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Over the past decades, atopic diseases, including allergic rhinitis, asthma, atopic
dermatitis, and food allergy, increased strongly worldwide, reaching up to 50% in
industrialized countries. These diseases are characterized by a dominating type 2
immune response and reduced numbers of allergen-specific regulatory T (Treg) cells.
Conventional allergen-specific immunotherapy is able to tip the balance towards
immunoregulation. However, in mouse models of allergy adaptive transfer of Treg cells
did not always lead to convincing beneficial results, partially because of limited stability of
their regulatory phenotype activity. Besides genetic predisposition, it has become evident
that environmental factors like a westernized lifestyle linked to modern sanitized living, the
early use of antibiotics, and the consumption of unhealthy foods leads to epithelial barrier
defects and dysbiotic microbiota, thereby preventing immune tolerance and favoring the
development of allergic diseases. Epigenetic modification of Treg cells has been
described as one important mechanism in this context. In this review, we summarize
how environmental factors affect the number and function of Treg cells in allergic
inflammation and how this knowledge can be exploited in future allergy prevention
strategies as well as novel therapeutic approaches.

Keywords: allergic inflammation, regulatory T cells, allergen-specific immunotherapy, microbiota, Treg engineering,
therapeutic application
INTRODUCTION

The prevalence of allergic and of most autoimmune diseases like diabetes, inflammatory bowel
disease, multiple sclerosis, and rheumatoid arthritis, has dramatically increased worldwide, reaching
epidemic dimensions especially in industrialized countries. The immunological mechanisms of
(atopic) allergic diseases, that is, allergic rhinitis, asthma, atopic dermatitis, insect venom allergy,
and IgE-mediated food allergy, are characterized by an aberrant type 2 immune response to
otherwise harmless allergens and a decrease in allergen-specific regulatory T (Treg) cells that are
restored during allergen-specific immunotherapy (AIT), the only causal-oriented treatment known
so far. However, AIT is cumbersome and not established for all kinds of allergies. Therefore, the
clinical demand for other therapies remains high. In this review article, we discuss novel treatment
strategies to restore the function of Treg cells in allergic inflammation by either boosting Treg cell
expansion in vivo or by reinfusion of isolated and ex vivo engineered Treg cells.
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MECHANISMS OF
ALLERGIC INFLAMMATION

During sensitization against a specific allergen, several cell types
of the innate and adaptive immune system and various ligand-
receptor-interactions are triggered (1–3). Initially, the allergens
traverse epithelial barriers and are internalized by antigen-
presenting cells (APC), especially DC, located in the skin,
airways and gut mucosa. According to the epithelial barrier
hypothesis, an increase in epithelial barrier-damaging agents
due to industrialization like toxins, surfactants and emulsifiers
in household cleaning agents or processed food, cigarette smoke,
particulate matter, diesel exhaust particles, ozone, nanoparticles
and microplastics, is associated with the rise in allergic,
autoimmune and other chronic inflammatory diseases.
Protease activity of allergens as well as exposure to certain
bacteria and viruses was also shown to facilitate disruption of
tight junction proteins further leading to epithelial barrier
leakiness (4). Damaged epithelial cells release alarmins (IL-25,
IL-33, thymic stromal lymphopoietin (TSLP)), which activate
DC and group 2 innate lymphoid cells (ILC2). Activated DC
migrate to local lymph nodes where they present processed
allergen peptides to naive CD4+ T cells on MHC class II
molecules. Recognition of these peptide/MHC complexes by
the T-cell receptor induces differentiation of T helper cells with a
Th2-type cytokine profile (IL-4, IL-5, IL-9, and IL 13)
depending on additional costimulatory signals from the DC
and the surrounding micromilieu. Furthermore, IL-5, IL-13, and
IL-9 are produced by ILC2 (4). Expression of IL-4 and IL-13
together with ligation of suitable costimulatory molecules
(CD40 with CD40 ligand, and CD80 or CD86 with CD28)
induces an immunoglobulin class switch and the production
and secretion of IgE antibodies by B cells. IgE is bound to the
surface of effector cells such as mast cells and basophils via the
high affinity IgE-receptor (FcϵRI). In sensitized individuals,
crosslinking of these IgE-FcϵRI-complexes after re-exposure to
the same allergen rapidly leads to release of pro-inflammatory
mediators like histamine, tryptase, prostaglandins, leukotrienes,
and cytokines, which cause the first early phase response with
typical allergic symptoms such as rhinorrhea, airway mucus
secretion, broncho-constriction as well as urticaria, vomiting,
and diarrhea in the case of food allergies and even leading to
anaphylaxis. The late phase response, characterized by the
recruitment of further mast cells and eosinophils mainly
induced through IL-5, follows within several hours. During
the repeated exposure the allergen is also taken up by DC,
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thereby activating memory Th2 cells to produce cytokines and
other mediators, which may further lead to chronic airway
inflammation, goblet cell hyperplasia and tissue remodeling
(3, 5, 6).
TREG CELL SUBSETS INVOLVED IN
ALLERGIC INFLAMMATION AND AIT

