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N6-methyladenosine (m6A) RNA methylation is an epigenetic modification that has
emerged in the last few years and has received increasing attention as the most
abundant internal RNA modification in eukaryotic cells. m6A modifications affect
multiple aspects of RNA metabolism, and m6A methylation has been shown to play a
critical role in the progression of multiple cancers through a variety of mechanisms. This
review summarizes the mechanisms by which m6A RNA methylation induced peripheral
cancer cell progression and its potential role in the infiltration of immune cell of the
glioblastoma microenvironment and novel immunotherapy. Assessing the pattern of m6A
modification in glioblastoma will contribute to improving our understanding of
microenvironmental infiltration and novel immunotherapies, and help in developing
immunotherapeutic strategies.
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INTRODUCTION

The m6A modification has been recognized as one of the markers of post-transcriptional regulation
in diverse types of RNAs, such as transfer RNA, circular RNA, long non-coding RNA, messenger
RNA, ribosomal RNA and microRNA (1, 2). RNA m6A modifications have been shown to play a
significant role in regulating RNA translation, splicing, translocation, stability, and higher structure
(3, 4). Almost all types of RNA have been found to contain m6A modifications to date (5, 6). In
humans, there are over 7000 genes with 12,000 m6A sites enriched in the consensus sequence
RRACH (H=A, C or U, R=G or A), which tend to occur in the stop codon and 3′ untranslated
regions (3′ UTRs) (3, 7). The dynamic regulation of m6A modifications is primarily dependent on
m6A methyltransferases/writers, which can be cleared by demethylases/erases and recognized by
m6A-binding proteins/readers (8, 9). Recently, an increasing number of studies have demonstrated
that m6A plays an essential role in the occurrence and progression of cancer (10, 11).

Glioblastoma (GBM) is the most common and most malignant tumor of the adult central
nervous system, which accounts for roughly half of all primary brain tumors and practically 60% of
all types of gliomas (12, 13). Despite the use of comprehensive therapies such as surgery,
radiotherapy, and novel immunotherapies, the 2-year survival rate for GBM is only 15 months,
and reliable biomarkers and effective immunotherapy targets for GBM are still lacking (6, 14).
Patients with GBM present a complex state of immune dysfunction involving several mechanisms of
immunosuppression and tolerance, and immunotherapy has emerged as a novel approach to GBM
org May 2022 | Volume 13 | Article 9171531
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treatment (6, 15). Studies have demonstrated that GBM is more
heterogeneous than peripheral tumors, which indicates that several
factors including RNA modification, tumor microenvironment
(TME), and stem cell phenotype may influence immune
checkpoint blockade therapy and developmental plasticity in
GBM (16). m6A modifications influence the formation of
multiple TMEs, including GBM, and are involved in cancer stem
cell (CSC) generation and maintenance, and immunotherapy
resistance, making the investigation of m6A methylation offers a
new perspective for the treatment of GBM (17, 18).

The novel immune checkpoint blockade therapies (anti-PD-1
and PD-L1) are now showing satisfactory efficacy in some cancer
patients. The m6A modifications are closely related to novel
immune checkpoint blockade therapies. As an m6A
demethylase, FTO can induce resistance to anti-PD-1
treatment in melanoma cells (19). It has been shown that both
METTL3 and METTL14 contribute to the development and
tumorigenesis of human glioma stem cells (GSCs), and METTL3
overexpression or suppression of FTO inhibits GSC self-renewal
and growth (20). Our previous study also observed an association
between anti-PD-L1/PD-1 treatment response and m6A
modification patterns, confirming that m6A modification
patterns in GBM affect the infiltration of immune cells in the
GBM microenvironment (6).

