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Accumulating evidence has demonstrated that the immune cells have an
emerging role in controlling anti-tumor immune responses and tumor
progression. The comprehensive role of mast cell in glioma has not been
illustrated yet. In this study, 1,991 diffuse glioma samples were collected from
The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas
(CGGA). xCell algorithm was employed to define the mast cell-related genes.
Based on mast cell-related genes, gliomas were divided into two clusters with
distinct clinical and immunological characteristics. The survival probability of
cluster 1 was significantly lower than that of cluster 2 in the TCGA dataset, three
CGGA datasets, and the Xiangya cohort. Meanwhile, the hypoxic and metabolic
pathways were active in cluster 1, which were beneficial to the proliferation of
tumor cells. A potent prognostic model based on mast cell was constructed.
Via machine learning, DRG2 was screened out as a characteristic gene, which
was demonstrated to predict treatment response and predict survival outcome
in the Xiangya cohort. In conclusion, mast cells could be used as a potential
effective prognostic factor for gliomas.
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Introduction

Gliomas are one of the most common primary malignant
tumors, accounting for 80% of all brain malignant tumors (1, 2).
Gliomas are usually characterized by abnormal invasion and
destruction of the blood-brain barrier (3, 4). At present, the main
clinical treatments for gliomas are surgical resection, chemotherapy,
and radiation, but their therapeutic effect remains unsatisfactory (5).
Since the theory that the brain has absolute immune privilege has
been questioned and denied, immunotherapy for brain tumors has
been vigorously developed (6, 7). At present, the research direction of
immunotherapy for gliomas mainly includes active immunotherapy
and systemic or local delivery of immunomodulators (8). A deeper
understanding of the tumor microenvironment (TME) of gliomas
may help the development of immunotherapy.

In recent years, immune cells in TME have been considered as
important targets of tumor immunotherapy (9). Mast cells are one
of the early infiltrating cells before tumorigenesis, and play a crucial
role in tumor angiogenesis and remodeling TME in gliomas
(10, 11). It has been reported that mast cells within the tumor
differ significantly in protease profiles or subtypes from mast cells
outside the tumor (12). In TME, mast cells will become highly
proinflammatory and actively recruit macrophages and other
innate immune cells after activation and degranulation to
coordinate the anti-tumor immune response (13). Similar to
macrophages, the role of mast cells in tumors remains
controversial because mast cell-related inflammatory processes
can both promote or inhibit tumor development (14). Some
studies have proposed that mast cells could be transformed into
different phenotypes to exert different effects, and this
transformation can be co-regulated by macrophages and tumor
cells (15). In gastric cancer, a linear signaling axis activated by
tumor epithelial-derived IL-33 was found to activate mast cells and
promote tumor-associated macrophage (TAM) accumulation. The
accumulation of TAMs was associated with inferior survival in
patients with gastric cancer (16). In addition, the role of mast cell-
derived histamine and ATP in secretory and phagocytic regulation
may explain the heterogeneity of microglial responses (17). In the
studies of colon carcinoma, mast cells have also been found to
enhance the immunosuppressive properties of MDSCs through the
production of IFN, and the M2-type tumor-associated macrophage
is a major source of MDSCs (18). Hence, the role of mast cells in
TME may be related to TAMs.

Abbreviations: CDF, cumulative distribution function; CGGA, Chinese
Glioma Genome Atlas; CL, classic; CNA, copy number alternations; CNV,
copy number variation; CR, complete response; DEG, differentially expressed
gene; GAM, glioma-associated microglia/macrophages; GBM, glioblastoma;
GO, gene ontology; GSVA, gene set variation analysis; LGG, low-grade
glioma; ME, mesenchymal; NE, neural; PAM, partition around medoids;
PCA, principal component analysis; PD, progressive disease; PN, pro-neural;
PR, partial response; SD, stable disease; TAM, tumor-associated macrophage;

TCGA, The Cancer Genome Atlas; TME, tumor microenvironment.
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In this study, we used xCell algorithm to identify meaningful
mast cell-related genes in gliomas and to divide glioma samples
into two clusters with different tumorigenic and immunogenic
characteristics. A risk score predicting malignancy of gliomas
and poor prognosis of glioma patients was further constructed to
predict the efficacy of immunotherapy.

Method
Patient and cohort inclusion

We collected diffuse glioma samples from two datasets based
on The Cancer Genome Atlas (TCGA) and the Chinese Glioma
Genome Atlas (CGGA). The TCGA cohort includes glioma
samples. The RNA-seq data and corresponding clinical
information are retrieved from the TCGA dataset (http://
cancergenome.nih.gov/). In this study, we used two RNA-seq
cohorts (CGGA325 and CGGA693) and a microarray cohort
(CGGAarray) as validation sets. The RNA-seq and microarray
data, and clinical and survival information are retrieved from the
CGGA dataset (http://www.cgga.org.cn).

Identification of mast cell-related genes

The xCell algorithm defines mast cells in the TCGA dataset
(19). In TCGA and three CGGA cohorts, mast cell-related genes
with a correlation efficiency > 0.4 were screened out, and the
gene matrix was crossed to obtain 495 mast cell-related genes.
After performing univariate Cox regression analysis, 280 genes
were proved to be prognostic genes.

Construction of mast cell-
related subtypes

Based on 280 prognostic genes related to mast cells, we identified
the robust clusters of glioma patients from the TCGA by using the
consensus clustering algorithm of partition around medoids (PAM).
After intersecting the 280 prognostic genes with the gene expression
profiles from CGGA325, CGGA693, and CGGAarray datasets, 248
prognostic genes were used for identifying the robust clusters of
glioma patients in three CGGA datasets using PAM. Then, we used
the cumulative distribution function (CDF) and consensus heatmap
to evaluate the optimal K value of 2.

Annotation of the immune infiltrating
microenvironment

ESTIMATE is used to score the immune cell infiltration level

(immune score) and stromal content (stromal scores) of each
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sample. We used the xCell algorithm (19) to quantitatively
analyze the enrichment levels of 64 immune signals, and used
the CIBERSORT algorithm (20) to estimate the relative scores of
22 immune cell types in tumor tissues. The GO pathway was
studied by performing gene set variation analysis (GSVA), and
GO items with a p-value <0.05 were screened out. From previous
studies, seven classifications of immunomodulators were
analyzed (21, 22).

Identification of an immune-
related signature

Then, we use elastic regression analysis and PCA based on the
248 prognostic genes to further calculate the patient’s risk score.
Twenty-nine genes were included for the construction of the risk
score. The extracted principal component 1 is used as the
signature score. The risk score after the prognostic value of the
genetic signature score of each patient is obtained by the following
formula:

risk score = EPC 1;

where i represented the expression of genes.

