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Antibody-dependent cell-mediated cytotoxicity (ADCC) is a potent cytotoxic mechanism
that is mainly mediated in humans by natural killer (NK) cells. ADCC mediates the clinical
benefit of several widely used cytolytic monoclonal antibodies (mAbs), and increasing its
efficacy would improve cancer immunotherapy. CD16a is a receptor for the Fc portion of
IgGs and is responsible to trigger NK cell-mediated ADCC. The knowledge of the
mechanism of action of CD16a gave rise to several strategies to improve ADCC, by
working on either the mAbs or the NK cell. In this review, we give an overview of CD16a
biology and describe the latest strategies employed to improve antibody-dependent NK
cell cytotoxicity.
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INTRODUCTION

Immunoglobulins G (IgG) are essential for the immune system, and their characteristics have been
harnessed to develop new innovative therapies, particularly in cancers and autoimmune diseases
(1). They are composed of 4 chains, 2 heavy and 2 light, forming a Y-shape structure with distinct
functions. The (Fab′)2 part is responsible for the specificity of the antibody to its target, and the
second moiety, the fragment crystallizable (Fc), could be seen as a communication platform with the
immune system. IgG and immune cell interaction take place through a family of receptors: the Fc
receptors (FcR). In humans, the FcR family for IgG (FcgR) is composed of 6 receptors: FcgRI/CD64,
FcgRIIa/CD32a, FcgRIIb/CD32b, FcgRIIc/CD32c, FcgRIIIa/CD16a, and FcgRIIIb/CD16b. Only
CD64 is defined as a high-affinity receptor, while CD32b is the only inhibitory receptor (2, 3).

In humans, 4 subclasses of IgGs exist, IgG1, IgG2, IgG3, and IgG4. The different FcgRs bind with
variable affinities to those subclasses (4). CD16a can interact with all of them, although IgG1 and
IgG3 show the highest affinity (4).

Natural killer (NK) cells are innate lymphocytes that are very efficient in destroying stressed cells,
such as virally infected or tumor-transformed cells (5, 6). Human NK cells mainly express CD16a,
while CD16b is restricted to neutrophils (7). Of note, a subset of NK cells has been reported to
express all CD32 variants (8). Human NK cells are divided into two main subsets: CD56bright and
CD56dim. CD56bright NK cells are competent cytokine secretors but lack CD16a (9). CD56dim are
highly cytotoxic and express CD16a (10, 11). Upon recognition of IgG-opsonized targets through
CD16a, NK cells trigger a potent cytotoxic mechanism called antibody-dependent cell-mediated
org June 2022 | Volume 13 | Article 9132151
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cytotoxicity (ADCC), leading to the death of the target cell. This
mechanism relies on the formation of an immunological synapse
and the degranulation of lytic granules containing perforin and
granzymes (12). Besides degranulation, NK cells can also
eliminate target cells by engaging target death receptors, e.g.,
DR4, DR5, or Fas, with their death receptors ligands, e.g., FasL
and TRAIL (13).

Cellular therapies based on T lymphocytes, more precisely on
Chimeric Antigen Receptor (CAR) T cells, recently became an
important weapon in the anticancer arsenal, with good efficiency in
hematological cancers. However, achieving success in solid cancers
is more challenging (14). Moreover, CAR T-cell therapy could
induce very serious adverse events, such as graft-versus-host disease
(GvHD), neurotoxicity, or cytokine release syndrome (15).
Interestingly, NK cells do not induce them (16). Nevertheless,
there are still some limitations to their large-scale use in clinics
(17), and hence, there is a need to improve their clinical efficiency, in
particular on ADCC to release the full clinical capacity of
monoclonal antibodies (mAbs).

