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Background: Lung adenocarcinoma (LUAD) has a very high morbidity and mortality rate,
and its pathogenesis and treatment are still in the exploratory stage. Fatty acid metabolism
plays a significant role in tumorigenesis, progression, and immune regulation. However,
the gene expression of fatty acid metabolism in patients with LUAD and its relationship
with prognosis remain unclear.

Methods:We collected 309 fatty acid metabolism-related genes, established a LUAD risk
model based on The Cancer Genome Atlas (TCGA) using Least Absolute Shrinkage
Selection Operator (LASSO) regression analysis, and divided LUAD patients into high-risk
and low-risk groups, which were further validated using the Gene Expression Omnibus
(GEO) database. The nomogram, principal component analysis (PCA), and receiver
operating characteristic (ROC) curves showed that the model had the best predictive
performance. The ROC curves and calibration plots confirmed that the nomogram had
good predictive power. We further analyzed the differences in clinical characteristics,
immune cell infiltration, immune-related functions, chemotherapy drug sensitivity, and
immunotherapy efficacy between the high-risk and low-risk groups. We also analyzed the
enrichment pathways and protein–protein interaction (PPI) networks of different genes in
the high-risk and low-risk groups to screen for target genes and further explored the
correlation between target genes and differences in survival prognosis, clinical
characteristics, gene mutations, and immune cells.

Results: Risk score and staging are independent prognostic factors for patients with
LUAD. The high-risk group had lower immune cell infiltration, was more sensitive to
chemotherapeutic agents, and had a poorer survival prognosis. We also obtained three
pivotal genes with poor survival prognosis in the high expression group, which were
strongly associated with clinical symptoms and immune cells.

Conclusion: Risk score and staging are independent prognostic factors for patients with
LUAD. The high-risk group had lower immune cell infiltration, was more sensitive to
chemotherapeutic agents, and had a poorer survival prognosis. We also obtained three
survival prognosis-associated target genes that are closely associated with clinical
symptoms and immune cells and may be potential targets for immune-targeted therapy
in LUAD.
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INTRODUCTION

According to related reports, lung cancer ranks first in cancer-
related death in 2020 (1). Lung adenocarcinoma (LUAD) is the
most common subtype of lung cancer and has a higher incidence
in women, accounting for 38.5% of all lung cancers (2). LUAD is
microanatomically divided into two categories (3–5). Fatty acids
are an important source of energy and a component of the cell
structure in most species, including humans, and consist of
carboxy-terminated and long-chain hydrocarbons. Previous
studies have reported that abnormal fatty acid metabolism
leads to a variety of diseases (6). A growing number of
researchers have found that fatty acid metabolism plays an
important role in the recognition, occurrence, and progression
of various cancers, including but not limited to breast, prostate,
ovarian, liver, and colon cancers (7–10). For example,
dysregulation of fatty acid metabolism may interfere with the
efficacy of chemotherapy and radiotherapy and immunotherapy
in breast cancer patients (11). To date, fatty acid metabolism in
LUAD has not been fully defined and more studies are needed in
order to unravel this mystery.

We first screened fatty acid metabolism-related genes that were
differentially expressed in tumor and normal samples, then
screened survival prognosis-related genes, and finally
constructed a prognostic risk model based on The Cancer
Genome Atlas (TCGA) database. LUAD patients in the TCGA
and Gene Expression Omnibus (GEO) databases were classified
into high-risk and low-risk groups based on the median risk scores
of samples in the TCGA database. The prognostic risk model was
further validated using the public GEO database, and the fatty acid
metabolic risk model for LUAD patients based on the TCGA
database was constructed and validated from different
perspectives. The differences between high-risk and low-risk
LUAD patients in terms of immune cell infiltration, gene
mutat ion , chemotherapeut ic drug sens i t iv i ty , and
immunotherapy effect were explored. Finally, we mapped the
protein–protein interaction (PPI) network, on the basis of which
the top 10 central genes were selected and the differences between
network central genes and survival prognosis, clinical
characteristics, and immune cells were further analyzed. In
conclusion, our findings suggest that genes related to fatty acid
metabolism may be potential prognostic markers for patients with
LUAD and may become future therapeutic targets. The
construction of risk scoring models has made it possible to
individualize the treatment of LUAD patients.
MATERIALS AND METHODS