Prediction of immunotherapy responses

The IMvigor210 cohort is a cohort of urothelial cancer
treated with the anti-PD-L1 antibody atezolizumab, which can
be used to predict the therapeutic effect of immunotherapy on
patients (22, 23). Based on the Creative Commons 3.0 license, all
clinical data and expression data were downloaded from http://
research-pub.Gene.com/ IMvigor210CoreBiologies. The DEseq2
R software package (24) was used to standardize the raw data.

Construction and validation of a
prognostic model

We use nomograms to visualize multi-factor regression
analysis, which is usually used for cancer survival rate prediction.
The risk score groups, age, pathological stage, and mutation status
of glioma were selected to construct the variables of the nomogram,
and univariate and multivariate regression analyses were used to
evaluate the prognostic value of these factors.

RNA sequencing of the Xiangya cohort
Tumor tissues from 105 glioma patients who underwent

surgical resection in Department of Neurosurgery, Xiangya
Hospital were collected for sequencing.Glioma tissues were
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collected and written informed consent was obtained from all
patients. The included glioma tissues were approved by the
Ethics Committee of Xiangya Hospital, Central South
University. The detailed procedure was reported in our
previous findings (25-27). The survival information of the
patients was collected for conducting the survival analysis. The
mast cell density in the Xiangya cohort was calculated using
the xCell algorithm. The risk score was independently calculated
in the Xiangya cohort.

Statistical analysis

The Kaplan-Meier curves with log-rank test were used to
evaluate the survival difference between the two groups, and all
survival curves were generated using the R package survminer.
Prognostic factors were assessed by univariate and multivariate
Cox regression analysis. The OS and risk scores were calculated
based on the R package survival, and we used the R package
ggplot2 to visualize the data. The heatmap is generated using
pheatmap. For normally distributed variables, significant
quantitative differences between and among groups were
determined by a two-tailed t-test or one-way ANOVA,
respectively. For nonnormally distributed variables, significant
quantitative differences between and among groups were
determined by a Wilcoxon test or a Kruskal-Wallis test,
respectively. All statistical analysis was performed using R
software. p < 0.05 is statistically significant.

Results

TME characteristics of the mast cell-
stratified groups

We used partition around medoids (PAM) to analyze the
gene expression profiles of glioma patients in the TCGA dataset
(Figure 1A) and three CGGA datasets (Figures 1B-D), which
showed different levels of mast cells and clinical characteristics
between the groups. Subsequently, we used the Consensus
ClusterPlus package (28) to calculate the optimal number of
clusters, and the results showed that the stability of the clustering
results was optimal when the number was equal to 2 (Figure S1).
The survival analysis of cluster 1 and cluster 2, respectively,
confirmed that the prognosis of cluster 1 was worse (Figures 1E-
H). PCA tried to differentiate the samples from the TCGA
dataset (Figure 1I) and three other CGGA datasets (Figures 1]-
L). In addition, we divided patients with different levels of mast
cell into high and low levels. Survival analysis also showed that
patients with low mast cell level in LGG, GBM, pan-glioma, and
Xiangya cohorts had lower probability of survival
(Figures 2A-D).
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FIGURE 1
Machine learning for validation of clustering based on mast cell-related genes. Clustering heatmaps demonstrating good separation of the two
clusters by traits in (A) TCGA, (B) CGGA325, (C) CGGA693, and (D) CGGAarray. Kaplan—Meier survival analysis of the two clusters in (E) TCGA, (F)
CGGA325, (G) CGGA693, and (H) CGGAarray. Sample clustering by PCA in (1) TCGA, (J) CGGA325, (K) CGGA693, and (L) CGGAarray.

Therefore, we studied the characteristics of the immune
microenvironment of the two clusters and analyzed the
differences in immune cell components of different clusters in
the TCGA (Figure 2E) and three CGGA datasets (Figures S2A-C).
At the same time, we also used CIBERSORT (20) to further
compare the differences in immune cells between the two clusters
(Figures S2D, S3A, S4A, and S5A). Moreover, we calculated
ESTIMATEScores, ImmuneScores, and StromalScores between
the two clusters, but the results were not consistent (Figures 2F,
S3B, S4B, and S5B). Finally, we compared a series of immune
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checkpoint molecular differences related to antigen presentation,
co-stimulation, ligand, and so on. We found that most immune
checkpoint molecules tend to overexpress in cluster 1 (Figures 2G,
S3C, $4C, and S5C).

Clinical traits of the mast cell-
stratified groups

We studied the differences between cluster 1 and cluster 2 in
pathological grade, IDH, MGMT, 1p19q, and glioma subtypes.
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FIGURE 2
Immune characteristics of the two clusters. Kaplan—Meier analysis of overall survival (OS) based on high vs. low level of mast cell in (A) LGG,(B)
GBM, and (C) pan-glioma patients in TCGA. (D) Xiangya cohort. (E) Heatmap correlating the levels of 64 cell types and clusters in TCGA.(F)
ESTIMATEScores, ImmuneScores, and StromalScores of the two clusters in TCGA. (G) Molecule levels of immune checkpoints in two clustersin
TCGA. *p < 0.05, **p < 0.01,***p < 0.001, ****P < 0.0001. NS, not statistically significant.

The results in TCGA and the three CGGA datasets all suggested
that gliomas in cluster 1 had a higher pathological grade
(Figure 3A), and cluster 2 had lower levels of IDH WT
(Figure 3B) and MGMT promoter unmethylation (Figure 3C).
It is worth noting that the proportion of samples with
chromosome 1p19q codeletion in cluster 1 is higher than that
in cluster 2 in the TCGA dataset, but the codeletion ratio in cluster
2 is higher in three CGGA datasets (Figure 3D). This may be
related to the geographical differences of patients. In addition, we
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found that, in cluster 1 samples, CL (Classic) and ME
(Mesenchymal) subtypes accounted for the majority, while in
cluster 2, NE (neural) and PN (pro-neural) subtypes were more
common (Figure 3E). All above conclusions show that gliomas in
cluster 1 are more malignant, which may reflect a worse prognosis.

We also used GSVA to study the differences in the activation of
hypoxia and metabolic pathways between the two clusters. Various
hypoxia-related pathways such as the response to hypoxia and the
regulation of the cellular response to hypoxia were activated in

frontiersin.org


https://doi.org/10.3389/fimmu.2022.914001
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al.