In this review, we analyzed the correlation between m6A
modifications, m6A regulators and GBM as well as peripheral
cancers. We clarified the correlation of m6A modification in the
occurrence and development of GBM as well as peripheral
cancers, analyzed the molecular, immune cell infiltration in
TME, and stemness characteristics of GBM cells with distinct
m6A modification patterns, and the influence of m6A
Frontiers in Immunology | www.frontiersin.org 2
modification patterns on novel immunotherapies for GBM as
well as peripheral cancers.
OVERVIEW OF M6A

This is a dynamic and reversible biological process that m6A is
formed by the m6A methyltransferases complex. The function of
m6Amodification is achieved by RNAmethyltransferases (writers:
METTL3, METTL14, METTL16, RBM15, RBM15B, WTAP,
KIAA1429, ZC3H13, CBLL1) (21–28), RNA demethylases
(erasers: FTO, ALKBH5) (29, 30) and m6A binding proteins
(readers: YTHDC1, YTHDC2, HNRNPC, HNRNPA2B1,
YTHDF1, YTHDF2, YTHDF3, IGF2BP1, IGF2BP2, IGF2BP3,
FMR1, LRPPRC, ELAVL1) (31–41), which can recognize, remove
or add m6A modification sites and modify essential biological
processes accordingly. m6A modification processes occur mainly
in adenines of the RRACH sequence (42). We summarized the
protein types involved in m6A modifications and described the
biological functions of each protein (Table 1; Figure 1).

RNA Methyltransferases/Writer
The multicomponent methyltransferase complex is involved in
catalyzing the formation of m6A modifications (43). The
multicomponent methyltransferase complex consists mainly of
METTL3/METTL14 heterodimers and a variety of other
methyltransferases (43). METTL3 is an S-adenosylmethionine-
binding protein, the core enzyme that exerts methyltransferase
activity in the methyltransferase complex, and is the first
characteristic component of the m6A methyltransferase
complex (8). METTL14 is the second supporting enzyme, and
TABLE 1 | 24 m6A regulators and their functional roles in RNA metabolism.

Type Regulator Location and Funtion References

Writer METTL3 Mediates m6A modifications 21
METTL14 Assists METTL3 to catalyze m6A RNA methylation 22
METTL16 Mediates m6A modifications 23
WTAP Promotes formation of the METTL3-METTL14 m6A methyltransferase complex 24
KIAA1429 Directs methyltransferase components to specific RNA regions 25
RBM15 By binding the m6A complex and recruiting it to specific RNA site 26
RBM15B
ZC3H13 Bridges WTAP to the mRNA-binding factor Nito

Mediates m6A modifications
27

CBLL1 28
Eraser FTO Demethylates m6A modifications 29

ALKBH5 Demethylates m6A modifications 30
Readers YTHDC1 Promotion of RNA translocation and splicing 31

YTHDC2 Enhances the translation of target RNA and expedites mRNA decay 32
HNRNPC Mediates mRNA splicing 33
HNRNPA2B1 Promotes primary miRNA processing 34
YTHDF1 Promotes RNA translation initiation by binding to initiation factors 35
YTHDF2 Destabilization of mRNA 36
YTHDF3 Promotes translational efficiencies 37
IGF2BP1 Enhances mRNA stability and translation 38
IGF2BP2
IGF2BP3
FMR1 Contributes to maternal RNA degradation 39
LRPPRC Exports of nuclear mRNA 40
ELAVL1 Mediates the RNA stability 41
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the two co-localize in the nuclear speckle and form a stable
heterocomplex in a 1:1 ratio (44). METTL3 acts primarily as the
catalytic core, while METTL14 is the structural carrier for RNA
binding, where the C-terminal arginine-glycine repeat sequence
is the secondary RNA substrate binding site and is essential for
METTL3-METTL14 catalytic activity (45). METTL16 is a
homolog of METTL3, which deposits m6A into hundreds of
specific messenger RNA targets in the nucleus; in the cytoplasm,
METTL16 contributes to translation in an m6A-independent
manner (46). WTAP has no conserved catalytic methylation
structural domain, but WTAP can interact with METTL3 and
METTL14 as an adaptor protein, thereby significantly affecting
cellular RNA m6A methylation (45). KIAA1429, RBM15 and its
homologs RBM15B and ZC3H13 are components of the m6A
methyltransferase complex and are essential for m6A
methylation. The KIAA1429 knockout resulted in a 4-fold
decrease in the m6A peak score (47). RBM15 and RBM15B
modulated m6A modification by binding target RNAs and
recruiting methyltransferase complexes (26). ZC3H13 plays a
key role in anchoring Virilizer, WTAP and Hakai in the nucleus
to promote m6A methylation (27). CBLL1 regulates selective
splicing and promotes exon skipping and intron retention in
selective splicing events (28).

