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Transcriptome profiles of
latently- and reactivated HIV-1
infected primary CD4+ T cells:
A pooled data-analysis

Anne Inderbitzin1,2,3†, Tom Loosli 1,2,3†, Lennart Opitz4,
Peter Rusert2 and Karin J. Metzner1,2*

1Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich,
Switzerland, 2Institute of Medical Virology, University of Zurich, Zurich, Switzerland, 3Life Science
Zurich Graduate School, University of Zurich, Zurich, Switzerland, 4Functional Genomics Center
Zurich, Eidgenössische Technische Hochschule (ETH) Zürich/University of Zurich, Zurich,
Switzerland
The main obstacle to cure HIV-1 is the latent reservoir. Antiretroviral therapy

effectively controls viral replication, however, it does not eradicate the latent

reservoir. Latent CD4+ T cells are extremely rare in HIV-1 infected patients,

making primary CD4+ T cell models of HIV-1 latency key to understanding

latency and thus finding a cure. In recent years several primary CD4+ T cell

models of HIV-1 latency were developed to study the underlying mechanism of

establishing, maintaining and reversing HIV-1 latency. In the search of

biomarkers, primary CD4+ T cell models of HIV-1 latency were used for bulk

and single-cell transcriptomics. A wealth of information was generated from

transcriptome analyses of different primary CD4+ T cell models of HIV-1

latency using latently- and reactivated HIV-1 infected primary CD4+ T cells.

Here, we performed a pooled data-analysis comparing the transcriptome

profiles of latently- and reactivated HIV-1 infected cells of 5 in vitro primary

CD4+ T cell models of HIV-1 latency and 2 ex vivo studies of reactivated HIV-1

infected primary CD4+ T cells fromHIV-1 infected individuals. Identifying genes

that are differentially expressed between latently- and reactivated HIV-1

infected primary CD4+ T cells could be a more successful strategy to better

understand and characterize HIV-1 latency and reactivation. We observed that

natural ligands and coreceptors were predominantly downregulated in latently

HIV-1 infected primary CD4+ T cells, whereas genes associated with apoptosis,

cell cycle and HLA class II were upregulated in reactivated HIV-1 infected

primary CD4+ T cells. In addition, we observed 5 differentially expressed genes

that co-occurred in latently- and reactivated HIV-1 infected primary CD4+ T

cells, one of which, MSRB2, was found to be differentially expressed between

latently- and reactivated HIV-1 infected cells. Investigation of primary CD4+ T

cell models of HIV-1 latency that mimic the in vivo state remains essential for

the study of HIV-1 latency and thus providing the opportunity to compare the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.915805/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.915805/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.915805/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.915805/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.915805/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.915805&domain=pdf&date_stamp=2022-08-26
mailto:Karin.Metzner@usz.ch
https://doi.org/10.3389/fimmu.2022.915805
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.915805
https://www.frontiersin.org/journals/immunology


Inderbitzin et al. 10.3389/fimmu.2022.915805

Frontiers in Immunology
transcriptome profile of latently- and reactivated HIV-1 infected cells to gain

insights into differentially expressed genes, which might contribute to HIV-

1 latency.
KEYWORDS

latently HIV-1 infected primary CD4+ T cells, reactivated HIV-1 infected primary CD4+

T cells, HIV-1 latency reversal agents, transcriptome profile, primary CD4+ T cell
models of HIV-1 latency, pooled data-analysis, pooled data-analysis differentially
expressed genes (pdaDEGs)
Introduction

The human immunodeficiency virus type 1 (HIV-1) remains

a global health problem, while ART efficiently blocks viral

replication it does not cure HIV-1 infection owing to

persistent proviruses (1). These proviruses are quiescent and

mainly found in resting memory CD4+ T cells, known as the

latent reservoir (2, 3). The latent reservoir is defined as

replication-competent but transcriptionally silent viruses. The

latent reservoir is established within the first weeks of infection

(4, 5) but the exact mechanisms of its establishment is still being

investigated. Potential mechanisms leading HIV-1 into latency

include transcriptional interference, chromatin remodelling,

epigenetic silencing, and transcription factor sequestration (6).

