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Malaria is the cause of 600.000 deaths annually. However, these deaths represent

only a tiny fraction of total malaria cases. Repeated natural infections with the

causative agent, Plasmodium sp. parasites, induce protection from severe disease

but not sterile immunity. Thus, immunity to Plasmodium is incomplete.

Conversely, immunization with attenuated sporozoite stage parasites can

induce sterile immunity albeit after multiple vaccinations. These different

outcomes are likely to be influenced strongly by the innate immune response to

different stages of the parasite lifecycle. Even small numbers of sporozoites can

induce a robust proinflammatory type I interferon response, which is believed to

be driven by the sensing of parasite RNA. Moreover, induction of innate like

gamma-delta cells contributes to the development of adaptive immune

responses. Conversely, while blood stage parasites can induce a strong

proinflammatory response, regulatory mechanisms are also triggered. In

agreement with this, intact parasites are relatively weakly sensed by innate

immune cells, but isolated parasite molecules, notably DNA and RNA can

induce strong responses. Thus, the innate response to Plasmodium parasite

likely represents a trade-off between strong pro-inflammatory responses that

may potentiate immunity and regulatory processes that protect the host from

cytokine storms that can induce life threatening illness.

KEYWORDS

malaria, sporozoites, innate immunity, blood stages, pattern recognition receptors,
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Introduction

Malaria remains a major cause of morbidity and mortality worldwide with an estimated

627,000 deaths in 2020 (1), though this represents a small fraction of the over 200 million

clinical cases per year. Moreover, in high transmission areas, 40-70% of individuals can

harbormalaria parasites in their blood as asymptomatic infections (2). Thus,while the overall

burden of disease is high, case fatality is low. Moreover, even though asymptomatic
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individuals have lower levels of infection than individuals with

severe or mild infection, immunity does not control infection and

parasite biomass is high.However, in semi-immune individuals this

parasitaemia does not induce the florid and life-threatening innate

response associated with bacteraemia and sepsis. Thus, a key

outstanding question is how malaria infections can be tolerated

by the immune system, while also being controlled. A further

outstanding question is that while blood stages appear to be largely

tolerated by the immune system, other lifecycle stages - notably the

sporozoite and liver stages are rapidly sensed by the innate response

and can induce robust immune responses.

Human malaria is caused by one of five species of the single-

celled eukaryotic genus Plasmodium; with the highest disease

burden caused by P. falciparum (3, 4). Plasmodium parasites have

a complex lifestyle that entails sexual reproduction in theAnopheles

vector and asexual reproduction in the human host [reviewed

elsewhere (4, 5)]. Human infection begins when sporozoites are

delivered into the skin by the bites of an infected Anopheles

mosquito. Sporozoites travel from the skin via the bloodstream to

the liver, where they invade hepatocytes. During the liver stages, a

single parasite gives rise to tens of thousands of merozoites which

are then released into the bloodstream initiating the symptomatic

blood stage of a Plasmodium infection by replicating inside of

erythrocytes. Importantly, while only tens to hundreds of

sporozoites are injected into the dermis per mosquito bite, one

successfully developing sporozoite is enough to cause blood stage

infection with an average of 7 x 1011 blood-borne parasites (6). A

subset of these blood stages will develop into sexual stage

gametocytes which can continue the cycle of infection if taken up

during blood feeding by another mosquito (5).

Symptoms of malaria range from none in partially immune

individuals, to cyclic fever and to severe manifestations leading

to death. However only around 1% of clinical infections lead to

severe malaria, most often in immunological naïve individuals

(3). Accordingly, in endemic areas children under 5 years of age

are most affected and most likely to suffer from severe malaria

and death (3). Semi-immunity, characterized by the host’s ability

to tolerate and - to an extent - suppress blood stage infection, is

acquired over the course of several disease episodes (7, 8). This

semi-immunity is most often attributed to antibody-mediated

control of parasitemia (resistance) (7) and to an ability to tone

down overarching inflammatory responses during peak

infection (tolerance) (8). Importantly, even numerous blood

stage infections do not induce sterile immunity and people

living in endemic areas are repeatedly infected throughout

their lives. This fact has led to the notion that blood stage

infection induces a form of unnatural and ineffective immunity.