Clinical Data Collection and Collation
We obtained transcription profiling data and clinical data for
LUAD patients from the TCGA database (https://portal.gdc.
cancer.gov/) (535 LUAD samples and 59 normal LUAD
samples) and the GEO database (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc= GSE11969) (GSE11969 and
GPL7015) (94 LUAD samples). The clinical characteristics of
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the TCGA database are shown in Supplementary Table 1. The
gene IDs of the samples were converted from the human gene
annotation file to the corresponding gene symbols and averaged
if multiple probes targeted the same gene ID. TCGA-LUAD is
the test set, and GEO-LUAD is the train set.

Acquisition of Genes Related to fatty Acid
Metabolism
In combination with previous studies (9), we obtained three gene
sets (KEGG fatty acid metabolism pathway, Reactome fatty acid
metabolism genes, and Hallmark fatty acid metabolism genes)
from Molecular Signature Database v7.2 (MSigDB). The
screening yielded 309 genes related to fatty acid metabolism
(Supplementary Table 2).

Construction and Validation of a Fatty Acid
Metabolic Risk Score Model
First, the “limma” R package was used to perform differential
analysis to screen for differential genes related to fatty acid
metabolism, and genes with LogFC < 0.585 and FDR < 0.05
were considered statistically significant. The “clusterprofiler”
R package was used to enrich the GO and KEGG pathways of
differential genes to determine their main biological features
and cellular functional pathways. Differences were statistically
significant when p-values and corrected p-values <0.05.
Finally, the results of the enrichment analysis were
visualized using the “ggplot 2” and “goplot” R packages.
After removing patients with a survival time of less than 30
days, sequencing data of differentially expressed genes
associated with fatty acid metabolism in the samples were
combined with survival data, and genes associated with
prognosis were screened from those associated with fatty
acid metabolism by univariate Cox regression analysis based
on the train set, and the cutoff point is set to p-value < 0.05.
The correlation between the mutation frequency of genes in
the train set samples and the mutated genes was analyzed
using the “maftools” R package. The “Glmnet” R package was
used for genes associated with the prognosis of fatty acid
metabolism in LUAD. Based on the TCGA database, a
prognostic risk score model for predicting OS in LUAD
samples was developed using Least Absolute Shrinkage
Selection Operator (LASSO) Cox regression analysis. The
risk score formula was as follows.

risk score  =oi
1Coefi*ExpGenei

The “Coef” represents non-zero regression coefficients
calculated using the LASSO Cox regression analysis
(Supplementary Table 3), and “ExpGene” is the expression
values of genes from the prognostic risk score model.

LUAD patients were divided into high-risk and low-risk
groups according to the median fatty acid risk score of the
TCGA-LUAD cohort sample, and the K-M method was used to
analyze whether the high-risk and low-risk groups differed in
terms of survival prognosis. The feasibility of the model was
further validated using the GEO database. Nomograms, PCA,
and ROC were used to ensure the accuracy of the model.
July 2022 | Volume 13 | Article 916284
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PCA
PCA of gene expression profiles of fatty acid risk scoring models
was performed using the “limma” R package for both train and
test sets, including the expression profiles of differentially
expressed genes associated with fatty acid metabolism in the
train set. Fatty acid risk scoring models were constructed and the
results were visualized using the “ggplot2” R package.

Comprehensive Analysis of the Risk
Scoring Model and Clinical Characteristics
of LUAD Patients
Clinical information (stage) and fatty acid risk score of patients
with LUAD were combined after excluding survival time of less
than 30 days and missing data. Independent prognostic
indicators were screened using univariate and multivariate Cox
regression (p-value < 0.05).

Construction and Evaluation of the
Nomograms of LUAD Patients
To further investigate the overall survival (OS) of individual
LUAD patients, a predictive model based on independent clinical
parameters was developed using the “nomogram” R package.
ROC curves and calibration plots were used to measure the
ability of nomogram to predict prognosis.