Nevertheless, to date the driving forces for HIV-1 latency are not

fully understood. It is still unknown which factors distinguish

between latently- and reactivated HIV-1 infected CD4+ T cells

on a molecular level. Numerous studies searched for cellular

markers identifying latently HIV-1 infected cells and several

cellular markers were described, however, these cellular markers

could only rarely be confirmed and are controversially

discussed (7).

Therefore, primary CD4+ T cell models of HIV-1 latency

that mimic the in vivo state remain a necessity for the study of

HIV-1 latency. A wealth of information has been generated from

the transcriptome profiles of primary CD4+ T cell models of

HIV-1 latency. To obtain a comprehensive understanding of

drivers that might maintain HIV-1 in latency, we performed a

pooled data-analysis comparing the transcriptome profiles of

latently- and reactivated HIV-1 infected cells from 5 in vitro

primary CD4+ T cell models of HIV-1 latency and 2 ex vivo

studies of reactivated HIV-1 infected primary CD4+ T cells from

HIV-1 infected individuals (detailed description of the models/

studies in Supplementary Figure 1 and Supplementary Material).

By conducting a pooled data-analysis, high-throughput data

from multiple independent primary CD4+ T cell models of

HIV-1 latency are included, resulting in 1. larger sample size,

2. overcoming donor variability bias and 3. allowing for a

comprehensive assessment of transcriptome profiles, thus
02
providing more insights into HIV-1 pathogenesis and latency.

In our pooled data-analysis, we identified 247 differentially

expressed genes (DEGs) that were present in at least 3 of 4-5

datasets of latently- and reactivated HIV-1-infected primary

CD4+ T cells, respectively. These DEGs were called pooled

data-analysis differentially expressed genes (pdaDEGs). This

may be a successful strategy to better understand and

characterize HIV-1 latency and reactivation. This could

provide insights into the mechanisms leading to HIV-1 latency

and reactivation.
Results

Quantitative assessment of gene
expression from data sets of in vitro
primary CD4+ T cell models of HIV-1
latency and ex vivo studies of reactivated
HIV-1 infected primary CD4+ T cells from
HIV-1 infected individuals

To gain a comprehensive understanding of differentially

expressed genes (DEGs) between latently- and reactivated

HIV-1 infected cells, we analysed DEGs in 5 in vitro primary

CD4+ T cell models of HIV-1 latency and 2 ex vivo studies of

reactivated HIV-1 infected primary CD4+ T cells from HIV-1

infected individuals, in particular latently- (8–11) and

reactivated (10–13) HIV-1 infected cells. Applying our search

parameters resulted in 47 full text publications. We excluded

studies using ChIP assays, non-primary CD4+ T cells data, cell

line studies, and studies which did not contain transcriptome

data and resulted in 4 in vitro primary CD4+ T cell models of

HIV-1 latency (8–11) (Figure 1). By including 2 ex vivo studies

of reactivated HIV-1 infected primary CD4+ T cells from

suppressed HIV-1 infected individuals and our own model

(14), a total of 50 unique transcriptome samples (26 HIV-1

infected cells and 24 uninfected cells) were included in our

pooled data-analysis. We obtained 1’297-21’886 HGNC

annotated genes per dataset (Table 1). We determined the
frontiersin.org
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mean standardised expression of all genes in all primary CD4+ T

cell models of HIV-1 latency by averaging the fold changes

standardized by the study-specific standard error. To account for

the differences in the datasets, we refrained from identifying the
Frontiers in Immunology 03
DEGs by |fold change| >2 and false discovery rate (FDR) <0.05,

but employed a custom filtering score method based on: 1. FDR

<0.1 increasing the score by 1, 2. absolute fold change greater

than the study-specific 50% absolute fold change quantile,
FIGURE 1

Summary of study search and selection procedure from the Scopus database.
TABLE 1 Cross-reference of 5 in vitro primary CD4+ T cell models of HIV-1 latency and 2 ex vivo studies of reactivated HIV-1 infected primary
CD4+ T cells from HIV-1 infected individuals, of latently- and reactivated HIV-1 infected cells.