10.3389/fimmu.2022.914001

A
TCGA CGGAarray CGGA325 CGGABG93
p-value 3.305e-15 p-value 0.005785 p—value 3.06e-08 oy p-value = 5.222e~11
5 <o, 5 S0.75.
g0 k! g 8
S 2 9 a Grade
S 3
£2o. g ,?_ £0.50. .gg
0.25. “ca
0.00 -
cluster1 clusterz cluster1 clusterz cluster1 clusterZ cluster1 cIustelQ
p value < 2.2e-16 p-value 0.2562 p value = 1.508e-05 1.6 p-value = 1.047e-11
S 5 5 S075.
k<] 3 K] 9
Q. o. Q Q [l
<1 o
0.25.
0.00 -
cluster1 clusterz cluster1 clusterz cluster1 cluster2 cluster1 clusterz
p value = 4.608e-06 p-value 0.8471 p-value 0.1343 5001 p-value = 0.3149
5 So. 5 075,
k] B B k]
% g, 81 5 £050. 1
&0 £0 a0 a H glﬁ fed
0.25.
0.00-
cluster1 cluster2 clus!er‘l clusterz cluster1 cluster2 cluster1 cluster2
uster cluster cluster
p—value <22e-16 p-value 0.004116 p -value = 1.031e-15 100 p-value = 4.192e-13
5 5 .§o.75 S075.
3 B ] 5]
a a g g 1p
nEj E £o0.50. S 0.50. -n“éagclodel
0.25. 0.25.
0.00- 0.00-
cluster1 cluster2 cluster1 clusterz clusler1 cIus(erZ clusler1 cluster2
p—value <2.2e-16 p—value <22e-16
507 é
kS ] Subtype
go 50. Sos -
LS & ENE
=PN
cluster1 cIusterZ duster1 dusge,q
FIGURE 3
Clinical features of the two clusters. (A) The proportions of different tumor grades in TCGA, CGGAarray, CGGA325, and CGGA693. (B) Samples
with or without the IDH mutation in TCGA, CGGAarray, CGGA325, and CGGA693. (C) Samples with or without the MGMT promoter methylation
in TCGA, CGGAarray, CGGA325, and CGGA693. (D) Samples with or without the chromosome 1p/19qg codeletion in TCGA, CGGAarray,
CGGA325, and CGGAG693. (E) The four GBM subtypes in the two clusters in TCGA and CGGAarray.

cluster 1, reflecting the hypoxic state of gliomas. Similarly, cluster 1
also showed excessive activation of metabolic pathways (Figure 4).
These are signs of the proliferation of malignant tumors, showing
the stronger proliferation activity and malignant tendency of
glioma in cluster 1.

Genomic features of the two clusters

According to somatic mutation analysis, mutations in IDH1
(43%), CIC (25%), TP53 (17%), and EGFR (17%) were most highly
enriched in cluster 1 (Figure 5A). In comparison, IDH1 (95%), TP53
(90%), and ATRX (66%) mutations were enriched in cluster 2

Frontiers in Immunology

06

(Figure 5B). Missense mutation was the uppermost gene alteration
type in all these genes except for ATRX, the strongest co-occurrent
pairs of gene alteration included ATRX-TP53 and CIC-IDHI in
cluster 1, and TP53-IDH1 in cluster 2. In addition, the most
mutually exclusive pairs were PTEN-IDH1, EGFR-IDH1, PTEN-
CIC, and EGFR-CIC in cluster 1, and NF1-IDHI in cluster 2
(Figures 5C, D). Among the detected SNVs, C>T appeared to be
the most common mutation in cluster 1 and have a significant higher
frequency in cluster 1 (Figure 5E). While the frequencies of insertion
and deletion were not statistically different between the two clusters,
SNP was significantly more common in cluster 1 (Figure 5F). The
top nine most differentially mutated cancer-related genes are listed
in Figure 5G.
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Generation of risk score and its
functional annotation

By conducting elastic net regression analysis (Figure 6A), we
obtained the 29 most important genes and their coefficients from
248 prognostic genes for the construction of a mast cell-related
risk signature (Figure 6B). Sankey plot revealed a high degree of
consistency between mast cell-related clusters and risk scores
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(Figure 6C). Pathways related to macrophage migration and
activation, regulation of mast cell activation, fibroblast
proliferation, and the Th2 cell cytokine production were more
active in the samples with higher scores (Figure 6D). The
correlation between the expression level of 64 kinds of cells
and risk scores was evaluated. The risk score was positively
correlated with the levels of fibroblasts, macrophages, and Th2
cells, and negatively correlated with mast cells and Thl cells
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FIGURE 6

Functional annotation of risk scores. (A) Elastic regression analysis was performed to screen out the prognostic genes. (B) Elastic net regression
analysis and PCA obtained 30 mast cell-related genes and their coefficients. (C) A Sankey plot was used to reveal the correlation between
cluster, scores, OS, and cancer types. (D) GO functional enrichment analysis correlating different immune regulatory processes with risk score.
(E) Heatmap correlating the risk score and 64 cell types. Survival curves of risk scores in (F) GBM, (G) LGG, and (H) pan-glioma patients. (I) The
percent of different risk score in CR, PD, PR, and SD of glioma patients. (J) Kaplan—Meier analysis of survival probability based on high vs. low
risk score from the IMvigor210 cohort. (K) Kaplan—Meier analysis of survival probability based on high vs. low risk score from the Xiangya cohort.

(Figure 6E). In addition, the risk score is also related to immune GBM, and pan-glioma were well separated by high and low
checkpoint molecules. Similar to cluster 1, gliomas with high risk scores (Figures 6F-H). According to the risk scores for the
scores tend to express higher levels of immune checkpoint immunotherapeutic response types of patients with urothelial
molecules (Figure S6). In the TGCA dataset, survival analysis carcinoma, CR and PR seemed to be more likely to have lower
showed that patients with different mortality risks in LGG, risk scores (Figure 6I). We evaluated the efficacy of using risk
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scores to predict the prognosis of immunotherapy. Patients can
be stratified according to high and low risk scores in the
IMvigor210 (Figures 6]). Patients can also be stratified
according to high and low risk scores in the Xiangya
cohort (Figures 6K).