Here, we first review the basic knowledge of CD16a, and
second, we show how this fundamental knowledge helps increase
ADCC activity and present promising advancements for
improving immunotherapy.
CD16A BIOLOGY

Genetic
CD16a is encoded by FCGR3A gene, which is located on the long
arm of chromosome 1, in the 1q23 region. Two functional
polymorphisms of the CD16a have been described, 158 V/F (18)
and 48L/H/R (19), sometimes called 176 V/F and L66/H/R,
respectively, depending on when counted from the N-terminal
of the mature protein or not. The first polymorphism is due to a
nucleotide substitution T to G at position 559. The second is due
to two possible different substitutions at position 230, either T to G
or T to A. The 48L genotype was first described to have a lower
binding to IgG than the 48R or 48H genotype (19). Later, it was
shown that the differences are due to the 158 V/F genotype rather
than the L48/H/R genotype (20, 21). However, there is a link
between 158V/F and 48L/H/R genotypes, with 48L being
preferentially expressed together with 158F and 48H or 48R
with 158V (22). CD16a-bearing 158V phenotype shows a
superior binding to IgG (20, 21). This increase in affinity has at
least two consequences. First, CD16a 158V shows a better ADCC
in vitro (23) and gives a better clinical response to rituximab
therapy, most likely through ADCC (21, 24). Second, V/V patients
display a faster clearance of rituximab during their treatment,
possibly due to the better recognition by CD16a 158V (25).

It was believed that the 158V/F polymorphism could impact
the amount of CD16a expressed by NK cells, and being 158V, the
one expressing more CD16a (26). However, a subsequent study
showed that depending on the clone of anti-CD16 used on
cytometry, certain differences can arise (27). In conclusion, the
amount of CD16a expressed by NK cells is probably not related
to the 158V/F genotype.
Frontiers in Immunology | www.frontiersin.org 2
Structure
CD16a is a transmembrane receptor with a short C-ter
cytoplasmic tail and possesses two extracellular Ig-like domains
(28). It does not possess any signaling component in its
intracellular part. Thus, to transduce signals, it needs two
immunoreceptor tyrosine-based activation motif (ITAM)-
bearing signaling chains, as described later.

CD16a/IgG Interaction
CD16a interacts in a 1:1 stoichiometry fashion with the lower
hinge/upper CH2 of IgG. The Fc N-glycan chain, linked to the
N297 of the CH2, also plays a critical role in this interaction (29,
30). Thus, not only the amino acid (31) but also the glycan
composition (32) can greatly influence the affinity of CD16a for
the Fc and consequently the potency of ADCC.

Besides IgG Fc interaction with CD16a, recent data support
that the Fab could be implicated in the IgG/CD16a interaction
(33, 34). Moreover, mutations in the Fab seem to modulate
ADCC, highlighting the potential interaction of Fab-CD16a
during IgG-CD16a binding (35).

Glycosylation of CD16a
The Fc N297-linked glycan has a critical role in its interaction
with CD16a (32). Less is known about the role of CD16a
glycosylation and how it could impact the affinity for IgG.
CD16a is decorated with 5 asparagine(N)-linked glycan at
N38, N45, N74, N162, and N169 (7). The N-glycan
composition of CD16a has been only recently solved, due to
the difficulty to have enough material. Among the 3 donors
studied, the N-glycans are composed of 23% of the high-
mannose structure, 22% of hybrid type structure, and the
remaining (55%) being complex type N-glycans (36). However,
only the N162 N-glycan seems to directly impact CD16a affinity
toward IgG, conversely with its position in the IgG-binding site
(29, 30). Although the N45 N-glycan is not situated in the IgG-
binding site, it also contributes to the binding to IgG (37) by
stabilizing the CD16a structure (38, 39).

Finally, CD16a 48L/H polymorphism, which is close to the
N45 glycan site, modulates the composition of its glycosylation
(40) and potentially CD16a function. With the 158F/V
polymorphism being also close to the N162 glycan, it is
tempting to postulate that the same kind of relationship
between amino acid sequence and N-glycosylation pattern
could exist.