Study Dataset Gene IDs of dataset* Gene IDs after
filtering**

HGNC
annotated genes

pdaDEGs*** Up and
downregulated
pdaDEGs***

Iglesias-Ussel et al. (9) latent 1297 1297 1297 104 of 130 up: 45

down: 59

latent 50312 15781 13907 121 of 130 up: 52

White et al. (11) down: 69

reactivated 50312 16452 14720 112 of 117 up: 71

down: 41

latent 50249 21972 21886 129 of 130 up: 62

Mohammadi et al. (10) down: 67

reactivated 50249 21051 20972 114 of 117 up: 70

down: 44

Bradley et al. (8) latent 21386 17029 16141 128 of 130 up: 51

down: 77

Inderbitzin et al. (14) reactivated 21505 14664 13946 109 of 117 up: 65

down: 44

Cohn et al. (12) reactivated 28079 11903 11869 116 of 117 up: 82

down: 34

Kulpa et al. (13) reactivated 35797 19245 19206 98 of 117 up: 70

down: 28
* Includes: Ensembl Gene IDs, Hugo Gene Nomenclature Committee (HGNC) symbols, transcript names.
** Removal of non-informative reads and low read count. Includes: Ensembl Gene IDs, Hugo Gene Nomenclature Committee (HGNC) symbols, transcript names.
*** Defined as passing the filter score; 130 and 117 pdaDEGs obtained from datasets of latently- and reactivated HIV-1 infected primary CD4+ T cells, respectively.
Depicted Gene IDs of dataset, prior and after filtering by score, and up and downregulated pooled data-analysis differentially expressed genes (pdaDEGs).
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increasing the score by 1, and 3. up- or downregulation, resulting

in either a positive or negative score, respectively. A gene can get

a score of maximally 2 per dataset, i.e., maximum score of 8 for

latently and 10 for reactivated HIV-1 infected cells (Table 1). For

each gene the scores are summed up across datasets and

normalized to 1. Pooled data-analysis DEGs (pdaDEGs) were

then identified by applying a filtering score ≥0.5. This resulted in

130 pdaDEGs for latently- and 117 pdaDEGs for reactivated

HIV-1 infected primary CD4+ T cells (Table 1). The 130

pdaDEGs obtained from the latently HIV-1 infected cells were

present in at least 3 out of the 4 primary CD4+ T cell models of

HIV-1 latency. Whereas in the reactivated HIV-1 infected cells

117 pdaDEGs were present in at least 3 out of 5 datasets. In

general, pdaDEGs were more frequently downregulated in

latently HIV-1 infected primary CD4+ T cells and more

frequently upregulated in reactivated HIV-1 infected primary

CD4+ T cells (Table 1).
pdaDEGs identified in latently HIV-1
infected cells from 4 in vitro primary
CD4+ T cell models of HIV-1 latency

A comprehensive understanding of how latently HIV-1

infected primary CD4+ T cells are altered to allow HIV-1

persistence would be an important step towards developing

cures for HIV-1-infected individuals. Therefore, it is important

to determine whether the observed transcriptional heterogeneity

in latently HIV-1 infected primary CD4+ T cells, which suggests

that latent HIV-1 infection can persist in very different host cell

environments, indeed masks common core motifs that would be

responsible for controlling HIV-1 latency (12, 15, 16). To

address this goal, we analysed and compared the 130 identified

pdaDEGs in latently HIV-1 infected cells of 4 in vitro primary

CD4+ T cell models of HIV-1 latency (8–11) (Table 1 and

Supplementary Figure 1A). Of those 130 pdaDEGs, 75 were

down- and 55 upregulated. 48 pdaDEGs showed associations

with HIV-1 based on the Database for Annotation, Visualization

and Integrated Discovery (DAVID), of which 29/48 were

downregulated (Figure 2). 9 pdaDEGs with known HIV-1

associations were observed across all 4 in vitro primary CD4+

T cell models of HIV-1 latency. Out of which, 5 were

downregulated (CCL4, CCL5, CXCR6, LYZ and RRBP1) and 4

upregulated (PLAU, LMNA, LY96 and CD69) (Supplementary

Table 1). Downregulated pdaDEGs were predominantly natural

ligands or coreceptor: CCL4 (chemokine (C-C motif) ligands 4),

CCL5 (RANTES, regulated on activation, normal T cell

expressed and secreted), and CXCR6 (C-X-C chemokine

receptor type 6). CCL4 is known to activate and enhance the

cytotoxicity in natural killer cells (17). CCL5 has been shown to

interfere with the spread of HIV-1 by 1. binding to the CCR5

receptor and thereby blocking the binding of the HIV-1

envelope or 2. inducing the internalisation of the bound
Frontiers in Immunology 04
receptor and thereby reducing the surface amounts of CCR5

