the balance of the sympathetic nervous system (SNS) and
parasympathetic nervous system (PNS), previously assessed by LF
: HF, is controversial, we mainly focused on the parasympathetic
activity as the key driver of the CAP (46).

Consistent with the literature we recorded that levels of early
systemic alarmins, such as HMGB1, increased within the first
hours after skin incision. At the same time point we noted a
marked reduction in white blood cell ex vivo release of TNF-a.
This reduction in innate immune cell reactivity is likely to be
associated with previously reported post-surgical immune
Frontiers in Immunology | www.frontiersin.org 9
depression (47). The cellular reponse to LPS is known to be
reduced by opioids both in vivo and ex vivo (48, 49). In the
current surgical population, opioid administration typically
started during induction of anesthesia, i.e. before skin incision,
and continued throughout surgery and in the immediate
postoperative period, with oral opioids on prescription up to
10 days post surgery. Because the LPS response was well
maintained during the most intense period of administration
of anesthesia and analgetics (i.e. at 2 hours after skin incision) we
argue that it is unlikely that the dynamic immune response is
primarily dependent on an opioid effect.

We further demonstrate that the human response to surgery
displays a simultaneous systemic biphasic molecular and cellular
response pattern. The cellular response to surgery was evident by a
rapid increase in systemic neutrophils and monocytes whereas the
T-cell population apparentlywas affected at a later timepoint. These
observationsmay fuel the concern of a transition of the acute innate
immune activation due to surgery onto adaptive long-term
alterations within the immune system (50). The observation of a
delayed thrombocytosis at 2 weeks postsurgery support these
concerns (51). Finally, we cannot exclude that anesthesia per se
have temporary and shortlasting influences on the regulation of
immune activity, as indicated by the abrupt changes in HRV
following induction and withdrawal of anesthesia (52).

Because the exclusion criteria applied in this study were used
to avoid known interference with HRV data, the study
population mostly represents healthy individuals. In addition,
this study was not sufficiently powered to assess cognitive
outcomes in relation to HRV subgroups. Nonetheless, we did
observe cognitive deterioration in several patients, and in one
this was prolonged, indicating the relevance of this association.
We are aware of potential hidden confounders in the ECG-based
analysis of HRV such as frequent ectopy, pathological non-
respiratory sinus or other arrhythmias or subclinical cardiac
disease. To minimize confounders, such ECG abnormalities were
identified by a clinical physiology ECG specialist and related
results excluded if they interfered with accurate HRV analyses.
Moreover, the long-term postoperative follow-up period may
include medical events such as renewed surgical procedures or
systemic infection that impact the immune system. As we chose
to only include male patients in order to reduce surgical
heterogeneity, corresponding studies with females are required.

Bridging gaps of knowledge regarding the human immune
responses to surgical trauma can help us identify mechanisms
that may prevent adverse postoperative brain outcomes.
Improved understanding of autonomic nervous system (ANS)-
dependent regulatory control over mechanisms of inflammation
may provide clinically relevant tools for screening of at-risk
patients, as well as for immune-modulating therapeutics.
5 CONCLUSIONS

This study contributes to the understanding of surgery-induced
inflammatory responses and the potential role of the brain in
regulation of systemic immune response to surgery. We
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uncovered a differential inflammatory response pattern closely
linked to pre-existing HRV dynamics, with a potential impact on
post-operative outcomes that warrants further clinical
consideration and investigation.
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