Construction of a prognostic nomogram
based on risk scores

A prognostic nomogram was constructed to further
investigate the predictive efficiency of mast cell density. The
construction of this nomogram has taken into account several
prognostic factors, such as risk score groups, patient age, glioma
grades, IDH mutation, and chromosome 1p/19q codeletion
(Figure S7A). The predicted probabilities are in good
agreement with the actual 1- to 5-year overall survival rates of
glioma patients (Figures S7B-E). At the same time, the Kaplan-
Meier survival curve was used to demonstrate the good
discrimination of survival probability of the two nomogram
score groups (Figure S7F). Finally, we used the ROC curve to
confirm the discriminative ability of this nomogram (AUC =
0.849, Figure S7G).

Validation of DRG2 as a potent
therapeutic predictor

In order to obtain the characteristic gene to well distinguish
these two clusters, we then conducted machine learning and
prediction. Twenty-nine genes were used as the input for three
machine learning algorithms, including LASSO-LR, Xgboost, and
Boruta. The feature importance of the powerful genes of the
Xgboost algorithm was classified into three clusters. The
coefficient values of the powerful genes of the LASSO algorithm
were exhibited. The feature importance of the powerful genes of the
Boruta algorithm was exhibited. The intersected most powerful
prognostic genes identified from the three algorithms were
exhibited using the Venn plot. Through LASSO-LR, Xgboost, and
Boruta machine learning algorithms, we screened out 25, 14, and 30
genes, respectively (Figures 7A-C). Then, we utilized Venn diagram
and obtained an intersection of these three algorithms including 14
genes (Figure 7D). Among these genes, DRG2 displayed the
strongest potency as a characteristic gene, and protein-protein
interaction analysis showed the interplays of DRG2-related
proteins (Figure 7E). Further analysis demonstrated that DRG2
positively correlated with multiple steps in anti-tumor immune
response, including recruitment of CD8+ T cell, NK cell, Th1 cell,
and Th 17 cell, as well as recognition and killing of cancer cells
(Figure 7F). DRG2 could predict cytokine treatment response in
three cohorts (Figure 8A) and immunotherapy response in two
cohorts (Figure 8B). Furthermore, we compared the immune
response of 25 human immunotherapy cohorts between DRG2
and selected conventional biomarkers to better understand the
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predictive value of DRG2 for immunotherapy. As a result, DRG2
had an AUC > 0.5 in 9 out of 25 cohorts, showing a higher
predictive value than TMB and B clonality (Figure 8C). In addition,
the correlations between DRG2, T-cell dysfunction, and normalized
Z score are displayed in Figure 8D. Furthermore, DRG2 was found
to potentially predict the drug response of temozolomide in GBM
patients (Figure S8).

Discussion

The role of mast cells remains controversial in TME (16). Mast
cells may play different roles in TME, which are related to the type
and stage of tumor (14). Some studies found a strong association
between mast cells and cancer cell infiltration and tumor
angiogenesis as a source of VEGF o, TGF-f, and CXCL8 (29),
which means mast cells are related to poor prognosis. On the other
hand, mast cells also play an anti-tumor role in tumors (30-32).
Some studies found an increase of mast cell in glioma sample and a
higher level of mast cell in higher-grade glioma sample (33). Mast
cells can be recruited by some factors released by glioma cells, then
secrete some macrophage-attracting factors (16, 34). Glioma cells
can transform macrophage into glioma-associated macrophages
(GAMs), which facilitate tumor proliferation, survival, and
migration (35). Therefore, in many human malignant tumors,
mast cells are recognized as a key component of TME (36).
Notably, mast cell was also proved to affect the prognosis of
glioma (37, 38). Via consensus clustering, glioma patients were
divided into two groups based on mast cell-related genes with
unique clinical and immune characteristics from the TCGA, CGGA
325, CGGA 693, and CGGAarray datasets. Compared with patients
in cluster 2, patients in cluster 1 had alower survival probability and
a worse prognosis. In different types and grades of gliomas, higher
levels of IDH WT, MGMT promoter unmethylation, and 1p19q
noncodeletion are more common in high-grade gliomas and the
subtype of ME whose prognosis is worse (39). These are associated
with a more malignant glioma phenotype with worse prognosis. In
addition, patients in cluster 1 were more associated with hypoxia
and hypermetabolism, both of which were associated with the
malignancy of gliomas.

The classical immune checkpoint molecules such as PD1 and
PDCDI1LG2 were highly expressed in cluster 1 in the study of tumor
immune microenvironment in two clusters of patients. Meanwhile,
we found that patients in cluster 1 showed high expression of HLA
molecules. In addition, BIN3A1, CXCL9, SLAMF7, TNFRSF4
(0X40), CD27, CD28, and ICOSLG were highly expressed in
cluster 1. All of the molecules above are co-stimulators or
receptors that increase T-cell proliferation and activation (40—
42). As a negative regulator of T-cell activation, the expression of
VTCN1 was decreased in cluster 1 (43). This may be the reason for
the increased activity of T cells in the glioma patients in cluster 1.
This is evidenced by the increased expression of GZMA, which is
associated with the pyrotic cell-killing function of the CTL (44).
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Excavation of characteristic genes using machine learning. (A) Characteristic genes between the two clusters defined by LASSO-LR algorithm.
(B) Characteristic genes between the two clusters defined by Xgboost algorithm. (C) Characteristic genes between two clusters defined by Boruta
algorithm. (D) Venn diagram showing the intersection of three machine learning algorithms. (E) Protein—protein interaction analysis showing the
interplays of DRG2-related proteins. (F) Butterfly plot showing the correlation between DRG2 and metabolism as well as cancer immunity cycle.

In previous studies, T-cell activation usually predicted a
better prognosis (45). Nevertheless, in the present study,
patients in cluster 1 with poor prognosis showed excessive
activation of T cells, which may be related to the high-level
expression of CCL5 caused by the contact of activated T cells
with microglia. Previous studies have shown that CCL5 played
an indispensable role in the formation of glioma cells (46). The
high-level expression of CCL5 may support immune escape and
metastasis of glioma cells (47). CXCL9 can bind to CXCR3
expressed in tumor cells to recruit CD4 + T cells, thus promoting
the production of CCL5 in TME, promoting tumor invasion
(48). Moreover, the reduction of TNF-oo may inhibit the
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transformation of Thl to CTL, thereby reducing the ability to
kill tumor cells (49). Therefore, we believe that activated T cells
in cluster 1 played a more important role in promoting the
production and invasion of glioma cells rather than promoting
tumor cell apoptosis.