While blood stage infection induces strong inflammatory

responses in naïve individuals but not sterile immunity, it has

long been known that attenuated sporozoites can induce sterile

immunity, which has been a major model for vaccination. This is

true whether sporozoites are attenuated by irradiation, drug control
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of subsequent blood stage infection, or knockout of key genes

required for progression from liver stages to blood stages (9–11).

However, sporozoite vaccines are hampered by the logistical

challenges associated with the preparation of large amounts of

sporozoites, the possibility of breakthrough infections and reduced

efficacy in endemic settings (12, 13). Nonetheless, compared to

blood stage infection - relatively small numbers of sporozoites

induce a strong adaptive immunity characterized by high titers of

affinity matured antibodies and strong CD8 T-cell responses (14).

In this regard, an outstanding question in the field has been how

different life cycle stages of the same parasites induce such different

adaptive immune responses.
Innate immunity to
pre-erythrocytic stages

While sporozoites are evolutionarily optimized for their

journey to the liver, only a few manage to infect hepatocytes

with the remaining sporozoites being cleared by cells of the

innate immune system. These unsuccessful sporozoites likely

contribute to innate immune activation and are a source of

antigen for T and B cells (15). In vivo tracking of fluorescent

sporozoites after intradermal injection revealed that similar

numbers of viable P. berghei sporozoites reached the liver or

remained in the skin (16). Importantly, sporozoites were found

in subcapsular zones of skin draining lymph nodes (dLNs)

before being taken up into dLN resident CD8+ Dendritic cells

(DCs) which efficiently prime CD8+ T-cells (16, 15),. The

important role for mouse CD8+ cDC1s in priming sporozoite-

specific CD8+ T-cells was also shown in Batf3-/- mice which lack

cDC1s (15, 17, 18). In addition, targeted expression profiling of

dLNs 24 h after sporozoite injection revealed elevated expression

of CXCL9, CXCL10, Granzyme B and IFNg (16). Work done

with the P. yoelii model further suggested that priming in dLNs

after subcutaneous sporozoite injection is sufficient to induce

protective immunity (19, 20). IFNg, dendritic cells as well as

CD4+ and CD8+ T-cells also play important roles during the

induction of immunity, while CD8+ T-cells were most important

for protection from challenge later on (20).

Beyond animal models, controlled human malaria

infections, often as part of clinical trials of whole sporozoite

vaccines have also provided insights into protective immune

responses. Interestingly, one of the strongest correlates of

protection in sporozoite vaccinated individuals was increased

frequencies of Vg9+ Vd2+ T-cells at baseline and 2 weeks after

final immunization (14). In line with these findings, RNA

sequencing of PBMCs isolated from vaccinated individuals

identified that elevated expression of two genes encoding

gdTCRs (TRDV2 and TRGV9) at 3 days after the last

vaccination were associated with protection from mosquito-

bite challenge (18). Gamma-delta T cells are an innate-like
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population of T-cells that express a limited repertoire of gdTCRs.
Only very few ligands for gdTCRs have been identified so far

(21), however, even without vaccination, gdT-cells in in vitro

PfSPZ-stimulated PBMCs produced IFNg, indicating the

presence of a gdTCR ligand in sporozoites (14). In mouse

models, depletion of gdT-cells during sporozoite vaccination

ablated protective immunity mediated by CD8+ T cells further

supporting a role for this population in the induction of adaptive

immune responses (18).

Once in the liver, intrahepatic stages of the rodent P. berghei

parasite induce the expression of type I IFNs (22). This response

appeared dependent on parasite replication, as irradiated

parasites induced markedly reduced levels of IFN expression

(22). This response was abrogated in mice deficient for

Mitochondrial antiviral-signaling protein (MAVS) (22). MAVS

is the adaptor protein for the cytosolic RNA sensors Melanoma

differentiation-associated protein 5 (MDA5) and Ritionic acid

inducible gene I (RIG-I) (23). Upon activation, for example

during viral infection, MAVS induces the expression of Type I

IFN and thus contributes to cell intrinsic and extrinsic defense

against pathogens (23). Interestingly, cytokine production in

response to intrahepatic parasites was only partially reduced in

MDA5 deficient mice and not affected in Rig-I deficient animals,

suggesting the existence of another cytosolic pattern recognition

receptor (PRR) capable of detecting parasite pathogen associated

molecular patterns (PAMPs). The cell type that senses
Frontiers in Immunology 03
Plasmodium RNA was not identified and could be either

innate immune cells or the hepatocyte itself (Figure 1) (22).