The concept of immune tolerance by specialized lymphocytes to
self-antigens has long been suspected but only proven after the
identification by Sakaguchi et al. that a small population of CD25-
expressing CD4+ T cells could prevent autoimmunity in mice (7).
A second breakthrough was the discovery of the transcription
factor FoxP3 as master regulator of Treg cell differentiation and
function. Mutations or deletion of this gene cause severe
autoimmune disease known as scurfy phenotype in mice and
IPEX (immune dysregulation, polyendocrinopathy, enteropathy,
X-linked) syndrome in humans which suffer from diabetes
mellitus, high serum IgE levels, eosinophilia, and food allergy
(8–10). CD4+CD25highCD127low Treg cells constitute about 5-7%
of circulating CD4+ T cells, and they are either generated in the
thymus (tTreg) or induced in the periphery (pTreg), especially in
the gut, from conventional T cells in the presence of TGF-ß or
retinoic acid (11–13). While tTreg constitutively express the
transcription factor FoxP3, which is essential for their
differentiation and function, pTreg can lose FoxP3 expression
and convert into IL-17- and IFN-g-producing inflammatory
effector T cells (14). In general, Treg cells possess remarkable
plasticity in response to a changing cytokine milieu by expressing
alternate lineage transcription factors such as T-bet, GATA3 and
RORCgt (15, 16). Furthermore, at least in humans, FoxP3 is also
transiently expressed by activated effector T cells. Stability of
FoxP3 expression relies on DNA hypomethylation of the Treg
cell-specific demethylated region (TSDR) within the conserved
non-coding sequence 2 (CNS2) in the Foxp3 gene region (17).
Helios and neuropilin-1 are also almost exclusively expressed in
tTreg compared to pTreg (18, 19). Another population of Treg
cells, namely CD49b+LAG-3+ T regulatory type 1 (Tr1) cells, can
be induced in the periphery upon antigen exposure under
tolerogenic conditions which exert their suppressive capacity
independently from FoxP3 mainly via secretion of IL-10 (20–22).

Treg cells play a critical role in maintaining immune tolerance
to allergens and all above-mentioned Treg cell subsets have been
described to control type 2 immune cells by producing inhibitory
cytokines such as IL-10, TGF-ß and IL-35 (Table 1).
TABLE 1 | Treg cell subsets involved in allergic inflammation and increased (green) or decreased (red) during AIT or OIT.

Specific markers Cytokines References

tTreg cells CD4, CD25, CD127low, FoxP3, Helios, neuropilin-1, CTLA-4, ICOS, GITR, PD-1, CD39, CD73, GARP, LAP IL-10, TGF-ß, IL-35 (23, 24)
pTreg cells CD4, CD25, CD127low, FoxP3, CTLA-4, ICOS, GITR, PD-1, CD39, CD73 IL-10, TGF-ß, IL-35 (25–27)
Tr1 cells CD4, CD25, LAG-3, CD49b, PD-1, CTLA-4, ICOS, TIGIT, TIM-3 IL-10, TGF-ß (20, 28)
RORgt+ Treg cells
in the gut