RNA Demethylases/Eraser
To date, a total of two m6A demethylases have been fully
investigated, which are fat mass and obesity-associated protein
(FTO) and a-ketoglutarate-dependent dioxygenase homolog 5
(ALKBH5). FTO is mainly located on chromosome 16q12.2, and
FTO regulates m6A levels of downstream targets mainly through
its 3’ untranslated region (48). Studies have shown that FTO is an
important component of m6A modification, which not only
plays a key role in obesity-related diseases but also participates in
the occurrence, development, and prognosis of many cancers,
regulates cancer stem cell function, self-renewal and metastasis
(48). ALKBH5 plays a dual role in a variety of cancers by
regulating various biological processes such as proliferation,
Frontiers in Immunology | www.frontiersin.org 3
invasion, migration and metastasis (49). The basic regulatory
mechanism of ALKBH5, which relies on m6A-dependent
modifications, is associated with long non-coding RNAs, CSCs,
hypoxia and autophagy (50).

m6A Binding Proteins/Reader
The reader protein of m6A can recognize and bind m6A-
modified transcripts to regulate gene expression by regulating
multiple processes, such as mRNA stability, structure, splicing,
export, translation efficiency, and miRNA biogenesis (31, 51–54).
The YT521-B homology (YTH) family, which functions as the
major reading protein to recognize m6A-modified mRNAs and
regulate target gene expression, consists of five proteins,
including YTHDC1, YTHDC2, YTHDF1, YTHDF2 and
YTHDF3, all of them with a conserved m6A binding
domain and bind preferentially to the m6A-modified region
RNA on the consensus sequence of Rm6ACH (55). The m6A
reader also includes some members of the heterogeneous
nuclear ribonucleoprotein (HNRNP) family. HNRNPA2B1
can recognize specific targets containing AGG and UAG
motifs through the RRM1 and RRM2 structural domains,
and can also directly regulate the processing of m6A-
modified transcripts by interacting with DGCR8, a miRNA
microprocessor complex protein (34, 56). HNRNPC regulates
mRNA splicing and abundance by processing m6A-modified
RNA transcripts, while m6A influences the secondary structure
of RNA and promotes the binding of transcripts to HNRNPC to
regulate mRNA splicing and abundance, a process also known as
the “m6A switch” (57). Insulin-like growth factor 2 mRNA
binding protein (IGF2BP) also recognizes m6A modifications
and is another family of m6A readers, including IGF2BP1/2/3
(38). IGF2BP family in contrast to the mRNA decay-promoting
features of YTHDF2 of the YTH family, IGF2BP1/2/3 promote
the storage and stability of their target mRNAs in an m6A-
dependent manner. FMR1 binds preferentially to mRNAs
containing the m6A-tagged “AGACU” motif with high affinity,
and this high-affinity binding is dependent on the hydrophobic
FIGURE 1 | Landscape of dynamic and reversible processes of m6A RNA methylation mediated by 24 regulators and their potential biological functions for RNA.
May 2022 | Volume 13 | Article 917153

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Value of m6A in Cancer Development
network within the FMR1 KH2 structural domain (39). Other
m6A readers include the leucine-rich pentatricopeptide-repeat
containing (LRPPRC) (58) and ELAV Like RNA Binding Protein
1 (ELAVL1) (59).
M6A MODIFICATION AND SOLID TUMORS