Simultaneously, a second group suggested that type I IFN may

recruit IFN-gamma producing NK cells to the liver to reduce

hepatic parasite burden (24). A possible mechanism through

which IFNg can mediate a reduction of liver stage burden could

be an autophagy pathway that kills intrahepatic parasites (25, 26)

In vivo experiments can be complemented by in vitro co-

culture experiments of sporozoites with either primary or

cultured innate immune cells. However, such studies are

hampered by difficulties obtaining pure populations of

sporozoites. Initial experiments co-culturing P. yoelii

sporozoites with mouse peritoneal macrophages revealed that

sporozoites induced a respiratory burst in macrophages (27).

Interestingly, frequencies of activated macrophages were lower

when using salivary gland sporozoites than when immature

oocyst-like sporozoites were used (27). Shortly after,

Vanderberg and colleagues (28) characterized sporozoite

macrophage interactions in vitro using live cell imaging and

discovered multiple modes of host-parasite interaction.

Importantly, sporozoites were shown to actively penetrate and

subsequently egress from macrophages, a process that in some

cases led to the destruction of the innate cells. This traversal

process has subsequently been shown to be of great importance

for sporozoites in vivo to leave the dermis after deposition

through a mosquito bite and traverse endothelial cells and
FIGURE 1

Innate immune response to pre-erythrocytic stages of Plasmodium parasites. Cytoplasmic Plasmodium RNA is sensed by MDA5 which signals via
MAVS. MAVS activation ultimately leads to the phosphorylation of transcription factors IRF3 and IRF7 which drive the expression of Type I IFN genes
such as IFNa and IFNb. IFNa,b recruit NK cells to the liver which produce IFNg which in turn increases autophagy pathways in hepatocytes. Another,
yet unidentified, PRR might signal via MAVS to enhance this response. The cell type of origin of the initial Type I IFN response has not been
identified and could either be infected hepatocytes or tissue resident innate cells that have taken up parasite material. TLR2 has been shown to be
capable of sensing sporozoites, leading to reduced liver stage burden and enhanced inflammatory gene expression in mice. In addition, gdT-cells
have been linked to favorable vaccination outcomes in humans and play a role in inducing a protective CD8 T-cell response in concert with CD8+

cDC1s in mice. Created with Biorender.
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Kupffer cells prior to infecting hepatocytes (29–31). Host-cell

traversal also induces the loss of macrophage plasma membrane

integrity (32) and activates Kupffer cells (33).

In addition to cytosolic RNA sensors identified in vivo, Toll-

like receptor 2 (TLR2) has also been identified as an innate

sensor of sporozoite infection from in vitro studies (34). TLR2

belongs to the Toll like receptor family whose members can

sense a range of PAMPs in the extracellular space or the

endosome (35). Most TLRs signal via MyD88 to induce strong

NF-kB driven pro-inflammatory gene expression and the

secretion of cytokines such as IL6 and TNFa (35). It was

further shown that TLR2 deficient mice had higher liver stage

burden after intravenous sporozoite injection and failed to

express inflammatory cytokines in the liver. However it is not

clear whether TLR2 acts in concert with MDA5 and MAVS to

induce a hepatic type I IFN response (34). Another recent in

vitro study characterized human innate cell co-culture with P.

berghei and P. falciparum sporozoites, showing that the parasites

were readily taken up into monocyte derived macrophages and

DCs, which in turn produced IL-6, IL-1b and IL10 (36). Overall,

sporozoites appear to be potent inducers of pro-inflammatory

immune responses that potentiate adaptive immunity, however,

both the interacting cells and the ligand-receptor pairs that

mediate these responses remain poorly characterized.
Innate immunity to blood
stage infection

While sporozoites appear to be potent stimulators of both

innate and adaptive immune responses especially when

considered on a per parasite basis, the pre-erythrocytic stages

of malaria infection are clinically silent because the number of

invading parasites is so small. In contrast, blood stage infection is

responsible for the disease manifestations of malaria which can

be characterized by sepsis-like excessive inflammation in naïve

individuals (3, 37). However, many immunopathology

mechanisms during severe blood stage infection target specific

tissues and rely on tissue-specific host-parasite interactions (38).