CD4, CD25, FoxP3, RORgt, CTLA-4, ICOS, GITR, CD39, CD73, CCR6 IL-10, IL-17 (29)

ILT3+ Treg cells CD4, CD25, FoxP3, ILT3 IL-5, IL-13 (30)
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Furthermore, Treg cells express high-levels of surface markers
associated with suppression like CTLA-4, PD-1, GITR, ICOS,
LAP, GARP, TIM-3, TIGIT, CD39 and CD73, and suppress
effector T cells through cell-cell-contact, cytolysis and metabolic
disruption, reviewed in (31). Although we and others have
shown that the suppressive capacity of peripheral blood
derived Treg cells from allergic individuals is not generally
defective compared to healthy controls, it may be reduced
under certain conditions (32–34). For example, Treg from
grass-pollen allergic donors failed to inhibit proliferation of T
effector cells at high allergen doses while Treg cells from non-
allergic donors did not fail at these allergen concentrations,
probably due to production of high amounts of IL-2 by
responder T cells following increased stimulation thereby
escaping suppression (35, 36). The fact that only a few soluble
proteins from inhaled allergens are Th2 and IgE inducers/targets,
while the vast majority of encountered proteins attached to
inhaled particles is still tolerated, also argues against a global
defect in Treg cell deficiency in allergic patients (37).
Nevertheless, on the other hand, recent reports have shown
that tissue derived Treg cells are quantitatively reduced and
functionally impaired in asthmatic children (38). Furthermore,
patients with allergic rhinitis have lower percentages of antigen-
specific Tr1 cells in peripheral blood compared to healthy
donors, and induced peanut-specific Tr1 cells from allergic
patients are functionally defective (39, 40). Importantly,
improvement of allergic symptoms in successful AIT,
characterized by repeated subcutaneous or sublingual
applications of increasing doses of the specific allergen, is
associated with an increased number of allergen-specific Treg
cells (Table 1) as well as and Breg cells (23, 41, 42). In contrast,
the recently defined dysregulated FoxP3+ILT3+ Treg cell subset,
occurring in a higher frequency in asthmatic compared to
healthy donors, is reduced during AIT (Table 1) (30, 43).
Increased antigen-induced regulatory T-cell function has also
been observed after peanut or milk oral immunotherapy (OIT)
(25, 44). Overall, a decrease in allergen-specific IgE together with
an increase in protective IgG4 antibodies is achieved (23, 26, 41,
42). Furthermore, Treg have been demonstrated to directly block
mast cell degranulation and ILC2 through OX40-OX40L or
ICOS-ICOSL interaction, respectively (45, 46).
IMPACT OF MICROBIAL METABOLITES
AND DIET ON TREG FUNCTION IN
ALLERGIC INFLAMMATION

Despite a genetic predisposition or other risk factors like
recurrent upper respiratory tract infections in early life, it is
becoming increasingly clear that the increased incidence of
allergic diseases is related to changes in the mucosal
microbiome and to mucosal barrier defects. These changes are
due to modern sanitized living with reduced exposure to
environmental microorganisms, as suggested by the so-called
hygiene hypothesis (47, 48), as well as to the consumption of
Frontiers in Immunology | www.frontiersin.org 3
unhealthy foods, high in fat, sugar and certain food additives,
and low in fiber (49). The importance of the microbiota for
immune tolerance has been demonstrated in mice raised under
germ-free conditions which display strongly reduced Treg cell
frequency in the gut and are more susceptible to develop allergies
(50, 51). Recolonization of the gut with commensal bacteria such
as Firmicutes, Bacteroidetes, Bifidobacterium and Prevotella
restored Treg cell numbers via different mechanisms (52). For
instance, fiber is fermented to short chain fatty acids (SCFA), and
it has been demonstrated in several animal models and in human
studies that the most abundant SCFA acetate, propionate and
especially butyrate can promote Treg cell differentiation and
function, thereby preventing or ameliorating the development of
food and inhalational allergy (53–55). Butyrate has also been
shown to ameliorate ILC2-driven airway inflammation (56).
These effects appeared to be mediated by SCFA-induced G-
protein-coupled receptors (GPCR) activation, mainly GPR41,
GPR43 and GPR109A, by activation of transcription factors such
as aryl hydrocarbon receptor (AhR), or via epigenetic
modification through inhibition of histone deacetylases
(HDAC). Vitamin A and its metabolite retinoid acid further
induce Treg cell development and a combination of both vitamin
A and dietary fiber was required to maintain protection against
food allergy (53, 57–60). In addition, consumption of
unsaturated omega-3 fatty acids present for example in olive
oil and fish has also been associated with reduced risk of allergic
rhinitis and asthma (61). Molecules like polysaccharide A (PSA)
produced by Bacteroides fragilis can also boost Treg cell
generation via Toll-like receptor 2 (TLR2) signaling (62).
Furthermore, tryptophan metabolites derived from intestinal
commensals or catabolized by indoleamine 2,3-dioxygenase
(IDO)-expressing tolerogenic DC ameliorate allergic responses
(63). In contrast, wheat amylase trypsin inhibitors (ATI),
activators of intestinal myeloid cells via TLR4 and promoters
of microbial dysbiosis (64, 65), have been shown to enhance
allergic intestinal and airway inflammation (66, 67). Importantly,
it has recently been reported that high frequencies of RORCgt+