In the investigation of the components of tumor immune
infiltrating cells in the two clusters, we found another interesting
phenomenon. In previous studies, due to the anti-inflammatory
and the promotion of tissue cell repair effects, M2-type
macrophages promoted tumor invasion and angiogenesis in the
development of gliomas (50). The infiltration of M1-type
macrophages that play a pro-inflammatory effect often indicates
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a better prognosis (51). However, this study showed that glioma
patients in cluster 1 had lower M2 infiltration while the infiltration
of M1 was higher. Contrary to the results of immune infiltrating cell
components, the pro-inflammatory cytokines IL-1f and TNF-a,
which was expected to be highly expressed on M1, as well as TLR4,
which promoted the differentiation of macrophages to M1 were all
lowly expressed in cluster 1 (52, 53). Therefore, we hypothesized
that the increased M1 in cluster 1 did not have normal pro-
inflammatory effects and tumor-killing functions. The
macrophages in cluster 1 may be removed from tumor-killing
activity and transformed into GAMs promoting glioma (35).
Studies have shown that GAMs could promote tumor growth by
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secreting immunosuppressive factors and other factors that
supported tumor invasion (54). The decreased expression of
TNF-o in cluster 1 may represent the impaired function of M1 in
GBM, and the increased expression of IL-1 promotes the
proliferation and migration of GAMs (39, 55, 56). The gene
expression pattern of GAMs is similar to those of all of MO-type,
MI-type, and M2-type macrophages (57). Comparing the
molecular expression pattern of GAMs in this study with that of
GAMs in previous studies, it was more similar to cluster 1 (high
levels of IL-12A, CXCL10, VEGFA, and CCL5, and low levels of
TLR4) than to cluster 2. CXCL10 promotes the proliferation of
GAMS, and the elevated level of VEGFA promotes tumor

frontiersin.org


https://doi.org/10.3389/fimmu.2022.914001
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al.

angiogenesis (58, 59). All these immune molecules were highly
expressed in cluster 1. Therefore, the worse prognosis of patients in
cluster 1 may be related to the transformation of macrophages into
GAMs. However, to prove that macrophages of gliomas in cluster 1
have been transformed into GAMs with tumor-supporting effects,
it was necessary to further compare the gene expression pattern of
them both. In addition, the low expression of CX3CL1 in cluster 1
may increase tumor invasiveness and promote tumor growth (60).
The expression of EDNRB, which has anti-tumor effect, was
downregulated in cluster 1 (61). The increased expression of
ICAM1 and ITGB2, which mediate cell adhesion, may lead to
enhanced tumor aggressiveness (62).

Based on differentially expressed genes (DEGs) between the two
clusters, the risk score was calculated based on 29 mast cell-related
genes. Mast cell-related risk scores were highly effective in predicting
the survival rates of patients at 1, 3, 4, and 5 years. Inclusion of a mast
cell-associated risk score with the nomogram further confirmed the
effectiveness of mast cells as a prognostic marker.

Next, we tried to establish a relationship between the risk score
and TME. Consistent with previous results, all kinds of
macrophages increased in the high risk score cluster, suggesting
the possibility of the presence of GAMs. The more of Th2 and the
less of Th1 in the high risk score cluster indicated that the cellular
immunity may be suppressed, and there may be more CCL5 to
support the formation of gliomas. As for related immune
molecules, consistent with cluster 1, the high expression of T-cell
co-stimulation molecules (CD28, ICOSLG, CD27, and CD40) and
HLA suggested that the high risk score cluster had a superior
activation of T cells and a higher expression of CCL5. The high
expression of TGF-f, VEGFA, and CXCL10 and the low expression
of TNF-o indicated the tumor-supporting effect of GAM:s in high
risk score group. Therefore, the tumor immune microenvironment
of gliomas with a high risk score overlapped with the gliomas in
cluster 1.

In this unprecedented era of big data, there is a wealth of
information hidden in huge amounts of data, waiting to be mined
and used properly. Machine learning is the scientific discipline
focusing on how computers learn from data (63); with its help,
models constructed based on clinical information would in return
make huge contributions to clinical practice. Our analysis identified
a mast cell gene signature consisting of 29 mast cell-specific genes
and determined the prognostic value of mast cells in glioma. Our
findings proved that mast cells might be a potent factor in
stratifying glioma patients’ outcomes. However, the relationship
between the polarization of GAMs, the activation of T cells, and the
mast cell-related genes in the TME of glioma remains to be further
explored. The potential regulatory role of mast cells in the immune
response is to be elucidated.

Data availability statement

The datasets generated and analyzed during the current
study are available in the Gene Expression Omnibus (https://

Frontiers in Immunology

13

10.3389/fimmu.2022.914001

www.ncbi.nlm.nih.gov/geo/), TCGA data source (https://xena.
ucsc.edu) and CGGA data portal (http://www.cgga.org.cn). The
original data has been uploaded to China National Center for
Bioinformation (ID: HRA001618). Further inquiries can be
directed to the corresponding authors.

Ethics statement

Glioma tissues were collected and written informed consent
was obtained from all patients to participate in the study. The
included glioma tissues were approved by the Ethics Committee of
Xiangya Hospital, Central South University.

Author contributions

RZ, HZ, QC, YW, YZ, TL, LZ, and WW designed and
drafted the manuscript; HZ, QC, YW, YZ, TL, ZD, XZ, PL, JZ,
ZL, and ZW wrote figure legends and revised the article; QC,
HZ, and ZD conducted the data analysis. All authors read and
approved the final manuscript. All authors contributed to the
article and approved the submitted version.

Funding

This work was supported by the National Natural Science
Foundation of China (82073893), Hunan Provincial Natural
Science Foundation of China (2022]J20095, 2019JJ80056),
Hunan Provincial Health Committee Foundation of
China (202204044869).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/
fimmu.2022.914001/full#supplementary-material

frontiersin.org


https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://xena.ucsc.edu
https://xena.ucsc.edu
http://www.cgga.org.cn
https://www.frontiersin.org/articles/10.3389/fimmu.2022.914001/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.914001/full#supplementary-material
https://doi.org/10.3389/fimmu.2022.914001
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al.