Key virulence factors for malaria include various families of

antigenically variant surface antigens (VSAs), including the var

(encoding PfEMP1), rif (encoding RIFIN) and stevor (encoding

STEVOR) gene families of P. falciparum that encode around 60,

200 and 30 highly polymorphic genes, respectively (39–41). In

particular, the PfEMP1 family of surface receptors allow infected

erythrocytes to adhere to endothelial cells allowing for the

sequestration to prevent their removal via the spleen. These

adhesion processes are associated with severe disease (42), in

particular cerebral malaria due to obstruction of blood vessels in

the brain. In addition to var genes, RIFINs also play roles in

immune modulation. Three human receptors have been found

to bind to P. falciparum RIFINs; LAIR1 (43, 44), LILRB1 (45, 46)
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and LILRB2 (47). All of these receptors belong to the Ig

superfamily, contain intracellular immunoreceptor tyrosine-

based inhibitory (ITIM) motifs and are broadly expressed by

myeloid cells and lymphocytes (48–50). ITIM motifs

downregulate cell activation by antagonizing activation signals

in many different immunological contexts, such as NK-cell

activation, T and B cell activation and myeloid cell activation

after PRR engagement (51).

Seminal work showed that PfEMP1 can also be used by

infected erythrocytes to bind to human DCs via CD36 resulting

in the inhibition of LPS-induced maturation and a reduced

ability of DCs to induce T-cell proliferation (52). In human

monocytes, PfEMP1 expressing parasites also induced weaker

inflammatory cytokine expression, corroborating the immune

modulating role of PfEMP1 (53). Interestingly, More recent

work characterizing human dendritic cell responses to blood

stage parasites also found atypical activation patterns with a

marked absence of inflammatory cytokine production and low

co-stimulatory molecule expression (54). Nonetheless, DCs

stimulated with intact parasitized erythrocytes were able to

potently activate CD4+ T-cells in vitro marked by the

induction of high levels of IFNg and TNFa (54). A similar

activation phenotype was also observed in DCs isolated from

individuals from endemic countries (54, 55).

Rodent malaria models have also provided key insights into

innate immune interactions with blood stage parasites,

circumventing some of the limitations of in vitro studies that

use long-term cultured P. falciparum strains. In agreement with

human data, mouse bone marrow derived DCs also show

reduced maturation capacity upon stimulation with LPS, when

they were pre-treated with P. yoelii blood stage parasites ex vivo

(56). In addition, it was shown that DCs stimulated with ex vivo

purified P. yoelii infected erythrocytes produced soluble

mediators that reduced CD8+ T-cell activation, giving rise to

the idea that blood stage infection could suppress immune

responses to pre-erythrocytic stages. Later work, however,

found no defect in infected erythrocyte-induced DC

maturation (57), and confirmed the ability of DCs to

phagocytose parasites and induce long lasting immune

responses (58). In agreement with this, in vivo studies in the P.

berghei ANKA model, which is characterized by T-cell

dependent cerebral cytotoxicity (59), have shown that

depletion of conventional DCs ameliorated T-cell mediated

immune pathology, while parasite control remained unaffected

(60, 61). These contrasting findings highlight that DC biology

during blood stage malaria is still incompletely understood and

important differences are present between rodent and human

host-pathogen pairs likely determined by differences in the VSAs

on infected erythrocytes.

In addition to understanding cellular host-parasite

interactions, research into innate immunity to blood stages has

focused on identifying parasite immune stimulatory ligands and
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their host cell receptors (Figure 2). The first candidate parasite

PAMPs identified were Glycosylphosphatidylinositols (GPIs),

which are complex lipid, carbohydrate and phosphate

containing molecules that are common in all eukaryotic life

and function to anchor proteins to membranes (62).

Plasmodium GPIs contain conserved molecular features that

are distinct from human GPIs (62). Early studies identified P.

falciparum GPIs as immune stimulatory ligands for innate cells

that induced the production of TNFa and IL-1b in macrophages

and resulted in immune pathology in mice upon injection (63).