Treg are required to tolerate the intestinal microbiota and to
prevent inflammatory type 2 diseases in the gut (68).
Furthermore, RORCgt+ Treg possess a protective role in a
model of food allergy (69). Altogether, a disturbed microbiota
favors intolerances to food-derived antigens, whereas
administration of probiotics may promote protection from
allergic intestinal and airway inflammation (49, 59, 70).
CURRENT THERAPEUTIC APPLICATIONS
IN ALLERGIC DISEASES: I, INDUCTION
OR EXPANSION OF TREG IN VIVO

As already mentioned above, allergen-specific Treg cells are
induced during successful AIT. However, AIT is not yet
applicable for all kinds of allergies, and did not lead to
beneficial results in all patients. Therefore, other therapeutic
settings aiming to induce or expand Treg cells are urgently
May 2022 | Volume 13 | Article 91252
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needed (summarized in Figure 1). Using a humanized mouse
model of allergy, where PBMC from highly sensitized allergic
donors were injected into immunodeficient nonobese diabetic-
severe combined immunodeficiency gamma chain knockout
(NSG) mice, we have recently shown that Treg cells can be
induced by administration of the chemokine CCL18 produced by
tolerogenic IL-10 DC (71–73) or soluble GARP (74, 75). Both
factors led to inhibition of allergen-specific human IgE
production in mouse sera and subsequently to prevention of
allergen-driven IgE-dependent airway and intestinal
inflammation (73–75). GARP has formerly been described to
be up-regulated on activated Treg and to mediate their
suppressive function (76, 77). In addition, administration of
soluble GARP prevented the onset of a xenogeneic graft-
versus-host disease (GvHD) in NSG mice being injected with
human PBMC directly after birth also by enhancing Treg cell
activity (78). In both models, the suppressive function of Treg
could further be enhanced by the CD4-binding HIV-1 surface
protein gp120, preventing GvHD or allergic airway
inflammation, respectively (79, 80). Recently, it has been
reported that low-dose IL-2 or a combination of IL-2/anti-IL-2
restored Treg numbers and function in respiratory and food
allergies, thereby improving allergic markers and symptoms
(81–83).