Characteristics of Patients in High- and
Low-Risk Groups
Gene mutation data were downloaded from the TCGA database
to calculate the tumor mutation burden (TMB) of LUAD
patients. The “ggpubr” R package was used to explore whether
there was an association between patient risk score and the
frequency of tumor mutations in target genes. The immune cell
infiltration file was downloaded from Timer2.0 (http://timer.
cistrome.org/) to estimate the relationship between immune cell
infiltration and risk score (for all TCGA tumors), using the
“limma” and “pheatmap” R package for difference analysis, and
the results were visualized. We further analyzed whether there
were differences in immune-related functions between the high-
and low-risk groups using the “GSVA” and “GSEABase”
packages. The “PRRophetic” R package was used to predict the
semi-inhibitory concentrations of cisplatin, gemcitabine, and
paclitaxel in each sample, which indicates the effectiveness of a
substance to inhibit a specific biological or biochemical function.
The TIDE online database (http://tide.dfci.harvard.edu/) was
used to predict the effect of immunotherapy in the high-risk
and low-risk groups, and differences were considered statistically
significant when the p-value < 0.05.

Protein–Protein Interaction Network and
Target Gene Characteristics
After screening for differential genes between high- and low-risk
scoring groups, PPI network data [generated interaction
score >0.90 (medium confidence)] were plotted online using
the STRING online database (https://cn.string-db.org/). The 10
most pooled hub genes were screened using the cubHubba
plugin of Cytoscape software (version: 3.9.1). Based on these
Frontiers in Immunology | www.frontiersin.org 3
10 hub genes, the target genes differentially expressed in tumor
tissues and normal tissues (cutoff value log2FC > 1, p-value <
0.05) and associated with postnatal survival were screened by the
GEPIA (http://gepia.cancer-pku.cn) online database. The
CIBERSORTx (https://cibersortx.stanford.edu/index.php online
database was used to analyze the infiltration of 22 tumor-
infiltrating lymphocyte-associated target genes in the
microenvironment of high-risk and low-risk LUAD patients
for significance ranking analysis 1,000 times, and “reshape2”
and “ggpubr” R packages were used to visualize the difference
results. The “limma” and “ggpubr” R packages were used to
analyze the relationship between target gene expression and
clinical characteristics (stage, T, N, M, age, and gender) of
LUAD patients. Finally, the correlations between target genes
were evaluated based on the GEPIA (http://gepia.cancer-pku.cn)
online database and the Spearman test.
RESULTS

Enrichment Analysis of Tumor and Normal
Samples
By comparing the expression levels of fatty acid metabolism-
related genes in tumor and normal samples in the TCGA
database, 126 genes were screened in the TCGA-LUAD cohort
(p-value < 0.05, FDR < 0.585), of which 79 genes were
upregulated in tumor tissue samples and 47 genes were
downregulated in tumor tissue samples. Heat maps and
volcano maps of differentially expressed genes in normal and
tumor samples are shown in Figures 1A, B. We know from GO
enrichment analysis that among the biological processes, fatty
acid metabolic processes, long-chain fatty acid metabolic
processes, and fatty acid biosynthesis processes are highly
enriched terms (Figure 1C), and Figure 1D shows the 72 most
significantly enriched genes and enriched pathways. The results
of KEGG enrichment analysis of genes and genomes in Kyoto
showed that Fatty acid metabolism, Fatty acid degradation, Fatty
acid elongation, and Fatty acid biosynthesis were all highly
enriched KEGG items (Figure 1E), and Figure 1F shows the
55 most significantly enriched genes and enriched pathways.
These results suggest that fatty acid metabolism-related genes in
LUAD are clustered in biological pathways related to fatty acid
metabolism and are closely related to fatty acid metabolism.