TLR2 was later identified to be the receptor for GPIs of several

protozoan parasites including plasmodia through the formation

of heterodimers with either TLR1 or TLR6 (64, 65).

A second well-researched blood stage PAMP is hemozoin.

Through digestion of haemoglobin, intraerythrocytic

Plasmodium parasites generate toxic heme, which can produce

free radicals in the parasite digestive vacuole. To detoxify heme,

Plasmodium parasites convert it into an insoluble crystallized

form, called hemozoin which can be released into the

bloodstream during rupture of the infected red blood cell (66).

Hemozoin has been studied extensively in its ability to induce

innate activation and has led to many confusing findings mainly

due to its ability to complex many biological entities including

lipids and nucleic acids that themselves can activate PRRs
Frontiers in Immunology 05
(67, 68). The study of synthetic hemozoin that is free of

contaminants in in vitro systems has ultimately led to the idea

that hemozoin itself is relatively inert to innate cells, but

functions by delivering PRR ligands to their respective

receptors (69). However, there are also reports that challenge

this notion and attribute the release of numerous inflammatory

cytokines such as IL6 and IL1ß to the sensing of hemozoin

through the NLRP3 inflammasome in mice (70–72).

Inflammasomes are multi-protein complexes that assemble in

response to environmental triggers in the host cell cytosol. Once

assembled, these complexes enzymatically cleave pro-forms of

the highly inflammatory cytokines IL-1ß and IL18 into their

respective bioactive forms (73). Inflammasomes thus play

critical roles in pathogen defense but have also been

implicated in autoimmune disorders (73).

The investigation of hemozoin as a malaria PAMP is tightly

connected to the study of plasmodial DNA as activating ligand

of innate immune cells. As such, it was first thought that

hemozoin is the activating ligand of TLR9 (74, 75). However,

subsequent studies in which hemozoin was prepared free of

DNA contamination and used to stimulate mouse bone marrow

derived DCs showed that in fact Plasmodium DNA was the

TLR9 ligand and that it was bound to hemozoin (69). The ability

of human TLR9 to sense plasmodial DNA has been confirmed
FIGURE 2

Innate sensing mechanisms of Plasmodium blood stages. TLR2 senses Plasmodium GPIs on the cell surface, while TLR7 and 9 recognize
Plasmodium DNA in the endosome. In humans, TLR8 also senses degradation products of Plasmodium RNA. TLR engagement drives pro-
inflammatory gene expression and a Type I IFN response (only TLR7, 8,9) that is dependent on MyD88 signaling. Plasmodium nucleic acids
escape from the lysosome probably through direct association with hemozoin. In analogy to pre-erythrocytic stages, Plasmodium RNA in the
cytoplasm is detected by MDA5 leading to MAVS activation and downstream Type I IFN gene expression. In addition, cytoplasmic double
stranded (ds)DNA is sensed by AIM2 while Hemozoin is sensed by NLRP3, each leading to inflammasome assembly and enzymatic cleavage of
pro-inflammatory mediators like Pro-IL1b. Akin to pre-erythorcytic stages, NK cells have been shown to produce IFNg downstream of PRR
recognition of parasite PAMPs. In ex vivo culture systems of human cells, NK cells have been shown to produce IFNg in response to innate cell
produced IL18 and IL12 which were dependent on TLR8. Created with Biorender.
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by independent groups (76, 77). Interestingly, hemozoin seems

to have an adjuvating effect when it is complexed with DNA

(69), supposedly by allowing DNA access to the cytosol where it

also activates cytosolic DNA sensors such as AIM2 (78).

However, it is still unclear how hemozoin escapes from

endosomes. Upon ligand engagement, endosomal DNA

sensors TLR7 and TLR9 predominantly initiate a type I IFN

response through the activation of IRF transcription factors. In

addition, type I IFN production was also shown to be induced

after cGAS-mediated detection of Plasmodium DNA in the

cytoplasm (79). Again, the authors show that DNA access to

the cytosol is mediated by complex formation with

hemozoin (79).