Manipulation of the intestinal microbiota associated with
induction or expansion of Treg cells as shown in numerous
animal models of allergy and asthma may also offer novel
strategies for immunomodulation of food allergies. However,
only a slight improvement could be observed in clinical studies
so far. For example, in a double-blind, placebo-controlled clinical
trial, co-administration of the probiotic Lactobacillus rhamnosus
reduced peanut-specific IgE levels during peanut oral
immunotherapy while peanut-specific IgG4 levels were
increased (29). Additionally, colonization of mice and humans
with certain Clostridia species has been shown to protect from
food allergy via increasing Treg cell numbers (60, 69). In a more
Frontiers in Immunology | www.frontiersin.org 4
recent study, fecal transplantation from healthy but not cow’s
milk allergic infants successfully prevented anaphylactic
responses in susceptible germ-free mice, thus confirming the
importance of intestinal bacteria in promoting tolerance to
dietary antigens (84). Importantly, the early-life microbiota
established in uterus and during the first months of life plays a
crucial role for proper immunological development and overall
health status (85). In this respect, an increased risk of the
development of food allergy and asthma has been reported for
children born by caesarian instead of vaginal delivery. This may
be due to a direct impact of the vaginal microbiota being rich in
Lactobacilli species on the microbiota development of the baby
(86, 87). Perinatal antibiotic prophylaxis after caesarian delivery
or the absence of stress factors associated with a vaginal delivery
may also contribute to this effect. In general, a strong relationship
between increased antibiotic use in the first few years of life and
allergy development has been reported (88). Antibiotics not only
reduce important protolerogenic bacteria, they also induce
metabolic changes and enhance susceptibility to obesity (60,
89). Furthermore, Lactobacilli and Bifidobacteria as well as
oligosaccharides in the breast milk are important triggers of a
balanced healthy immune system, and longer duration of
breastfeeding is associated with Treg cell expansion and
reduced allergy development (90–92). In addition, a dietary
diversity in the first years of life and early consumption of
peanuts or eggs as well as other factors relating to the hygiene
hypothesis, like living in a farm environment and drinking farm
milk, or exposure to a large number of pets, both associated with
an enhanced microbial diversity, have been described to protect
against allergy and asthma, particularly via the induction of Treg
cells (93–99). For example, chronic exposure to low-dose
endotoxin or farm dust has been shown to inhibit developing
house dust mite-induced asthma in mice (100). Of note, the
allergy protective farm effect was previously imitated by the
lipocalin beta-lactoglobulin (BLG) present in cow’s raw milk and
farm dust when loaded with iron-flavonoid complexes. Holo-
FIGURE 1 | Prevention of type 2 allergic responses by in vivo expansion of Treg.
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BLG promoted Treg cells through AhR activation and down-
regulation of antigen presentation in monocytes and DC via
transport of iron (101). In a follow-up clinical pilot trial, the same
authors assessed the efficacy of a FSMP (food for special medical
purposes) lozenge containing BLG with iron, polyphenols,
retinoic acid, and zinc in allergic women and could show that
this holo-BLG lozenge improved nasal symptom score after nasal
provocation as well as symptom medication score during birch
or grass pollen season by more than 40% compared to the
placebo group (102).

However, more and larger studies are needed to confirm all
these positive results and to develop public health strategies to
prevent allergic diseases in the future.
CURRENT THERAPEUTIC APPLICATIONS
IN ALLERGIC DISEASES: II, INFUSION OF
EX VIVO ENGINEERED TREG

The therapeutic potential of FoxP3+ Treg cells has been
demonstrated in many preclinical models and clinical trials
aiming to prevent graft-versus-host disease during organ
transplantation and in several autoimmune diseases such as
type 1 diabetes mellitus, inflammatory bowel disease, systemic
lupus erythematosus, multiple sclerosis, and allergy (103). Tr1
cells therapy in the context of allogeneic hematopoietic stem cell
transplantation has also been successfully employed (104).
Overall, the functional stability of Treg cells is of fundamental
importance for the efficacy and safety of Treg cell-
based therapies.

Gene editing technologies in medical research are becoming a
central player to investigate and treat complex biological
diseases. Constant balanced examination of the immune
system of autonomous and non-autonomous antigens protects
healthy cells and eliminates invading foreign particles. However,
failing in recognition of self and non-self antigens leads to
various autoimmune and inflammatory diseases such as
inflammatory bowel disease, type 1 diabetes, rheumatoid
arthritis and multiple sclerosis (105). Standard medication for
various autoimmune diseases including allergy required
immunosuppression in a form of pharmacological compounds
and antibody targeted treatment which subjected patients to
other complications such as cancer and opportunistic pathogens.
In this regard, cell-based therapy such as adoptive cell transfer of
engineered Treg cells could provide an effective therapeutic
alternative to combat autoimmune diseases.