With the breakthroughs in the identification and understanding
of m6A writers, erasers and readers, m6A methylation has been
shown to affect virtually every aspect of RNA metabolism,
including RNA expression, translation, splicing, decay, nuclear
export, and RNA-protein interactions (60, 61). Recently, there is
growing evidence that writers, erasers and readers of m6A RNA
modifications are related to multiple types of human cancers,
including: gastric cancer (GC) (62), colorectal cancer (CRC) (63),
breast cancer (BC) (64), lung cancer (LC) (65), hepatocellular
carcinoma (HCC) (66), pancreatic cancer (PC) (67), prostate
cancer (PCa) (68), acute myeloid leukemia (AML) (69), cervical
cancer (CC) (70) ovarian (71) and endometrial cancer (72) (OC
and EC), etc. m6A RNA methylation plays an important role in
promoting CSC self-renewal, proliferation and resistance of
cancer cell to radiation or chemotherapy. Here, we review and
summarize the latest research on m6A methylation in various
cancers (Figure 2) and CSCs (Figure 3).

Gastric Cancer
GC is the world’s fifth most prevalent cancer and the third most
mortality cancer (73). Studies of TCGA and CGGA databases have
demonstrated that assessment of m6A modification patterns
within GC can predict GC inflammatory stage, subtype, TME
immune cell infiltration, genetic variation, and prognosis of
patients (74). In GC subtypes with high m6A signaling, TME
stromal activation and absence of effective immune infiltration
were identified, suggesting a non-inflammatory as well as
immune-exclusion phenotype of TME with poorer patient
Frontiers in Immunology | www.frontiersin.org 4
survival (74). Mechanistically, METTL3 expression is elevated in
GC, and the m6A modification of zinc finger MYM-type
containing 1 (ZMYM1) mRNA by METTL3 requires a HUR-
dependent pathway to improve its stability, and ZMYM1 recruits
the CTBP/LSD1/COREST complex to bind to the E-cadherin
promoter and mediates E-calmodulin promoter inhibition,
which in turn promotes the EMT program and migration of
cells (75). Activation of H3K27 acetylation induced transcription
of METTL3 and stimulated m6A modification of HDGF mRNA,
and IGF2BP3 was subsequently recognized and bound directly to
the m6A site on HDGF mRNA, enhancing the stability of HDGF
mRNA (76). Secreted HDGF facilitated tumor angiogenesis, while
nuclear HDGF stimulated ENO2 and GLUT4 expression, followed
by increased GC cell glycolysis, promoting tumor growth and
metastasis (76, 77). It has also been demonstrated that down-
regulation of METTL3 expression in human GC cells inhibits the
proliferation and migration of tumor cells and inactivates the
signaling pathway of Akt (78, 79). ALKBH5 regulated PKMYT1’s
expression in an m6A-dependent manner, and IGF2BP3
contributed to stabilizing the mRNA stability of PKMYT1
through its m6A modification site, which acted as a downstream
target of ALKBH5 and facilitated GCmigration and invasion (80).
METTL3 promoted resistance to oxaliplatin in CD133+ GC stem
cells by increasing the stability of PARP1 mRNA and enhancing
the activity of the base excision repair pathway (81). Besides, m6A-
associated lncRNA signatures can independently predict GC
survival and correlate with immunotherapeutic response to
GC (82).