Construction of Risk Scoring Model in the
Train Set
The TCGA-LUAD cohort was used as a train set. A total of 126
cases of fatty acid metabolism-related genes were screened from
the TCGA-LUAD cohort. After excluding data from patients
with a survival time of less than 30 days and null values, 29 fatty
acid metabolism-related genes associated with patient survival
were screened using univariate Cox analysis (Figure 2A). The
somatic mutation profiles of the 29 prognosis-related genes
showed a mutation frequency of 17.29% in the 561 LUAD
samples (a total of 97 cases were mutated) (Figure 2B), with
ADH1B and CYP4B1 having the highest mutation frequencies,
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FIGURE 1 | (A) Heat map of 126 genes in the TCGA-LUAD cohort. (B) Volcano map of the 126 fatty acid metabolism-related differential genes in the TCGA-LUAD
cohort. (C, D) GO analysis of fatty acid metabolism-related differential genes in the TCGA-LUAD cohort. (E, F) KEGG analysis of fatty acid metabolism-related
differential genes in the TCGA-LUAD cohort.
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FIGURE 2 | Continued
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FIGURE 2 | (A) Univariate analysis of genes related to fatty acid metabolism. When the hazard ratio of a gene is >1, it indicates that the gene is a risk factor for the
corresponding tumor, and vice versa. (B) Gene mutations in patients with TCGA-LUAD. (C) Correlation of mutations in 29 fatty acid metabolism genes. Brown color
indicates negative correlation, and blue color indicates positive correlation. p < 0.05, *p < 0.01. (D) LASSO coefficient spectrum of 29 fatty acid metabolism genes.
(E) Cross-validation of adjustment parameter selection in a proportional hazards model. (F) PCA based on all fatty acid metabolism-related genes in the TCGA-LUAD
cohort. (G) PCA based on fatty acid metabolism risk scores in the TCGA-LUAD cohort. (H) PCA based on fatty acid metabolism risk scores in the GEO-LUAD
cohort. The red group represents high-risk patients, and the blue group represents low-risk patients. (I) OS by fatty acid risk score in the TCGA-LUAD cohort. (J)
OS by fatty acid risk score in the GEO-LUAD cohort. (K) Results of univariate Cox analysis in the TCGA-LUAD cohort. (L) Multivariate Cox analysis results in the
TCGA-LUAD cohort. (M) Results of univariate Cox analysis in the GEO-LUAD cohort. (N) Multivariate Cox analysis results in the GEO-LUAD cohort. (O) AUC values
at 1, 3, and 5 years in the TCGA-LUAD cohort. (P) ROC curves of risk scores and clinical characteristics in the TCGA-LUAD cohort. (Q) AUC values at 1, 3, and 5
years in the GEO-LUAD cohort. (R) ROC curves of risk scores and clinical characteristics in the GEO-LUAD cohort.
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followed by ELOVL6, MDH2, SMS, LTA4H, ENO3, ALDOA,
ALOX15, ALOX15B, MAOA, LDHA, CA4, ELOVL2, DPEP2,
CEL, HSD17B4, INMT, AOC3, and ACOXL, and no mutations
in other genes. Further analysis revealed a mutational positive
relationship between ACOXL and HSD17B4, ADH1B; CYP4B1
and AOC3, and PTGR1 and LDHA (Figure 2C). These 29 genes
were further incorporated into the LASSO logistic regression
algorithm based on the TCGA-LUAD cohort. A total of 14 genes
for constructing fatty acid risk score models were obtained by
LASSO Cox regression analysis (Figures 2D, E), namely,
ALDH2, HACD1, ELOVL2, ENO3, CEL, CA4, CYP2U1,
LDHA, ALOX5AP, SMS, ALDOA, CYP4B1, DPEP2,
and ELOVL6.
Frontiers in Immunology | www.frontiersin.org 6
Using this risk score model, the LUAD samples (low and high
risk) were completely distinguished (Figures 2F, G), while the
GEO-LUAD cohort was similarly distinguished as a test set
(Figure 2H). In this fatty acid risk model, the median risk
score of the TCGA-LUAD cohort was used as the cutoff value,
and 490 TCGA-LUAD patients were classified into a high-risk
group (n = 245) and a low-risk group (n = 245), and 94 GEO-
LUAD patients were classified into a high-risk group (n = 51)
and a low-risk group (n = 43). In both the test and train groups,
the low-risk group had a better clinical prognosis (p-value < 0.05)
(Figures 2I, J). Univariate prognostic COX analyses of the train
and test sets showed that stage and risk score were independent
prognostic factors, and multivariate COX analyses also showed
July 2022 | Volume 13 | Article 916284
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FIGURE 3 | (A) Nomogram to predict 1-, 3-, and 5-year OS in the TCGA-LUAD cohort. (B) Calibration plot to assess the accuracy of a nomogram to predict 1-, 3-,
and 5-year OS in the TCGA-LUAD cohort. (C) Nomogram to predict 1-, 3-, and 5-year OS in the GEO-LUAD cohort. (D) Calibration plot to assess the accuracy of a
nomogram to predict 1-, 3-, and 5-year OS in the GEO-LUAD cohort. (E) ROC curves of risk score and clinical characteristics in the TCGA-LUAD cohort. (F) ROC
curves of risk score and clinical characteristics in the GEO-LUAD cohort. (G) Univariate Cox analysis. (H) Multivariate Cox analysis.
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FIGURE 4 | (A) The immune infiltration of immune cell types in high-risk and low-risk patients in the TCGA-LUAD cohort. (B) Analysis of immune function in high-risk
and low-risk patients in the TCGA-LUAD cohort. ***p < 0.001, ns p > 0.05. (C) High-risk and low-risk LUAD patients with TIDE scores in the TCGA-LUAD cohort.
(D–I) Fatty acid metabolism score and cisplatin (D, E), gemcitabine (F, G), and paclitaxel (H, I) chemotherapeutic drug sensitivity analysis in the TCGA-LUAD cohort.
Frontiers in Immunology | www.frontiersin.org July 2022 | Volume 13 | Article 9162848