References

1. Khan S, Mittal S, McGee K, Alfaro-Munoz KD, Majd N, Balasubramaniyan
V, et al. Role of neutrophils and myeloid-derived suppressor cells in glioma
progression and treatment resistance. Int ] Mol Sci (2020) 21(6):1954.
doi: 10.3390/ijms21061954

2. Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, et al. Glioma targeted
therapy: insight into future of molecular approaches. Mol Cancer (2022) 21:39.
doi: 10.1186/s12943-022-01513-z

3. Anderson JC, McFarland BC, Gladson CL. New molecular targets in
angiogenic vessels of glioblastoma tumours. Expert Rev Mol Med (2008) 10:e23.
doi: 10.1017/S1462399408000768

4. Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases.
Nat Rev Cancer (2003) 3:489-501. doi: 10.1038/nrc1121

5. Davis ME. Glioblastoma: Overview of disease and treatment. Clin ] Oncol
Nurs (2016) 20:52-8. doi: 10.1188/16.CJON.S1.2-8

6. Platten M, Bunse L, Wick W, Bunse T. Concepts in glioma immunotherapy.
Cancer Immunol Immunother (2016) 65:1269-75. doi: 10.1007/s00262-016-1874-x

7. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy.
Science (2015) 348:69-74. doi: 10.1126/science.aaa4971

8. Platten M, Ochs K, Lemke D, Opitz C, Wick W. Microenvironmental clues
for glioma immunotherapy. Curr Neurol Neurosci Rep (2014) 14:440. doi: 10.1007/
$11910-014-0440-1

9. Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, et al. Immune cells within the
tumor microenvironment: Biological functions and roles in cancer
immunotherapy. Cancer Lett (2020) 470:126-33. doi: 10.1016/j.canlet.2019.11.009

10. Liu J, Zhang Y, Zhao ], Yang Z, Li D, Katirai F, et al. Mast cell: insight into
remodeling a tumor microenvironment. Cancer Metastas Rev (2011) 30:177-84.
doi: 10.1007/s10555-011-9276-1

11. Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, et al. SCF-mediated mast cell
infiltration and activation exacerbate the inflammation and immunosuppression in
tumor microenvironment. Blood (2008) 112:1269-79. doi: 10.1182/blood-2008-03-
147033

12. Hempel HA, Cuka NS, Kulac I, Barber JR, Cornish TC, Platz EA, et al. Low
intratumoral mast cells are associated with a higher risk of prostate cancer
recurrence. Prostate (2017) 77:412-24. doi: 10.1002/pros.23280

13. Okano M, Oshi M, Butash AL, Katsuta E, Tachibana K, Saito K, et al. Triple-
negative breast cancer with high levels of annexin A1 expression is associated with
mast cell infiltration, inflammation, and angiogenesis. Int J Mol Sci (2019) 20
(17):4197. doi: 10.3390/ijms20174197

14. Ribatti D. Mast cells and macrophages exert beneficial and detrimental
effects on tumor progression and angiogenesis. Immunol Lett (2013) 152:83-8.
doi: 10.1016/j.imlet.2013.05.003

15. Presta I, Donato A, Zaftino P, Spadea MF, Mancuso T, Malara N, et al. Does
a polarization state exist for mast cells in cancer? Med Hypotheses (2019)
131:109281. doi: 10.1016/j.mehy.2019.109281

16. Eissmann MF, Dijkstra C, Jarnicki A, Phesse T, Brunnberg J, Poh AR, et al.
IL-33-mediated mast cell activation promotes gastric cancer through macrophage
mobilization. Nat Commun (2019) 10:2735. doi: 10.1038/s41467-019-10676-1

17. Ramirez-Ponce MP, Sola-Garcia A, Balseiro-Gomez S, Maldonado MD,
Acosta ], Ales E, et al. Mast cell changes the phenotype of microglia via histamine
and ATP. Cell Physiol Biochem (2021) 55:17-32. doi: 10.33594/000000324

18. Danelli L, Frossi B, Gri G, Mion F, Guarnotta C, Bongiovanni L, et al. Mast
cells boost myeloid-derived suppressor cell activity and contribute to the
development of tumor-favoring microenvironment. Cancer Immunol Res (2015)
3:85-95. doi: 10.1158/2326-6066.CIR-14-0102

19. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol (2017) 18:220. doi: 10.1186/s13059-017-
1349-1

20. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015)
12:453-7. doi: 10.1038/nmeth.3337

21. Schreiber RD, Old LJ, Smyth M]J. Cancer immunoediting: integrating
immunity's roles in cancer suppression and promotion. Science (2011) 331:1565—
70. doi: 10.1126/science.1203486

22. Zhang M, Wang X, Chen X, Zhang Q, Hong J. Novel immune-related gene
signature for risk stratification and prognosis of survival in lower-grade glioma.
Front Genet (2020) 11:363. doi: 10.3389/fgene.2020.00363

23. Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, et al. Regulatory
mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. ] Exp Clin
Cancer Res (2021) 40:184. doi: 10.1186/s13046-021-01987-7

Frontiers in Immunology

10.3389/fimmu.2022.914001

24. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol (2014) 15:550.
doi: 10.1186/s13059-014-0550-8

25. Zhang H, Luo YB, Wu W, Zhang L, Wang Z, Dai Z, et al. The molecular
feature of macrophages in tumor immune microenvironment of glioma patients.
Comput Struct Biotechnol J (2021) 19:4603-18. doi: 10.1016/j.csbj.2021.08.019

26. Zhang N, Zhang H, Wang Z, Dai Z, Zhang X, Cheng Q, et al. Immune
infiltrating cells-derived risk signature based on Large-scale analysis defines
immune landscape and predicts immunotherapy responses in glioma tumor
microenvironment. Front Immunol (2021) 12:691811. doi: 10.3389/
fimmu.2021.691811

27. Zhang H, Wang Z, Dai Z, Wu W, Cao H, Li S, et al. Novel immune
infiltrating cell signature based on cell pair algorithm is a prognostic marker in
cancer. Front Immunol (2021) 12:694490. doi: 10.3389/fimmu.2021.694490

28. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool
with confidence assessments and item tracking. Bioinformatics (2010) 26:1572-3.
doi: 10.1093/bioinformatics/btq170

29. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The
prognostic landscape of genes and infiltrating immune cells across human cancers.
Nat Med (2015) 21:938-45. doi: 10.1038/nm.3909

30. Polajeva J, Sjosten AM, Lager N, Kastemar M, Waern I, Alafuzoff I, et al.
Mast cell accumulation in glioblastoma with a potential role for stem cell factor and
chemokine CXCL12. PloS One (2011) 6:€25222. doi: 10.1371/journal.pone.0025222

31. Rajput AB, Turbin DA, Cheang MC, Voduc DK, Leung S, Gelmon KA, et al.
Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a
study of 4,444 cases. Breast Cancer Res Treat (2008) 107:249-57. doi: 10.1007/
510549-007-9546-3

32. Ali G, Boldrini L, Lucchi M, Mussi A, Corsi V, Fontanini G, et al. Tryptase
mast cells in malignant pleural mesothelioma as an independent favorable
prognostic factor. J Thorac Oncol (2009) 4:348-54. doi: 10.1097/
JTO.0b013e3181989ddb