RNA sensing mechanisms and their role during disease have

also been studied. While in mice, MDA5 seems to be activated

during blood stage P. yoelii infection to signal via MAVS the

production of type I IFNs (80), the activating ligand for MDA5

has not clearly been identified yet. Interestingly, the authors

found that ablating IFN production after cytosolic DNA or RNA

sensing protected mice from lethal P. yoelii challenge, while

abrogating endosomal nucleic acid sensing through TLR7 and

TLR9 did not (80). More recently, Coch et al (81) discovered that

human TLR8 senses Plasmodium RNA in the endosome leading

to robust induction of IL-1b in the human THP-1 cell line that

was abrogated in TLR8 deficient THP-1 cells. Shortly after,

RNAse T2 was shown to degrade endosomal PfRNA prior to

sensing of degradation products by TLR8 (82). When human

PBMCs were stimulated with blood stage parasites, TLR8

contributed to mounting a partly NK-cell dependent IFNg
response (81), which is in line with earlier findings that the

TLR8 adaptor MyD88 is necessary for P. falciparum blood stage

induced IFNg production by NK cells (83).
Concluding remarks

Blood stage malaria manifests as a severe inflammatory

disease in naïve individuals. In animal models, genetic ablation

of innate sensing pathways often offer survival benefits pointing

towards a role for dysregulated inflammatory signaling in innate

cells in malaria pathology (80). However, reductionist co-culture

systems with intact parasites generally seem to reveal nuanced

responses of innate cells that often show a lack of, or reduced
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inflammatory signaling (54), unless parasites are added in high

quantities or stimulatory ligands are purified.

To understand this seeming contradiction, a biomass

comparison may be made between a Plasmodium blood stage

infection, sporozoite immunization and sepsis caused by E. coli

(Table 1). A blood stage Plasmodium infection can involve

hundreds of billions of parasites with a total biomass of several

grams. Nonetheless, such infections are frequently tolerated by

the host, even in naive or semi-immune individuals. In contrast,

a septicemic E. coli infection can induce a life-threatening

cytokine storm with one millionth of the amount of antigen.

This comparison argues that on a per-pathogen and per gram

biomass basis, blood stage parasites have a relatively low

inflammatory capacity as compared to bacteria. Interestingly,

comparatively low numbers of sporozoites can induce sterile

immunity when used as a vaccine, while 6 orders of magnitude

more blood stage parasites do not suffice.

Understanding the mechanistic basis for this difference

could be highly valuable. An explanation for these

observations can likely be found considering the pressure that

evolution exerts on host parasite interactions. This pressure

likely favored different outcomes for pre-erythrocytic and

blood stage parasites, especially considering their respective

roles during the parasite life cycle: While only a single

sporozoite needs to productively infect a hepatocyte to

complete its mission, blood stage parasites need to keep

proliferating in the blood for long periods of time to ensure

successful uptake of gametocytes into a feeding mosquito.

Thus, blood stage parasites were subject to high evolutionary

pressure to survive host sensing pathways to avoid destruction

by innate or adaptive immunity. On the other hand, sporozoites

might have evolved to very efficiently reach host hepatocytes

while being much less manipulative regarding innate sensing

pathways. Their high success rate allows only very few

sporozoites to be deposited into the skin during a mosquito

blood feed, limiting the amount of PAMPs to be detected and the

amount of ant igen avai lable for the induct ion of

protective immunity.

Ultimately, a deeper understanding of innate pathways that

are activated by the parasite’s life cycle stages and their respective

downstream contributions towards beneficial vs. detrimental

inflammatory and adaptive immune responses will be needed

to guide both treatment and prevention strategies of the future.
TABLE 1 Comparison of pathogen numbers and biomass during P. falciparum blood stage infection, sporozoite vaccination and E. coli mediated
sepsis.

Blood stage infection Sporozoite vaccine E. coli sepsis

Total number of pathogens in blood 7 x 1011 [ref (6)] 2 x 105 [ref (84)] 4 x 106 [ref (85)]

Weight per pathogen 34.6 pg [ref (86)] 34.6 pg [ref (86)] 5 pg [ref (87)]

Total pathogen biomass 24.200.000 mg 6.92 mg 19.5 mg
Pathogen numbers were curated and calculated from references indicated in the table for an average human female. Weight for average trophozoites was approximated using volumetric
measurements from indicated reference (49 fl) and the dry weight to water ratio of bacteria (0.22). In rough approximation, the same weight was assumed for sporozoites.
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