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Huang et al. Fatty Acid Metabolism in LUAD

F

A B

C D E

G H I

F
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FIGURE 5 | (A) PPI network of risk differential genes. (B, C) Top 10 hub genes of the gene expression network. (D–F) Comparison of BUB1B (D), CCNB1 (E), and
TTK (F) mRNA expression levels of each gene in LUAD tissue and normal lung tissue. The expression levels of all genes in cancer tissues were higher than those in
normal lung tissues. The red and blue boxes represent tumor and normal tissue, respectively. Red asterisks indicate significant differences in the expression of each
mRNA (p-value < 0.05). (G–L) OS and RFS of 3 target genes of BUB1B (G, H), CCNB1 (I, J), and TTK (K, L). (M–O) Immune cell content of 22 immune cell types
in BUB1B (M), CCNB1 (N), and TTK (O) Hub genes. (P–R) The relationship of BUB1B (P), CCNB1 (Q), and TTK (R) target genes and clinicopathological features,
including TNM stage (Stage), tumor invasion (T), lymphoid metastasis (N), distal metastasis (M), gender (Gender), and age (Age). (S–U) Correlation analysis between
the type of gene mutation (mutant, wild type) and risk score, BUB1B (S), CCNB1 (T), and TTK (U). (V) BUB1B and CCNB1 correlation analysis. (W) BUB1B and
TTK correlation analysis. (X) CCNB1 and TTK correlation analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
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this result (p-value < 0.05) (Figures 2K–N). Using the ROC
curve estimation model to evaluate the reliability of the fatty acid
risk score, the area under the curve (AUC) was 0.727, 0.715, and
0.677 for the train sets at 1, 3, and 5 years, respectively
(Figure 2O). The AUC was 0.802, 0.656, and 0.653 for the test
sets at 1, 3, and 5 years, respectively (Figure 2Q); the train set risk
model has the largest area under the ROC curve (Figure 2P) and
the test set risk model. The ROC curve was second only to stage,
which proved the most reliable model of fatty acid metabolism
risk (Figure 2R).

Construction and Evaluation
of Nomograph
Prognostic factors such as risk score, stage, age, and sex were
included in the nomogram to assess the predictive ability of
individual OS, and to calculate the prediction effect of the
nomogram on 1-, 3-, and 5-year OS in patients with LUAD
(Figure 3A). The nomogram was applied to patients in the test
set (GEO database), the effect was good (Figure 3C), and the
calibration charts were close to the ideal curve (Figures 3B, D).
In addition, ROC curve analysis is carried out to verify the
practicability of the nomogram, and the AUC of train set and test
set risk, nomogram, age, gender, and the stage is calculated
(Figures 3E,F). Nomogram AUC is the largest, indicating that
the nomogram has the best prediction effect. Further univariate
and multivariate Cox analysis of the train set data showed that
the classification and risk score were independent prognostic
factors (p-value < 0.001) (Figures 3G, H). In conclusion, the
prognostic ability of this fatty acid prognostic model has been
validated from several perspectives.