33. Zhong QY, Fan EX, Feng GY, Chen QY, Gou XX, Yue GJ, et al. A gene
expression-based study on immune cell subtypes and glioma prognosis. BMC
Cancer (2019) 19:1116. doi: 10.1186/s12885-019-6324-7

34. Polajeva J, Bergstrom T, Edqvist PH, Lundequist A, Sjosten A, Nilsson G,
et al. Glioma-derived macrophage migration inhibitory factor (MIF) promotes
mast cell recruitment in a STAT5-dependent manner. Mol Oncol (2014) 8:50-8.
doi: 10.1016/j.molonc.2013.09.002

35. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia
and macrophages in glioma maintenance and progression. Nat Neurosci (2016)
19:20-7. doi: 10.1038/nn.4185

36. Attarha S, Roy A, Westermark B, Tchougounova E. Mast cells modulate
proliferation, migration and stemness of glioma cells through downregulation of
GSK3beta expression and inhibition of STAT3 activation. Cell Signal (2017) 37:81-
92. doi: 10.1016/j.cellsig.2017.06.004

37. Wang Z, Wang X, Zou H, Dai Z, Feng S, Zhang M, et al. The basic
characteristics of the pentraxin family and their functions in tumor progression.
Front Immunol (2020) 11:1757. doi: 10.3389/fimmu.2020.01757

38. Hedstrom G, Berglund M, Molin D, Fischer M, Nilsson G, Thunberg U,
et al. Mast cell infiltration is a favourable prognostic factor in diffuse large b-cell
lymphoma. Br J Haematol (2007) 138:68-71. doi: 10.1111/j.1365-
2141.2007.06612.x

39. Wang Z, Wang X, Zhang N, Zhang H, Dai Z, Zhang M, et al. Pentraxin 3
promotes glioblastoma progression by negative regulating cells autophagy. Front
Cell Dev Biol (2020) 8:795. doi: 10.3389/fcell.2020.00795

40. Payne KK, Mine JA, Biswas S, Chaurio RA, Perales-Puchalt A, Anadon CM,
et al. BTIN3Al governs antitumor responses by coordinating alphabeta and
gammadelta T cells. Science (2020) 369:942-9. doi: 10.1126/science.aay2767

41. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-
inhibition. Nat Rev Immunol (2013) 13:227-42. doi: 10.1038/nri3405

42. Neo SY, Lundqvist A. The multifaceted roles of CXCL9 within the tumor
microenvironment. Adv Exp Med Biol (2020) 1231:45-51. doi: 10.1007/978-3-030-
36667-4_5

43. Janakiram M, Shah UA, Liu W, Zhao A, Schoenberg MP, Zang X , et al. The
third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x,
and B7-H3. Immunol Rev (2017) 276:26-39. doi: 10.1111/imr.12521

44. Pardo J, Bosque A, Brehm R, Wallich R, Naval J, Mullbacher A, et al.
Apoptotic pathways are selectively activated by granzyme a and/or granzyme b in
CTL-mediated target cell lysis. J Cell Biol (2004) 167:457-68. doi: 10.1083/
jcb.200406115

frontiersin.org


https://doi.org/10.3390/ijms21061954
https://doi.org/10.1186/s12943-022-01513-z
https://doi.org/10.1017/S1462399408000768
https://doi.org/10.1038/nrc1121
https://doi.org/10.1188/16.CJON.S1.2-8
https://doi.org/10.1007/s00262-016-1874-x
https://doi.org/10.1126/science.aaa4971
https://doi.org/10.1007/s11910-014-0440-1
https://doi.org/10.1007/s11910-014-0440-1
https://doi.org/10.1016/j.canlet.2019.11.009
https://doi.org/10.1007/s10555-011-9276-1
https://doi.org/10.1182/blood-2008-03-147033
https://doi.org/10.1182/blood-2008-03-147033
https://doi.org/10.1002/pros.23280
https://doi.org/10.3390/ijms20174197
https://doi.org/10.1016/j.imlet.2013.05.003
https://doi.org/10.1016/j.mehy.2019.109281
https://doi.org/10.1038/s41467-019-10676-1
https://doi.org/10.33594/000000324
https://doi.org/10.1158/2326-6066.CIR-14-0102
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1126/science.1203486
https://doi.org/10.3389/fgene.2020.00363
https://doi.org/10.1186/s13046-021-01987-7
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1016/j.csbj.2021.08.019
https://doi.org/10.3389/fimmu.2021.691811
https://doi.org/10.3389/fimmu.2021.691811
https://doi.org/10.3389/fimmu.2021.694490
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1038/nm.3909
https://doi.org/10.1371/journal.pone.0025222
https://doi.org/10.1007/s10549-007-9546-3
https://doi.org/10.1007/s10549-007-9546-3
https://doi.org/10.1097/JTO.0b013e3181989ddb
https://doi.org/10.1097/JTO.0b013e3181989ddb
https://doi.org/10.1186/s12885-019-6324-7
https://doi.org/10.1016/j.molonc.2013.09.002
https://doi.org/10.1038/nn.4185
https://doi.org/10.1016/j.cellsig.2017.06.004
https://doi.org/10.3389/fimmu.2020.01757
https://doi.org/10.1111/j.1365-2141.2007.06612.x
https://doi.org/10.1111/j.1365-2141.2007.06612.x
https://doi.org/10.3389/fcell.2020.00795
https://doi.org/10.1126/science.aay2767
https://doi.org/10.1038/nri3405
https://doi.org/10.1007/978-3-030-36667-4_5
https://doi.org/10.1007/978-3-030-36667-4_5
https://doi.org/10.1111/imr.12521
https://doi.org/10.1083/jcb.200406115
https://doi.org/10.1083/jcb.200406115
https://doi.org/10.3389/fimmu.2022.914001
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al.