Adoptive cell transfer of Treg cells is effective and well
tolerated. For instance, in a phase I/IIa clinical trial
investigating Treg cell therapy in kidney transplantation,
patients engrafted with autologous Treg had similar rejection
rates compared to the group receiving the standard
immunosuppression with basiliximab (anti-CD25), but
displayed reduced infection rates (106). In clinical settings,
polyclonal expansion, antigen-specific stimulation and
engineered (CAR: chimeric antigen receptor and TCR:
predefined T cell receptor) Treg cells are the prime strategies.
Frontiers in Immunology | www.frontiersin.org 5
In polyclonal expansion, Treg cells from donor PBMC were
activated in the presence of anti-CD3/28 beads and IL-2 whereas
an antigen-specific approach employed allogeneic Treg cells
from the recipient stimulated by antigen presenting cells from
the graft donor. However, an antigen-specific approach is more
efficient with higher specificity than polyclonal Treg cells and
suitable for the transplantation. Engineered approaches use
genetic modification of polyclonal Treg cells with CAR or TCR
to recognize desired antigens and provides abundant antigen-
specific Treg cells; Figure 2. The advantage of engineered
approaches is the reduction of side effects due to nonspecific
suppression by Treg cells (103).

Traditional gene transfer approach employed retroviruses,
lentiviruses, adenovirus-associated virus (AAV) and
transposases which dispense specific and randomized
insertion of targeted genes in Treg cells (107, 108). However,
randomized insertion by transposases could raise safety
concerns (109). Other gene editing or nucleases approaches
such as transcription activator-like effector nucleases
(TALEN), Zinc finger nucleases (ZFN) and more recently
CRISPR-Cas applications advancing Treg therapy and its
product (110, 111).

TCR engineered Treg cells are multi protein complex
consisting of a- and b-chain which recognize major
histocompatibility complex (intra/extracellular antigen) and
trigger CD3 dimer complexes (CD3ϵ, CD3g, and CD3z chains)
(103). TCR engineered Treg cells provide bystander and antigen-
specific suppression by assembling itself in the targeted tissue
during autoimmunity (112). Expression of single antigen in a cell
is adequate for TCR engineered Treg cell activation but its
recognition capacity is limited over a specific population. In
the multiple sclerosis mouse model of experimental allergic
encephalomyelitis (EAE), myelin basic protein (MBP) activated
human Treg cells control the expression of T-effector cells with
enhanced Foxp3 expression (113). Further, human TCR
transduced for factor VIII (FVIII) also showed dominance over
FVIII-specific T-effector cell proliferation and its cytokine
production. Moreover, antibody production was also inhibited
in antigen-specific manner in FVIII-deficient mice (114).
Additionally, transduced Bet v 1-specific Treg cells were more
potent than regular tTreg in suppression of allergen-specific T-
effector cell proliferation and cytokine production (115). For the
future TCR therapy, TCR should be considered from Treg
instead of effector T cells.

CAR are the single protein complex consisting of single chain
variable fragment which recognize antigen in the outer part, a
hinge and inner part with CD3z and CD28/4-1BB domain.
Elegant work performed by the group of Eshhar licensed the
innovation of CAR (116). Initially based on its stimulatory
domain, CAR have been alienated into several generations.
First generation poses single stimulatory domain (CD3z)
followed by second generation which display co-stimulatory
domain (CD3z and CD28), third generation (CD28, CD27, 4-
11BB, OX40, ICOS) and fourth generation encompasses with
ScFv-CD3z, CD28, and 4-1BB (117).