Immune-Related Characteristic and
Chemical Response in the Low- and High-
Risk Score Groups
Immune cell infiltration showed immunological differences
between the high-risk and low-risk groups, with significantly
increased abundance of Macrophage M0, Macrophage M1, T cell
CD4+ Th1, T cell CD4+ Th2, and T cell CD4+ memory activated
in the high-risk group and B cell memory, Macrophage M2, T
cell CD4+ central memory, T cell CD4+ effector memory, T cell
CD8+, Myeloid dendritic cell resting, Myeloid dendritic cell
activated, and T cell regulatory significantly increased in the
low-risk group (Figure 4A). Immune function analysis
(Figure 4B) showed that HLA and Type_II_IFN_Response
immune-related functions were active in the low-risk group
and MHC_class_I immune-related functions were active in the
high-risk group. TIDE scores were lower in the high-risk group
than in the low-risk group (Figure 4C), which proved that the
high-risk group had a better effect of immunotherapy. In the risk
score and chemical drug sensitivity analysis, we found that the
risk score was negatively correlated with cisplatin, gemcitabine,
and paclitaxel chemotherapy drug sensitivity. The IC50 of
patients in the high-risk group with the lower value
(Figures 4D–I) proves that patients in the high-risk group
were more sensitive to chemotherapy drugs than those in the
Frontiers in Immunology | www.frontiersin.org 13
low-risk group. In conclusion, the quantification of fatty acid
metabolic risk scores is of great importance in patients with
LUAD, not only to assess the prognosis of immunotherapy, but
also to evaluate the effect of chemotherapy, which may be a new
biomarker to change the outcome of treatment in patients
with LUAD.

PPI Network of Differentially Expressed
Genes in Low- and High-Risk Groups
Differential gene interactions between low- and high-risk groups
were analyzed using the STRING online database. The
differential gene PPI network is shown in Figure 5A. Hub
genes were identified from differential genes using the
Cytoscape plugin cytoHubba. We chose a total of 10 genes in
the network (Figure 5B) and ranked CDK1, BUB1, CCNA2,
CCNB1, CDC20, BUB1B, CCNB2, DLGAP5, TPX2, and TTK
utilizing the degree method Figure 5C). Through differential
analysis and survival analysis, three hub genes were screened as
target genes. We performed a differential analysis based on
TCGA and GTEx databases using GEPIA and found that
BUB1B (Figure 5D), CCNB1 (Figure 5E), and TTK
(Figure 5F) were significantly overexpressed in LUAD tissues
compared with normal samples (p-value < 0.05). BUB1B
(Figures 5G, H), CCNB1 (Figures 5I, J), and TTK
(Figures 5K, L) were significantly associated with survival
prognosis (OS and RFS) (p-value < 0.01), and the higher the
gene expression, the worse the prognosis.