(18–21). CXCR6 was found to be downregulated across primary

cell models of HIV-1 latency; it is known as a minor coreceptor

of HIV-1 and might play a role in disease progression through its

role as mediator of inflammation (22). The main HIV-1 co-

receptor CCR5 was also found to be downregulated in 3/4 in

vitro primary cell models of HIV-1 latency, which is in line with

the study from Shan et al., showing that CCR5 is downregulated

in resting CD4+ T cells (23). In summary, we found that natural

ligands and coreceptors were predominantly downregulated in

all investigated models for latently HIV-1 infected primary

CD4+ T cells.
pdaDEGs identified in reactivated HIV-1
infected cells from 3 in vitro primary
CD4+ T cell models of HIV-1 latency and
2 ex vivo studies of reactivated HIV-1
infected primary CD4+ T cells from HIV-1
infected individuals

In in vivo and in vitro settings, a large number of latently

HIV-1 infected primary CD4+ T cells remain unresponsive to

strong latency reversal agents (24–35). To investigate

transcriptional heterogeneity in HIV-1 latency reversal and to

find common core motifs responsible for controlling HIV-1

latency reactivation, we analysed and compared pdaDEGs in

reactivated HIV-1 infected cells of 3 in vitro (10, 11, 14) primary

CD4+ T cell models of HIV-1 latency and 2 ex vivo studies of

reactivated HIV-1 infected primary CD4+ T cells from HIV-1

infected individuals (Supplementary Figure 1) (12, 13).

In the reactivated HIV-1 infected primary CD4+ T cells, 117

pdaDEGs were identified, of which 35 pdaDEGs were down-,

and 82 upregulated. 24 pdaDEGs have known HIV-1

associations based on DAVID, of which 16/24 were

upregulated (Figure 3). 6 of those upregulated pdaDEGs with

known HIV-1 associations were observed in all 5 datasets,

namely ACTA2, LAMP3, HLA-DOA, CXCL10, SLC7A11 and

SPTBN5 (Supplementary Table 2).

The upregulated pdaDEGs were predominantly genes

associated with 1. the p53 pathway, such as ACTA2 (actin

alpha 2) which is known to be induced by p53 (11), 2. the

PI3K/Akt pathway, such as LAMP3 (lysosome-associated

membrane glycoprotein 3) which is involved in cell cycle and

apoptosis (36) or 3. the human leukocyte antigen (HLA) class II

such as HLA-DOA and HLA-DQB1, which was found in 4/5 in

vitro and ex vivo HIV-1 studies, the latter is associated with

increased risk of susceptibility to HIV-1 infection and for a rapid

HIV-1 disease progression (37). CXCL10 (C-X-C motif

chemokine ligand 10) is a pro-inflammatory cytokine involved

in processes such as differentiation, regulation of cell growth,

activation of peripheral immune cells and apoptosis (38). In

addition, CXCL10 was suggested as a biomarker in the clinic for
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FIGURE 2

Heat map of transcriptome profile of latently HIV-1 infected cells of 4 in vitro primary CD4+ T cell models of HIV-1 latency. The 130 pdaDEGs
depicted in the heat map are co-occurring in the latently HIV-1 infected cells of the at least 3 of 4 primary CD4+ T models of HIV-1 latency. For
each gene the available information on pathways, mean standardized fold change, and study-specific fold change and false discovery rates
(FDR) are illustrated. The pathway describes whether an HIV-1 interaction/association and/or the reactome pathway is known or not. Fold
change and FDR in grey indicates no gene expression reported in the according dataset [Bradley et al. (8) Iglesias-Ussel et al. (9), Mohammadi et
al. (10) and White et al. (11)].
Frontiers in Immunology frontiersin.org05
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FIGURE 3