CAR offer direct and broad-spectrum recognition unlike TCR
(MHC restricted) and have limited IL-2 dependency but require
May 2022 | Volume 13 | Article 912529
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a high number of targeted tissue antigens (100–10,000 antigens/
cell) (118, 119). They can spot entire proteins, major
histocompatibility complexes and extracellular antigens (103).
CAR engineered Treg specific to HLA-A2 prevent HLA A2+ skin
rejection and graft versus host disease in mouse models (120,
121). However, CAR recognized extracellular antigens, therefore
new tools which combined TCR, and CAR have been developed
(122). For instance, the modular chimeric antigen receptor
approach unveils suppression functions of co-stimulatory
molecules (CD137 and CD28) in Treg and limits the T-effector
cells (123). In another study, improved pancreatic islet allograft
in mAb-directed CAR expressing Treg cells towards MHC-1
peptides and circumvents skin rejection was monitored (124).

CAR T cells have been utilized for B-cells autoantibodies
(IgG) in Pemphigus vulgaris (PV) where CAAR expressing Dsg3
(keratinocyte adhesion protein) specifically targeted autoreactive
B cells without influencing other cell types and protected through
CD137 signaling cascade (125, 126). Since IgE is a major
contributor in the pathogenesis of allergic disease, therefore
targeting IgE producing memory B-cells possess great potential
for allergic and autoimmune diseases. In this regard, CAR-T-IgE
containing a-chain of IgE receptor and FCϵRI displayed
specificity towards mouse IgE-B-cell and could be adapted to
the clinical settings (127, 128). In asthma, autoantibodies for cell-
junction, endothelial and epithelial cells have already delineated
which could also be targeted in future (129, 130). In asthma
mouse model, mobilization of CAR-Treg cells towards lungs and
tracheobronchial lymph node diminished airway hyperreactivity,
Frontiers in Immunology | www.frontiersin.org 6
reduced mucus secreting cells, eosinophilic activity, Th2
cytokines and allergen-specific IgE to control asthma (131).
Recently, CAR approach was employed in an allergic model
where ovalbumin (OVA) antigen was targeted for mast cells
(IgE-sensitized) and B-cells, termed as B-cell Antibody Receptor
(BAR). Post OVA challenged for anaphylactic reaction, OVA-
BAR expressing Treg cells shielded mice from hypothermia
(132). However, human clinical studies using CAR-Treg cells
in allergic inflammation are missing so far.

Taken together, Treg therapies and its applications are
entering into an exciting era but still confronted with some
limitations such as engraftment, safety concerns and long term
stability without acquiring plasticity. However, adverse effect or
cytokine storm from engineered CAR-Treg cells could be
controlled with CRISPR-Cas9 suicidal system containing pro-
apoptotic suicidal gene (128, 133). Stability and plasticity, post
CAR-Treg cells transplantation could likely be resolved with
CRISPR applications either by inserting (IL-10, TGF-b) or
removal (IL-17, IL-4, IFN-g, IL-6) of desired genes (134–136).
Further, engraftment efficacy to the targeted tissue is potentially
enhanced by expressing desired chemokine receptor in CAR-
Treg cells in accordance with overexpressed ligand in the
targeted tissue as demonstrated in Figure 2 (103, 137). Most of
the promising preclinical data demanded further optimization
and characterization of genetically modified Treg therapy with
higher efficacy targeting asthma and allergic diseases to offer
alternative curative options at least for patients with severe or
chronic respiratory diseases in future.
FIGURE 2 | Possible adoptive CAR-Treg cell therapy for allergic asthma. Treg cells are isolated from peripheral blood of healthy and allergic donor, cultured with IL-2 for
polyclonal Treg cells (CD3/CD28 beads), antigen-specific cells (antigen presenting cells activate alloreactive Treg cells) and genetically engineered Treg cells. In genetically
engineered Treg approach, cells could be transduced with retroviruses, lentiviruses, adenovirus-associated virus (AAV), transcription activator-like effector nucleases (TALEN),
Zinc finger nucleases (ZFN) or CRISPR-Cas to express CAR, TCR, BAR and others. With this approach immunological rejection would be avoided (introduction of the non-
classical HLA and deletion of donor HLA molecules), in case of off target, suicidal gene system could be activated and co-expression of others such as PDL1, CTLA4, and IL-
2R would help in the specific migration, suppression and inactivation of T cells. Further, following GMP regulations, expanded cells could be infused in the patients.
May 2022 | Volume 13 | Article 912529
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