The results of immune cell infiltration showed that the
upregulated immune cells in the gene BUB1B high expression
group were T cells CD8, T cells CD4 memory activated, NK cells
resting, Macrophages M0, and Macrophages M1, and the
downregulated immune cells were B cells naive, T cells CD4
memory resting, T cells regulatory (Tregs), NK cells activated,
Monocytes, Dendritic cells resting, and Mast cells resting
(Figure 5M); the upregulated immune cells in the CCNB1
high expression group were T cells CD8, T cells CD4 memory
activated, T cells follicular helper, NK cells resting, Macrophages
M0, and Macrophages M1, and the downregulated immune cells
were B cells memory, T cells CD4 memory resting, Monocytes,
Dendritic cells resting, and Mast cells resting (Figure 5N); the
upregulated immune cells in the TTK high expression group
were T cells CD8, T cells CD4 memory activated, Macrophages
M0, Macrophages M1, and Dendritic cells activated, and
downregulated immune cells were B cells memory, Plasma
cells, T cells CD4 memory resting, T cells regulatory (Tregs),
NK cells activated, Monocytes, Dendritic cells resting, and Mast
cells resting (Figure 5O). We noted that the infiltration of
activated immune cells was abundant and active in the high
expression group, which was suitable for immunotherapy.
Clinical correlation analysis showed that in the BUB1B,
CCNB1, and TTK genes, stage I patients had significantly
lower expression levels than stage II, III, and IV patients, and
higher gene expression levels in men and patients younger than
65 years (p-value < 0.05) (Figures 5P–R). There was no
significant difference between BUB1B, CCNB1 mutant, and
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wild-type risk scores (Figures 5S, T), and there was a significant
difference between TTK mutant and wild-type risk scores (p-
value < 0.05) ( Figure 5U). Based on the GEPIA (http://gepia.
cancer-pku.cn) online database, correlations between genes were
analyzed using the Spearman test. The three genes BUB1B,
CCNB1, and TTK were positively correlated with each other
with statistically significant differences (Figures 5V–X) (p-value
< 0.001).
DISCUSSION

Lung cancer is one of the most common cancers worldwide
(11.6% of all cases) and is the leading cause of cancer-related
deaths (18.4% of all cancer-related deaths) (12). Despite
significant improvements in early detection, targeted therapies,
and chemotherapy techniques over the past decades, the OS of
patients with LUAD remains low. Therefore, there is an urgent
need for complete clarity on the principles of LUAD
pathogenesis and development, and more potential targets of
clinical therapeutic benefit need to be identified. Cellular
metabolism is critical for cell survival and development, and
tumor cells suffer from abnormal cellular metabolism due to loss
of function of tumor suppressor genes or activation of oncogenes.
Changes in metabolism are widely observed in various cancer
cells (13) and are used in tumor therapy (14–16). Disturbances in
fatty acid metabolism are associated with tumor progression, and
fatty acid metabolism has been applied to explore the
progression of various cancers, such as colon and breast
cancer, and to describe the efficacy of therapeutic and
prognostic interventions (17, 18). Exploring the role of
different fatty acid metabolic patterns in LUAD can help to
understand the role of fatty acid metabolism in LUAD
progression and thus guide effective therapeutic strategies.
Although there have been many prediction models for studies
on LUAD, with very few on fatty acid metabolism, we selected
two different databases, TCGA and GEO, set up a train set and a
test set, and used the test set to verify the accuracy of the train set,
partially compensating for the lack of clinical trials, and
constructed individual patient risk prediction models that can
accurately predict the treatment outcome of individual patients.
We further analyzed the relationship between target genes and
immune cell infiltration and clinical characteristics.

In our study, we found that genes related to fatty acid
metabolism were strongly associated with LUAD patients,
especially in terms of OS. A fatty acid metabolism risk model
was established based on the TCGA-LUAD cohort. The TCGA-
LUAD cohort was the train set and the GEO-LUAD cohort was
the test set. According to the TCGA-LUAD cohort, patients with
reduced median risk scores were divided into a high-risk group
and a low-risk group. Univariate and multivariate Cox analyses
showed that risk scores and stage were independent of other
factors in predicting clinical survival in patients with TCGA-
LUAD and could be used as independent prognostic indicators.
The GEO test set verifies this result well. We also constructed
Frontiers in Immunology | www.frontiersin.org 14
nomograms that provide a good assessment of each patient’s
clinical survival. Immunotherapy aims to activate the natural
immune molecular components of the tumor microenvironment
to defend against cancer. Numerous studies have reported that
the main antitumor features of the tumor microenvironment are
CD8+ cytotoxic T cells, Th1 helper cells, and their associated
cytokines, such as interferons (IFNs) (19). High expression of
Th1, CD8+ T, and effector memory T cells has been shown to be
associated with better prognosis (20). Recent findings by Ferreira
et al. found that Tregs produce more effective anti-tumor
immunity by providing the necessary cytokines (21). Wu et al.
suggested that T-cell CD4+ central memory inhibits lymph node
metastasis, thereby improving the prognosis of patients with oral
squamous cell carcinoma (22). Macrophages are key factors in
LUAD metastasis, with the M2 subtype stimulating lung cancer
cell invasion and the M1 subtype inhibiting tumor formation
(23). In our study, the low-risk group was enriched in T-cell
regulatory cells (Tregs), T-cell CD8+, T-cell CD4+ central
memory, and T-cell CD4+ effector memory, consistent with
the survival advantage of the low-risk group. We also noted
that the high-risk group had lower dendritic cell content than the
low-risk group. Dendritic cells play a crucial role in the initiation
of antigen-specific immunity (24) and present antigens to T cells,
promoting the antitumor activity of CD4+ and CD8+ T cells
through cell–cell contact and in cytokine release activity (25).
From this, we hypothesized that lower levels of dendritic cells in
the high-risk group may be associated with survival
disadvantage, which points us to the next direction of research,
namely, by stimulation of dendritic cells to activate immune
responses and enhance immunotherapy and other therapeutic
options to kill tumor cells. Type II interferon (IFN) response
activation in the low-risk group suggests that patients in the
immunosuppressed low-risk group should also respond to
immunotherapy and immunosuppressive factors such as TGF-
b in the low-risk group and that TGF-b inhibitors combined with
monoclonal antibodies would be a good therapeutic option.