Heat map of gene expression profile of reactivated HIV-1 infected cells of 3 in vitro primary CD4+ T cell models of HIV-1 latency and 2 ex vivo
studies of reactivated HIV-1 infected primary CD4+ T cells from HIV-1 infected individuals. The 117 pdaDEGs depicted in the heat map co-
occurring in the reactivated HIV-1 infected cells of at least 3 out of 5 primary CD4+ T cell models of HIV-1 latency. For each gene the available
information on pathways, mean standardized fold change, and study-specific fold change and false discovery rates (FDR) are illustrated. The
pathway describes whether an HIV-1 interaction/association and/or the reactome pathway is known or not. Fold change and FDR in grey
indicates no gene expression reported in the according dataset [Cohn et al. (12), Inderbitzin et al. (14), Kulpa et al. (13), Mohammadi et al. (10)
and White et al. (11)].
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long-term HIV disease prognosis (39). SLC7A11 (solute carrier

family 7 member 11), also named xCT, is a cytoplasmic

membrane antiporter that exports one glutamate molecule for

each imported cystine molecule (40–43). SLC7A11 has shown to

inhibit HIV-1 infection (44).

In summary, we found genes associated with apoptosis, cell

cycle and HLA class II were predominantly upregulated in all

investigated models for reactivated HIV-1 infected primary

CD4+ T cells.
Comparison of transcriptome profiles of
latently- and reactivated HIV-1 infected
CD4+ T cells

Next, we analysed the overlaps of the 130 and 117 pdaDEGs

in latently- and reactivated HIV-1 infected primary CD4+ T

cells, respectively. 5 pdaDEGs were observed in latently- and

reactivated HIV-1 infected primary CD4+ T cells: FRY, GCSAM,

GNLY, GPR15 and MSRB2 (Figure 4). Of those pdaDEGs, FRY,

GNLY and GPR15 were downregulated and GCSM was

upregulated in both groups. Only methionine sulfoxide

reductase B2 (MSRB2) was regulated differentially between the

latently- and reactivated HIV-1 infected CD4+ T cells, namely,

upregulated in latently HIV-1 infected primary CD4+ T cells and

downregulated in reactivated HIV-1 infected primary CD4+ T

cells. Based on DAVID there is only an HIV-1 interaction known

for GPR15, namely an interaction with HIV-1 Env gp120. GPR15

has been found to be the co-receptor of SIV and HIV-2 (45).

According to the reactome, FRY and GCSAM could not be

assigned to any pathway (Figures 2, 3). All those genes might be

interesting in further studies, in particular MSRB2.
Frontiers in Immunology 07
Enriched biological processes of
pdaDEGs

Gene ontology (GO) enrichment analysis was performed for

functional investigation of pdaDEGs. In the GO enrichment

analysis we observed predominantly downregulation of the T

cell activation and STAT, JAK pathways in latently HIV-1

infected cells of the 4 in vitro primary CD4+ T cell models of

HIV-1 latency (Figure 5). In addition, bona fidemarkers for IFN

related genes were identified to be downregulated in 3/4 in vitro

primary CD4+ T cell models of HIV-1 latency, such as MAVS,

IFNG, TRIM46. In parallel, genes associated with the p53

signalling pathways were found to be upregulated in particular

pathways related to apoptosis and DNA damage repair (11),

such as BBC3 and TNFRSF25. For the reactivated HIV-1

infected primary CD4+ T cells, we could not observe any

enriched biological processes in the pdaDEGs.
Discussion

Current single-cell RNAseq studies of latently HIV-1

infected primary CD4+ T cells revealed a high degree of

heterogeneity between individual latently HIV-1-infected cells,

suggesting that HIV-1 latency can persist in very different host

cell environments (12, 15, 16). Host cell heterogeneity may

explain, at least in part, the differential responsiveness of

latently infected primary CD4+ T cells to reactivation.