Signaling Pathway
NK cell cytotoxicity is regulated by a plethora of inhibitory or
activating receptors. When NK cells interact with a potential
target cell, they receive activating and inhibiting signals through
those receptors. If the balance is in favor of inhibition, the target
cell will survive; if not, the cell will be killed (41). It is worth
noting that some inhibitory signals are very strong and need a
large involvement of activating receptors to be overcome (42).
CD16a probably provides the strongest signals and can overcome
the inhibitory signals. The engaged CD16a forms clusters in lipid
rafts (43), a cholesterol-rich lipidic microdomain structure, and
June 2022 | Volume 13 | Article 913215
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hence, CD16a signaling takes place in them (44), enabling proper
intracellular signal (45, 46).

As described previously, CD16a does not possess any ITAM
domain in its cytoplasmic tail and thus needs the help of a
tandem of two intracellular chains bearing ITAM domains,
CD3z and FcϵRIg (47–49), which are indistinctly used (50).
Noteworthy, the two signaling chains are covalently associated
between them, but not to CD16a (51). A unique feature of the
intracytoplasmic tail of CD16a, compared to other FcgR, is the
possibility to be phosphorylated by PKC (52). The downstream
signaling pathway of phosphorylated CD16a favors cytokine
production, while the unphosphorylated leads to stronger
degranulation (52).

Upon CD16a engagement, a kinase belonging to the Src family,
Lck, becomes activated (53) and phosphorylates the ITAM
domains of CD3z and/or FcϵRIg (54). The phosphorylated
ITAMs allow the recruitment and the phosphorylation of
kinases from the Syk family (55), such as Syk (56) and ZAP-70
(54), which are in turn responsible for the subsequent signaling.
Among their substrates, PI3K is highly relevant (57, 58), because it
converts PIP2 to PIP3, which is processed by PLC-g (55) releasing
IP3 and DAG (59). DAG activates the PKC family, which
contributes to the triggering of degranulation. IP3 induces
calcium release from the endoplasmic reticulum to the cytosol
(59). This calcium influx is one of the major signals for ADCC
triggering and also allows NFAT translocation in the nucleus,
inducing transcription of its target genes (60). There are other
pathways activated by CD16a engagement that contribute to
ADCC, e.g., the ERK2 MAPK pathway.

Downregulation
After CD16a-dependent NK cell cytotoxicity, CD16a is rapidly
downregulated. One of the mechanisms involved in the shedding
Frontiers in Immunology | www.frontiersin.org 3
of CD16a is mediated by a disintegrin and metalloprotease 17
(ADAM17) (61), which is expressed on NK cells. This
metalloprotease cleaves the stalk region of CD16a between
Ala195 and Val196 (62). The cleaving of CD16a by ADAM17
occurs in cis. This means that an ADAM17 expressing NK cell
cannot induce CD16a shedding on another NK cell (62).
Another mechanism of CD16a downregulation after activation
is internalization, which occurs not only to CD16a but also to
other intracellular signaling components such as CD3z, ZAP-70,
and Syk. They are ubiquitinated, probably leading to their
degradation (46, 62–64).
IMPROVING NATURAL KILLER CELL
ANTIBODY-DEPENDENT CELL-
MEDIATED CYTOTOXICITY

The strategies described in this section are summarized
in Figure 1.