The risk score and chemical drug sensitivity analysis showed
that the risk score was sensitive to three common chemotherapy
drugs in LUAD, namely, cisplatin, gemcitabine, and paclitaxel,
and was negatively correlated, which opened up a new way for
further guiding clinical treatment of lung adenocarcinoma. Based
on the differentially expressed genes between high-risk and low-
risk groups, we drew the PPI network and further screened out
10 hub genes. These 10 hub genes were all significantly different
between tumor groups and normal samples (p-value < 0.01); OS
and disease-free survival (DFS) analysis showed that there were
significant differences in BUB1B, CCNB1, and TTK (p-value <
0.01). These three genes were highly expressed in tumors and
were high-risk genes. The higher the gene expression, the worse
the prognosis. BUB1B is not only a key component of the spindle
assembly checkpoint, but its abnormal expression usually
represents a poor prognosis of the tumor (26). A present meta-
analysis showed that high BUB1B expression predicts poor OS
and progression-free survival (PFS) and that BUB1B is an
important biomarker for poor prognosis and poor
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clinicopathological outcome in patients with LUAD (27). Zhou
et al. (28) found that BUB1B was upregulated in LUAD, and
clinical survival is shorter in LUAD patients with high BUB1B
expression. Expression of CCNB1 is significantly elevated in
samples from LUAD patients and is associated with advanced
tumor stage and shorter OS (29), and TTK is a mitotic
checkpoint kinase that is present in higher amounts in some
human cancers than in normal tissue (30). In addition, high
expression of TTK was positively correlated with higher
invasiveness and treatment resistance of breast cancer,
suggesting that TTK may be involved in cancer cell
proliferation and poor patient survival, and is an independent
prognostic factor (31). The high-risk score of TTK mutation type
indicates that this gene is prone to a gene mutation in LUAD and
may be a potential gene mutation therapy target. These findings
are consistent with our findings, validating the accuracy of our
study and again validating the scientificity of the model. These
three hub gene activation states have more infiltration and more
active immune cells, suggesting that immunotherapy may
change the survival of patients with poor prognoses. However,
although we obtained that BUB1B, CCNB1, and TTK are
positively correlated in LUAD, there is no experimental
confirmation yet, and further investigation is needed to
investigate the intrinsic association.
CONCLUSION

In conclusion, we generated a fatty acid metabolism risk model
in patients with LUAD and showed that the fatty acid
metabolism risk score was associated with immune cell
infiltration, and chemotherapeutic and immunotherapy effects
in LUAD patients. Three fatty acid metabolism genes not only
are significantly associated with clinical staging and prognosis of
LUAD patients, but also have great importance in immune cell
infiltration. These three genes could be used as biomarkers for
individualized treatment of LUAD patients and improve the
prognosis of LUAD patients.
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