45. Speiser DE, Ho PC, Verdeil G. Regulatory circuits of T cell function in
cancer. Nat Rev Immunol (2016) 16:599-611. doi: 10.1038/nri.2016.80

46. Aldinucci D, Borghese C, Casagrande N. The CCL5/CCR5 axis in cancer
progression. Cancers (Basel) (2020) 12(7):1765. doi: 10.3390/cancers12071765

47. Yu-Ju Wu C, Chen CH, Lin CY, Feng LY, Lin YC, Wei KC, et al. CCL5 of
glioma-associated microglia/macrophages regulates glioma migration and invasion
via calcium-dependent matrix metalloproteinase 2. Neuro Oncol (2020) 22:253-66.
doi: 10.1093/neuonc/noz189

48. Pan 'Y, Xiong M, Chen R, Ma Y, Corman C, Maricos M, et al. Athymic mice
reveal a requirement for T-cell-microglia interactions in establishing a
microenvironment supportive of Nfl low-grade glioma growth. Genes Dev
(2018) 32:491-6. doi: 10.1101/gad.310797.117

49. Otano I, Alvarez M, Minute L, Ochoa MC, Migueliz I, Molina C, et al.
Human CD8 T cells are susceptible to TNF-mediated activation-induced cell death.
Theranostics (2020) 10:4481-9. doi: 10.7150/thno.41646

50. Zhu C, Mustafa D, Zheng PP, van der Weiden M, Sacchetti A, Brandt M,
et al. Activation of CECRI in M2-like TAMs promotes paracrine stimulation-
mediated glial tumor progression. Neuro Oncol (2017) 19:648-59. doi: 10.1093/
neuonc/now251

51. Rao G, Latha K, Ott M, Sabbagh A, Marisetty A, Ling X, et al. Anti-PD-1
induces M1 polarization in the glioma microenvironment and exerts therapeutic
efficacy in the absence of CD8 cytotoxic T cells. Clin Cancer Res (2020) 26:4699—
712. doi: 10.1158/1078-0432.CCR-19-4110

52. Hattermann K, Sebens S, Helm O, Schmitt AD, Mentlein R, Mehdorn HM,
et al. Chemokine expression profile of freshly isolated human glioblastoma-
associated macrophages/microglia. Oncol Rep (2014) 32:270-6. doi: 10.3892/
or.2014.3214

53. Roesch S, Rapp C, Dettling S, Herold-Mende C. When immune cells turn
bad-Tumor-Associated Microglia/Macrophages in glioma. Int ] Mol Sci (2018) 19.
doi: 10.3390/ijms19020436

54. Vinnakota K, Hu F, Ku MC, Georgieva PB, Szulzewsky F, Pohlmann A, et al.
Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression

Frontiers in Immunology

15

10.3389/fimmu.2022.914001

and glioma expansion. Neuro Oncol (2013) 15:1457-68. doi: 10.1093/neuonc/
notl15

55. Fathima Hurmath K, Ramaswamy P, Nandakumar DN. IL-1beta
microenvironment promotes proliferation, migration, and invasion of human
glioma cells. Cell Biol Int (2014) 38:1415-22. doi: 10.1002/cbin.10353

56. Zhang X, Fan L, Wu J, Xu H, Leung WY, Fu K, et al. Macrophage p38alpha
promotes nutritional steatohepatitis through M1 polarization. J Hepatol (2019)
71:163-74. doi: 10.1016/j.jhep.2019.03.014

57. Szulzewsky F, Pelz A, Feng X, Synowitz M, Markovic D, Langmann T, et al.
Glioma-associated microglia/macrophages display an expression profile different
from M1 and M2 polarization and highly express gpnmb and Sppl. PloS One
(2015) 10:e0116644. doi: 10.1371/journal.pone.0116644

58. Maru SV, Holloway KA, Flynn G, Lancashire CL, Loughlin AJ, Male DK,
et al. Chemokine production and chemokine receptor expression by human glioma
cells: role of CXCL10 in tumour cell proliferation. ] Neuroimmunol (2008) 199:35—
45. doi: 10.1016/j.jneuroim.2008.04.029

59. Osterberg N, Ferrara N, Vacher J, Gaedicke S, Niedermann G, Weyerbrock
A, et al. Decrease of VEGF-a in myeloid cells attenuates glioma progression and
prolongs survival in an experimental glioma model. Neuro Oncol (2016) 18:939-49.
doi: 10.1093/neuonc/now005

60. Liao W, Overman M]J, Boutin AT, Shang X, Zhao D, Dey P, et al. KRAS-
IRF2 axis drives immune suppression and immune therapy resistance in colorectal
cancer. Cancer Cell (2019) 35:559-572 €557. doi: 10.1016/j.ccell.2019.02.008

61. Wei F, Ge Y, Li W, Wang X, Chen B. Role of endothelin receptor type b
(EDNRB) in lung adenocarcinoma. Thorac Cancer (2020) 11:1885-90.
doi: 10.1111/1759-7714.13474

62. Huang C, Li N, Li Z, Chang A, Chen Y, Zhao T, et al. Tumour-derived
interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and
metastasis by inducing ICAMI1 expression. Nat Commun (2017) 8:14035.
doi: 10.1038/ncomms14035

63. Deo RC. Machine learning in medicine. Circulation (2015) 132:1920-30.
doi: 10.1161/CIRCULATIONAHA.115.001593

frontiersin.org


https://doi.org/10.1038/nri.2016.80
https://doi.org/10.3390/cancers12071765
https://doi.org/10.1093/neuonc/noz189
https://doi.org/10.1101/gad.310797.117
https://doi.org/10.7150/thno.41646
https://doi.org/10.1093/neuonc/now251
https://doi.org/10.1093/neuonc/now251
https://doi.org/10.1158/1078-0432.CCR-19-4110
https://doi.org/10.3892/or.2014.3214
https://doi.org/10.3892/or.2014.3214
https://doi.org/10.3390/ijms19020436
https://doi.org/10.1093/neuonc/not115
https://doi.org/10.1093/neuonc/not115
https://doi.org/10.1002/cbin.10353
https://doi.org/10.1016/j.jhep.2019.03.014
https://doi.org/10.1371/journal.pone.0116644
https://doi.org/10.1016/j.jneuroim.2008.04.029
https://doi.org/10.1093/neuonc/now005
https://doi.org/10.1016/j.ccell.2019.02.008
https://doi.org/10.1111/1759-7714.13474
https://doi.org/10.1038/ncomms14035
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
https://doi.org/10.3389/fimmu.2022.914001
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Large-scale bulk RNA-seq analysis defines immune evasion mechanism related to mast cell in gliomas
	Introduction
	Method
	Patient and cohort inclusion
	Identification of mast cell-related genes
	Construction of mast cell-related subtypes
	Annotation of the immune infiltrating microenvironment
	Identification of an immune-related signature
	Prediction of immunotherapy responses
	Construction and validation of a prognostic model
	RNA sequencing of the Xiangya cohort
	Statistical analysis

	Results
	TME characteristics of the mast cell-stratified groups
	Clinical traits of the mast cell-stratified groups
	Genomic features of the two clusters
	Generation of risk score and its functional annotation
	Construction of a prognostic nomogram based on risk scores
	Validation of DRG2 as a potent therapeutic predictor

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