Making Highly Active Natural Killer Cells
for Therapy
NK cell engraftment has been successfully performed in several
clinical assays, for example, with the infusion of cytokine-
induced memory-like (CIML) NK cells (65, 66). The most
utilized cocktail contains IL-12, IL-15, and IL-18 (67, 68).
CIML NK cells express more IFN-g than conventional NK and
show superior cytotoxicity against leukemia cells and primary
acute myeloid leukemia (AML) blasts (65). Moreover,
haploidentical CIML NK transfused in relapsed or refractory
AML patients exhibited anti-leukemia function (65). CIML NK
transfusion for relapsed pediatric AML patients post-
FIGURE 1 | Different strategies to improve ADCC. NK cell-mediated ADCC can be enhanced by expanding them with specific protocols or by stimulating them with
certain cytokine cocktails. It could be possible to select more potent NK cell subsets based on their phenotype or genotype. Engineering mAbs are also an efficient
way to increase ADCC activity. Lastly, tumor cells can be sensitized to NK cell activity by modifying their metabolism. ADCC, antibody-dependent cell-mediated
cytotoxicity; Ag, antigen; CIML NK, memory-like natural killer cells; mAbs, monoclonal antibodies.
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hematopoietic cell transplant achieved complete remission in 4
out of 8 patients without significant toxicities (66), highlighting
the potential of this strategy to treat leukemia. However, a strong
effort is currently done to further expand these cells ex vivo
before infusion in allogeneic settings. Since NK cell expansion
has recently been reviewed (69, 70), we shortly comment on it.
Primary NK cells can be expanded from peripheral blood or
umbilical cord blood, usually using feeder cells. The culture
media is usually supplemented with various cytokines,
including IL-15 and IL-2, and accessory cells. NK cells have
also been generated from induced pluripotent stem cells (iPSCs).
In general, the resulting expanded NK cells show high cytotoxic
activities. For clinical purposes, i.e., to mediate ADCC, it is
interesting to produce NK cells with high CD16a expression,
such as the protocol that we have recently described (71), which
produces cells with efficient ADCC against primary tumor cells
(72, 73).

Recently a new subset of NK cells has been described in healthy
individuals with prior exposure to human cytomegalovirus
(HCMV). HCMV infection induces a peculiar subset of NK cells,
which are mainly characterized by the absence of the FcϵRIg (74–
76), one of the two chains responsible for CD16a signaling, as
described before. Although these cells express a lower amount of
natural cytotoxic receptors and thus show weak responsiveness
toward the K562 tumor cell line compared to FcϵRIg+NK cells (74),
they display an increased activity through Ab-dependent
stimulation (74) and ADCC (75). Recently, a method to ex vivo
expand these so-called “g-NK” cells has been published (77).
Although the expansion is only possible from previously HCMV-
infected donors, the resulting cells possess some interesting features.
Consistent with previous research, g-NK cells induce stronger
ADCC than conventional NK cells. Also, whereas NK cells
express relatively high CD38 levels, g-NK cells have the
particularity to express low or no CD38. This ectoenzyme is the
target for the clinical mAb daratumumab (DARZALEX) used in
multiple myeloma treatment (78). Although daratumumab shows
benefit in the clinic, the patient’s NK cell count rapidly decreases
during treatment (79). Thus, the uncommon g-NK cells phenotype
is an advantage for their use in these patients. Taken together, g-NK
cells could be a powerful anticancer agent when utilized in
combination with cytolytic mAbs.

Cytokine Priming
A simple way to improve ADCC activity is to stimulate NK cells
with pro-inflammatory cytokines. IL-18 improves CD16a-
induced IFN-g production by NK cells after incubation on
IgG-coated dishes. Moreover, IL-18-treated NK cells show
increased ADCC with rituximab against the CD20+ Raji cell
line, in vitro and in vivo (80).

IL-12 also increases IFN-g and TNF-a production by NK cells
after encountering trastuzumab-opsonized SKBR3 cells.
Interestingly, a set of genes uniquely regulated by this co-
stimulation have been identified. Among them, granzyme B
was upregulated 10 times (81). IL-12 increases CD25
expression on NK cells (82). CD25 is the alpha subunit of the
IL-2 receptor (IL-2Ra), which is composed of 3 subunits. The
Frontiers in Immunology | www.frontiersin.org 4
CD25/IL-2Ra is the subunit with the highest affinity for IL-2.
The expression of CD25 by IL-12+ immobilized IgG-stimulated
NK cells made them more sensitive to IL-2, particularly at low
doses. In a phase I/II clinical trial, cetuximab was used along with
IL-12 on patients suffering from unresectable or recurrent head
and neck squamous cell carcinoma (83). Patients having
experienced progression-free survival (PFS) longer than 100
days had their NK cells exerting more ADCC ex vivo as
compared to patients with PFS shorter than 100 days. Thus,
IL-12 priming of NK cells seems to increase their activity,
particularly ADCC, even in treated patients. Remarkably, NK
cells from these patients showed increased CD25 expression.