Identifying genes that drive and maintain HIV-1 latency is

important to improve current curative strategies. In this study,

we performed a pooled data-analysis of transcriptome datasets

of latently- and reactivated HIV-1 infected cells from 5 in vitro
FIGURE 4

Overlap of pdaDEGs identified in latently- and reactivated HIV-1 infected cells from 5 in vitro primary CD4+ T cell models of HIV-1 latency and 2
ex vivo studies of reactivated HIV-1 infected primary CD4+ T cells from HIV-1 infected individuals. Of the 130 and 117 pdaDEGs identified in
latently- and reactivated HIV-1 infected cells, respectively, 5 co-occurred in both groups. Of those, 3 pdaDEGs were downregulated, one
pdaDEGs upregulated and one pdaDEGs was differentially expressed in latently- and reactivated HIV-1 infected primary CD4+ T cells.
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primary CD4+ T cell models of HIV-1 latency and 2 ex vivo

studies of reactivated HIV-1 infected primary CD4+ T cells from

HIV-1 infected individuals. Although the experimental settings

are unique for each in vitro primary CD4+ T cell models of HIV-

1 latency and ex vivo studies of reactivated HIV-1 infected

primary CD4+ T cells from HIV-1 infected individuals,

regarding 1. how long cells are maintained in culture prior to

infection 2. how CD4+ T cell survival is ensured, 3. how

reactivation was achieved and 4. using replication competent

or incompetent HIV-1, we observed pdaDEGs across in vitro

primary CD4+ T cell models of HIV-1 latency and ex vivo studies

of reactivated HIV-1 infected primary CD4+ T cells from HIV-1

infected individuals. In latently- and reactivated HIV-1 infected

primary CD4+ T cells we could observe five co-occurring

pdaDEGs, one of which MSRB2 was differentially expressed.

We observed that natural ligands and coreceptors were

predominantly downregulated in latently HIV-1 infected

primary CD4+ T cells, whereas genes associated with

apoptosis, cell cycle and HLA class II were upregulated in

reactivated HIV-1 infected CD4+ T cells.

Latently HIV-1 infected primary CD4+ T cells are rare and

to this day no unique markers for their identification is known

(46, 47). There are numerous RNAseq/microarrays datasets of

HIV-1 infected primary CD4+ T cells, which either apply strict

fold change >2 and FDR <0.05 filters or select a single

candidate to propose as newly discovered HIV-1 latency

marker, yet the respective results have rarely been confirmed

by others. In this study we combined RNAseq datasets from

published primary CD4+ T cell models of HIV-1 latency and ex

vivo studies of reactivated HIV-1 infected primary CD4+ T cells
Frontiers in Immunology 08
from HIV-1 infected individuals, to get a more comprehensive

picture. By considering the expression patterns of different

datasets, we can identify genes with small effects that would

otherwise be missed. Furthermore, we argue that if genes, even

if the effect is small, are similarly differentially expressed

in different datasets, the effect of HIV-1 infection on

dysregulation is even more likely to be.

Among the 130 pdaDEGs in latently- and 117 pdaDEGs in

reactivated HIV-1 infected primary CD4+ T cells we identified 5

pdaDEGs which co-occurred in both groups. One of which,

MSRB2, was differentially expressed, namely upregulated in

latently HIV-1 infected primary CD4+ T cells and downregulated

in reactivated HIV-1 infected primary CD4+ T cells. To date, there

is no HIV-1 interaction with MSRB2 reported. MSRB2 has been

associated with diabetes mellitus (48), Parkinsons’ disease (48) and

Alzheimer (49) and MSRB2 has shown to reside in the

mitochondrial matrix (50–52). In Parkinson’s disease it was

observed to be necessary for induction of mitophagy, a process in

which damaged, toxic mitochondria are removed to protect a cell

from apoptosis (53, 54). In the absence of MSRB2 it was observed

that mitochondria undergo oxidative stress, leading to reduced

mitophagy (48). Other studies also made similar observations:

MSRB2 protects cell damage from oxidative stress in various cells

such as lymphoblast and leukemia cells (55, 56). Therefore,

upregulation of MSRB2 in latently HIV-1 infected primary CD4+

T cells could inhibit apoptosis, while downregulation in reactivated

HIV-1 infected genes leads to apoptosis due to the cytotoxic

response of LRA or infectious virus particle release. However, this

process has not yet been documented in CD4+ T cells and therefore

needs further investigation.
FIGURE 5

Enriched biological processes by gene ontology (GO) enrichment analysis of downregulated pdaDEGs in latently HIV-1 infected primary CD4+ T
cells. Depicted are overrepresented biological processes of downregulated pdaDEGs shown by the gene count in circle size and color coded by
adjusted p-value.
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Many identified pdaDEGs in latently HIV-1 infected

primary CD4+ T cells have been reported as bona fide markers

for antiviral defense and apoptosis, such as IFN related genes or

genes associated with the p53 pathway. In reactivated HIV-1

infected primary CD4+ T cells we observed upregulation of genes

associated with apoptosis, cell cycle and HLA class II,

particularly in association with the p53 pathway and the PI3K/

Akt pathway. The observed genes can be used in future primary

CD4+ T cell models of HIV-1 latency to clarify the functional

and physiological significance in primary CD4+ T cells.

Different LRA were used for reactivation in the in vitro

primary CD4+ T cell models of HIV-1 latency compared to the

ex vivo studies of reactivated HIV-1 infected primary CD4+ T

cells from HIV-1 infected individuals, nevertheless we could

observe genes to be similarly differentially expressed across

studies. However, the impact of differences in clonality of the

reservoir exposed to different antiretroviral drugs and LRA

treatments could bias transcriptome profiles. We have tried

not to become too speculative when comparing latently- and

reactivated HIV-1 infected primary CD4+ T cells, and have

therefore selected genes and pathways already known to play a

role in the life cycle and pathogenesis of HIV-1 to get as close as

possible to biological significance. We believe that our pooled

data-analysis can help estimate the relative contribution of some

key genes and pathways of HIV-1 latency and reactivation.
Concluding remarks and future
perspective

To summarize, our pooled data-analysis of different primary

CD4+ T cell models of HIV-1 latency gave insights into

transcriptome profile signatures in latently- and reactivated

HIV-1 infected primary CD4+ T cells. We identified 130

pdaDEGs in latently- and 117 pdaDEGs in reactivated HIV-1

infected cells from 5 in vitro primary CD4+ T cell models of

HIV-1 latency and 2 ex vivo studies of reactivated HIV-1

infected primary CD4+ T cells. We observed that in pdaDEGs

natural ligands and coreceptors were predominantly

downregulated in latently HIV-1 infected primary CD4+ T

cells, whereas pdaDEGs associated with apoptosis, cell cycle

and HLA class II were upregulated in reactivated HIV-1 infected

primary CD4+ T cells. In addition, we observed 5 pdaDEGs that

co-occurred in latently- and reactivated HIV-1 infected primary

CD4+ T cells, one of which, MSRB2, was found to be

differentially expressed between latently- and reactivated HIV-

1 infected primary CD4+ T cells. This pooled data-analysis is

unique in that it analyzes differentially expressed genes of

latently- and reactivated HIV-1 infected cells from different in

vitro primary CD4+ T cell models of HIV-1 latency and ex vivo

studies of reactivated HIV-1 infected primary CD4+ T cells from

HIV-1 infected individuals, providing insight into differentially

expressed genes that might contribute to HIV-1 latency.
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Material and methods

Study selection for the pooled
data-analysis

On the 1st of March 2019 we searched for in vitro primary

CD4+ T cell models of HIV-1 latency on Scopus database. We

searched for ((TITLE (HIV OR HIV-1)) AND (TITLE (latent OR

latently OR latency)) AND TITLE-ABS-KEY ((transcriptome OR

transcriptomics OR “gene expression”))) AND (ALL (“primary

cell”)) AND (ALL (“in vitro model” OR “cell model”)) AND

(LIMIT-TO (DOCTYPE, “ar”)). Each study was independently

reviewed and included based on the criterion that each study

contained transcriptome data and its methodology derived from

an in vitro primary CD4+ T cell model of HIV-1 latency. In

addition, we included two ex vivo studies of reactivated HIV-1

infected primary CD4+ T cells from HIV-1 infected individuals and

our own primary CD4+ T cell model of HIV-1 latency.
Primary CD4+ T cells isolation of own
model

Detailed description of isolation, transfection and RNAseq

data preparation of primary CD4+ T cells of own model is given

in Supplementary Material.
RNAseq data collection

Raw read counts of Bradley et al. (8), White et al. (11) and

Cohn et al. (12). were downloaded from Gene Expression

Omnibus (GEO) Database (57). Differentially expressed genes

(DEGs) as fold-change were obtained from Kulpa et al. (13)

through personal communication. DEGs for Mohammadi et al.