IL-15 is a cytokine essential for the survival and function of
NK and CD8+ T cells (84). The IL-15 receptor is composed of 3
subunits, IL-15Ra (CD215), IL-15Rb (CD122), and IL-15Rg
(CD132). The IL-15Ra is a high-affinity receptor for IL-15,
although it is not expressed by NK cells but rather by antigen-
presenting cells (APCs), such as monocytes and dendritic cells.
APCs use the IL-15Ra to transpresent IL-15 to NK cells
expressing the two other subunits (85). An IL-15 superagonist
was described using this IL-15Ra subunit (86). This fusion
protein between IL-15 and IL-15Ra displays stronger activity
than the native IL-15 (86). Both native IL-15 and the IL-15/IL-
15Ra construct have reached clinical trials. A 5-day IL-15
intravenous administration to various solid cancer patients
leads to a 34-fold increase in NK cell counts (87). Treatment
also increased NK cell-mediated ADCC ex vivo. This short-term
IL-15 administration was well tolerated. Other recent clinical
trials are using the fusion protein IL-15/IL-15Ra, such as NIZ985
in a phase I dose-escalating study as single-agent therapy in
advanced solid cancers patients (88). Following treatment, NK
cells and CD8+ T lymphocytes proliferated, and this was
associated with increased plasma levels of IFN-g, IL-18, and
CXCL10. NKTR-255 is a polyethylene glycol-conjugated human
IL-15, designed in an attempt to increase the pharmacokinetics
(PK) of IL-15 while retaining the ability to interact with its
receptor (89). In an in vivo model, NKTR-255 showed a better
PK and an increase of granzyme B and CD107a positive NK cells
compared to IL-15 or IL-15 complexed with IL-15Ra, as well as
better survival in mice bearing Daudi lymphoma xenografts.
NKTR-255 is currently investigated in a phase I trial as
monotherapy or in combination with daratumumab or
rituximab for the treatment of refractory multiple myeloma or
non-Hodgkin’s lymphoma, respectively (NCT04136756). N-803,
previously known as ALT-803, is a mutated N72D superagonist
IL-15 bound to IL-15Ra and fused to an IgG1 Fc that showed
enhanced NK cells activity in vitro and in vivo in preclinical
models (90, 91). Recently, the PK and safety of N-803 have been
assessed in healthy volunteers. It did not produce adverse events
and persisted in circulation ~10-fold longer as compared to IL-
15. Moreover, it increased NK and CD8 T-cell numbers (92). N-
803 has been used instead of IL-2 to support cytokine-primed
allogeneic NK cells transfer to AML patients in a relapse in two
separate clinical trials (NCT03050216 and NCT01898793).
Unexpectedly, the report stated that the use of N-803 instead
of IL-2 led to reduced clinical activity (93). The authors showed
June 2022 | Volume 13 | Article 913215
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that N-803 promotes recipient CD8+ T-cell activation, inducing
a decrease in allogeneic NK cell persistence through rejection.
Although IL-15-based immunotherapy could be seen as a
promising strategy to support NK cell therapy, the best clinical
protocol remains to be described.

ADAM17 Inhibition: A Double-
Edged Sword?
As described above, ADAM17 is the main driver of CD16a
downregulation after activation. One strategy to improve NK cell
ADCC is to prevent CD16a shedding by targeting ADAM17.
Some conflicting reports are published. A patient with a rare
genetic deficiency resulting in an absence of expression of
ADAM17 provided some insights into the relevance of this
strategy (94). The patient’s NK cells showed a strong defect in
cytokine secretion, while the response to CD16a engagement was
similar to that of 2 healthy donors, in terms of IFN-g production
as well as ADCC efficiency. However, blocking ADAM17 activity
in NK cells from healthy donors, by either a chemical or an
antibody, increases IFN-g production after antibody stimulation
(61, 95). Similarly, others published that ADAM17 knock-out
using CRISPR/Cas9 technology in purified NK cells from
peripheral blood mononuclear cell (PBMC) shows better IFN-g
production and ADCC activity in vitro and in vivo (96). It is
possible that the constitutive deficiency of ADAM17 in that
patient-generated NK cells does not depend on this enzyme.
Nevertheless, ADAM17 blocking by chemicals has been shown
to reduce the survival of the NK cells as well as the CD16a-
mediated serial killing, the cells being unable to detach from the
target cells, impeding their motility and preventing them to go to
another target (97).

In conclusion, the benefit of ADAM17 inhibition is still
unclear. The success of this strategy will be unveiled by a
clinical trial in process (NCT04023071) where the use of iPSC-
derived NK cells bearing non-cleavable CD16a (98) will be
assessed in AML and B-cell lymphoma.

Working on Monoclonal Antibodies
As a well-characterized protein, IgGs have been modified in their
amino acid sequence to increase the Fc affinity to CD16a and,
subsequently, improve ADCC (31, 99–101). Some mutations
became “famous,” for example, the so-called GASDALIE,
consisting of 4 substitutions in the Fc: G236A/S239D/A330L/
I332E (102). This mutation shows a great increase of affinity to
CD16a with almost no increase in CD32b affinity, which is the
only inhibitory FcgR (103). Another mutation is referred to as
Variant 18 (F243L/R292P/Y300L/V305I/P396L) and showed a
remarkable increase in ADCC (104). These mutations have now
reached the clinic as an anti-HER2 antibody, the margetuximab,
and showed good results in phase I for the treatment of various
HER2-positive carcinomas (105). Margetuximab is currently
tested in breast cancer patients with chemotherapy versus
trastuzumab plus chemotherapy (phase III SOPHIA trial). The
preliminary results showed an increase in PFS for margetuximab
compared to trastuzumab (106).
Frontiers in Immunology | www.frontiersin.org 5
As stated previously, the N297 situated in the CH2 of the Fc
region is linked to an N-glycan chain, which is extremely
important for the interaction with all FcgRs, as aglycosylated
IgGs cannot interact with them (107). Thus, glycoengineering
the IgG Fc N-glycan holds great promise to increase affinity to
CD16a (32). The most studied glycomodification is
afucosylation, where the fucose attached to the first N-acetyl-
glucosamine of the N-glycan chain is absent. This modification
leads to an increased binding to CD16a and an improvement in
ADCC (108). This has been used to generate the anti-CD20
antibody obinutuzumab (previously GA101), which displayed
high efficacy in vitro and in vivo on monkeys (109). Moreover,
afucosylation increases effector function through CD16a only if a
certain amount of CD16a is expressed, such as on NK cells, in
opposition with macrophages (110). It has also been described
that afucosylated antibodies increase the IFN-g secretion, as well
as the serial killing (111). Finally, obinutuzumab reached the
market under the brand name GAZYVARO in 2013 in the
United States and in 2014 in Europe.

Natural Killer Cell Engagers
Apart from changes in the amino acid sequence and
glycoengineering of Fc IgG, it is also possible to work on the
format of the antibodies. Based on the success of the bispecific T-
cell engager (BiTE) strategy, a similar format was developed for
NK cells, the so-called bispecific Killer cell engager (BiKE). This
format consists of two single-chain fragment variables (scFv)
linked between them through a linker. One scFv targets CD16a,
while the other targets a tumor antigen (112). The trispecific
Killer cell engager (TRiKE) format also exists, in which 2 tumor
antigens are targeted along with CD16a, even if others add IL-15
in place of the third scFv (112, 113). The use of such a construct
allows a retargeting of NK cells to the tumor cells and leads to a
strong ADCC against target cells. The majority of BiKE/TRiKE
are developed for hematological cancers, such as the
CD16xCD33 BiKE, which shows efficient ADCC against
samples from AML patients and can reactivate patient NK
cells (114). AFM13 is a tetravalent bispecific antibody targeting
CD16a and CD30, which has shown interesting results in a phase
Ib trial in combination with pembrolizumab for treatment of
refractory or relapsed Hodgkin lymphoma (115). Four other
clinical trials are scheduled for AFM13 (115). GTB-3550 is a
TRiKE CD16/CD33/IL-15 that is currently being studied in a
phase I/II trial for several types of leukemia (NCT03214666).