(10) were downloaded from the open access interactive web

resource http://litchi.labtelenti.org.
Differential expression testing

All analyses were performed using R software version 4.0.5

(58). We identified DEGs in data sets where raw read counts

were available [(8, 10, 12, 13) and our data] using the

Bioconductor package EdgeR (59, 60) in a study-by-study

basis. Hereby, ambiguous and low-quality reads were removed

and genes with low read counts (more than 10 reads in 70% of

replicates per group were required) were filtered out. Read

counts were normalized via trimmed mean of M values

(TMM) method. Common dispersion was estimated across all

genes by maximizing the negative binomial conditional common

likelihood, and tagwise dispersion by an empirical Bayes method

based on weighted conditional maximum likelihood. Differential
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expression testing was performed assuming negative-binomially

distributed read counts and computing genewise exact tests for

differences in the means between groups. Eventually, fold

changes were log2-transformed and p-values adjusted for false

discovery rate (FDR) by the Benjamini-Hochberg method.

From Kulpa et al. (13) we selected the RNAseq data for the

TCM cell subset, choosing the LRA Bryostatin, as we have seen

the least impact on cell viability compared to the other LRAs IL-

15 and PMA. As raw read counts were not available and fold

changes were given per transcript ID, we filtered for the

transcript ID per gene name with the highest CPM. FDR

values were estimated using the available p-values with the

Bioconductor package qvalue (61).

The microarray data from Iglesias et al. (9) was available

only as fold change per gene name, lacking p-values, FDR or raw

signals. White et al. (11) previously worked with this dataset and

kindly provided us with a dataset comprised of 1297 genes,

selected by filtering for adjusted p-value smaller than 0.05.
Gene annotation and data analysis

Datasets were combined and genes annotations obtained

and unified across primary CD4+ T cell models of HIV-1 latency

using the Bioconductor package bioMart (62, 63) to download

annotation Ensembl data (64). HGNC symbol duplications were

checked on https://www.genenames.org/tools/multi-symbol-

checker/. Known HIV interactions per gene were retrieved

from DAVID (Database for Annotation, Visualization and

Integrated Discovery) (65, 66) using the HGNC gene symbol

and Entrez gene IDs. Functional pathways of genes were

obtained from Reactome (67). We calculated the mean

standardized expression of genes across all primary CD4+ T

cell models of HIV-1 latency by averaging over fold changes

standardized by study-specific standard error. To account for the

differences in the datasets, we refrained from identifying the

genes of interest by |fold change| > 2 and FDR < 0.05, but

employed a custom filtering method. Hereby a filter score is

calculated for every gene based on FDR being smaller than 0.1

and the absolute fold change being greater than the study-

specific 50% absolute fold change quantile. Downregulated

genes obtain a negative score. Meeting these conditions, a gene

can get a score of maximally 2 per study, i.e., maximum score of

8 for latently and 10 for reactivated HIV-1 infected primary

CD4+ T cells. For each gene the scores are summed up across

studies and normalized to 1. Genes of interest were then

identified by having a score ≥ 0.5.
GO enrichment analysis

GO enrichment analysis of genes of interest were

performed using the Bioconductor package clusterProfiler
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(68) using the org.Hs.eg.db Bioconductor annotation

package (69) with default settings, apart from setting the

minimal size of genes to 3 and choosing a more stringent q-

value cutoff of 0.05. Data management and wrangling, as well

as visualizations were performed using the R package tidyverse

(70). With the parameters set, we could not detect any

upregulated biological processes in latently HIV-1 infected

CD4+ T cells from 4 in vitro primary CD4+ T cell models of

HIV-1 latency.
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