Researchers and clinicians are also trying to develop NK cell
engagers for solid tumors. A TRiKE CAM1615HER2, which
contains a VHH targeting CD16a, an scFv for HER2 and IL-15,
shows an increase in NK cell proliferation and activation in vitro
and tumor clearance in vivo (116). AFM24 is a tetravalent
bispecific antibody, composed of one full-length IgG with two
scFv linked on the C-terminal of the CH3, which targets CD16a
and EGFR. It showed better activity than cetuximab in ADCC,
regardless of the mutational status of the cell line. In monkeys,
AFM24 seems to be harmless (117). Taken together, the NK cell
engager/retargeting strategy seems promising by increasing NK
cell activity, in particular regarding ADCC.
June 2022 | Volume 13 | Article 913215
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Increasing Natural Killer Cell Activity
Through Metabolism: The Newest Field
in Immunotherapy
It is known that metabolism dysregulation is a key driver of
immunosuppression in the tumor microenvironment and also a
cause of immunotherapy resistance (118). Many teams have
shown that immune cell metabolism is critical for their
function (119, 120). Recently, reports about phenotypic
changes in leukemia cell lines through metabolic drugs show
promising results regarding NK cell activity. Metformin, a drug
originally used to treat type 1 diabetes, increases the expression
of ligands, notably ICAM-1, which is recognized by lymphocyte
function-associated antigen 1 (LFA-1). This is an integrin that
also modulates lymphocyte intracellular signaling (121),
including in NK cells (122, 123). Although metformin alone
was not toxic for the cells, the combination with UCB-expanded
NK cells (71) showed higher tumor cell clearance in vitro and in
vivo (124). Another report shows that dichloroacetate (DCA), an
inducer of oxidative phosphorylation (OXPHOS) metabolism,
increases several stress ligands on leukemic cell lines, sensitizing
them to NK natural cytotoxicity. However, this mechanism is
linked to the p53 mutational status (125). Although these two
reports highlight the potentiation of NK natural cytotoxicity on
tumor cells by metabolic drugs, it is possible that this could
increase as well ADCC. Further studies are needed to verify this.

Another strategy is to directly modulate NK cell metabolism.
cMyc is a critical factor that regulates the metabolic machinery
supporting glycolysis and OXPHOS in mouse NK cells. Lack of
cMyc results in an impaired NK cell response (126). Glycogen
synthase kinase-3 (GSK3) can mediate cMyc degradation in
murine NK cells (126). Consistent with this, GSK3
overexpression has been detected in NK cells from AML
patients, and this is linked to impaired cytotoxicity against
AML cells. GSK3 inhibitors restore the NK cell activity in these
AML patients against AML cell lines and primary AML cells.
Moreover, expanded NK cells from donors treated with GSK3
inhibitors show superior activity in a mouse xenograft model of
AML (127). Finally, NK cells treated with a GSK3 inhibitor during
expansion resulted in enhanced tumor clearance in a xenograft
mouse model of a human ovarian cancer cell line (128). As a
promising approach, several clinical trials evaluated the efficacy of
Frontiers in Immunology | www.frontiersin.org 6
the GSK3 inhibitor LY2090314 in solid and hematological cancers
(NCT01632306, NCT01287520, and NCT01214603). To our
knowledge, the results are not published yet.
CONCLUSION

Immunotherapy has shown exciting results in cancer patients,
particularly for hematological malignancies. However, further
progresses are still needed to achieve further success in solid
cancer. Even being a long-last studied FcgR, the CD16a has still
some features that need to be unraveled. With the advancement
in technology, new findings and subsequent clinical approaches
are expected. This knowledge will allow us to select the most
suitable NK cells bearing the most efficient CD16a to exploit the
full potential of clinical mAbs.
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