Colorectal Cancer
CRC is the third most prevalent of all malignancies and second in
cancer-related mortality worldwide (83). CRC expresses high
levels of METTL3, which is a marker of poor prognosis. IGF2BP2
recognized methylated SOX2 transcripts, especially the CDS
region, thereby extending the half-life of SOX2 mRNA. SOX2
is a downstream gene of METTL3, and in CRC, SOX2 expression
FIGURE 2 | The m6A regulators are involved in various peripheral CSCs and GSCs.
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was positively associated with the expression of METTL3 and
IGF2BP2. The oncogene METTL3 inhibits SOX2 degradation via
IGF2BP2, thus increasing SOX2 expression (84). METTL3 could
target the m6A site in the coding sequence region of the YPEL5
transcript and epigenetically repress YPEL5 in an m6A-
YTHDF2-dependent manner to promote the growth and
metastasis of colorectal cancer (85). METTL3 relies on
IGF2BP1 to extend the half-life of chromo box 8 (CBX8)
mRNA, which recruits Pol II and KMT2B to the promoter of
leucine-rich repeat sequence of G protein-coupled receptor 5
(LGR5) and maintains the H3K4me3 state, ultimately
maintaining CRC stemness and promoting its drug resistance
(86). In CRC, METTL3 downregulation revealed to activate
phosphorylation of p38 and ERK; METTL3 also inhibited
proliferation, invasion and migration of CRC cells via the p38/
ERK pathway (87). METTL14 inhibited the proliferation of CRC
cells via the miR-375/YAP1 pathway and suppressed the
invasion and migration of CRC cells via the miR-375/SP1
pathway (88). KIAA1429 exerted oncogenic effects in CRC
cells by inhibiting the expression of WEE1 in an m6A non-
dependent manner and was associated with low survival rates in
CRC patients (89). Knockdown of YTHDF1 could significantly
inhibit the WNT/b-linked protein pathway activity in CRC cells
and suppressed the biological activity of CRC cells (90).
YTHDF1 is critical for CRC stem cell-like activity and
tumorigenesis in CRC (90).
Frontiers in Immunology | www.frontiersin.org 5
Breast Cancer
BC is the most frequently diagnosed cancer in women worldwide
(91). METTL3 facilitated m6A modification of the 3′ UTR of B-
cell/lymphoma 2 (BCL-2) mRNA, which in turn promoted cell
proliferation, migration and suppressed apoptosis through
upregulation of BCL-2 expression (92). YTHDF1 facilitated BC
metastasis by recognizing and binding to the m6A-modified
mRNA of FOXM1 and accelerating FOXM1’s translation process
(93). KIAA1429 could bind to the motif in the SMC1A mRNA’s
3’UTR and strengthen the stability of SMC1A mRNA,
promoting migration and invasion of BC cells (94). The eraser
FTO was demonstrated to be highly expressed in BC tissues, and
the pro-apoptotic gene BCL2-interacting protein 3 (BNIP3) is a
downstream target of FTO-mediated m6A modification. FTO
can mediate the demethylation of m6A in the 3′ UTR of BNIP3
mRNA and promote its degradation through a mechanism
dependent on YTHDF2 (95).

Lung Cancer
LC ranks first among the causes of cancer-related deaths in the
world (96). METTL14 facilitated the maturation of miR-30c-1-
3p and mediated the expression of its target gene MARCKSL1
through miR-30c-1-3p to suppress the progression of LC (97).
YTHDF2 could regulate the activity of the FAM83D-TGFb1-
pSMAD2/3 pathway, which in turn inhibited the invasion and
migration of LC cells (98). METTL3 promoted yes-associated
FIGURE 3 | The potential role of m6A modification in peripheral cancers progression and related mechanisms. The m6A regulators promote or inhibit peripheral
cancer progression by affecting the expression of tumor-associated genes.
May 2022 | Volume 13 | Article 917153
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protein (YAP) mRNA translation through YTHDF1/3 and
eIF3B, and increased the stability of YAP mRNA by regulating
the MALAT1/miR-1914-3p/YAP axis to induce non-small cell
lung cancer (NSCLC) treatment metastasis and resistance b (99).
METTL3 promoted m6A modification, enhanced total mRNA
levels and strengthened mRNA stability of the EMT
transcriptional regulator JUNB, playing an essential role in
TGF-b-induced EMT in LC (100). FTO enhanced myeloid zinc
finger 1 (MZF1) expression by decreasing the level of m6A in
MZF1 mRNA and strengthening its stability, thereby promoting
LC development (101). Upregulation of FTO expression reduced
the m6A level of ubiquitin-specific peptidase 7 (USP7), increased
the USP7 mRNA stability, and promoted the development of
NSCLC (102). ALKBH5 reduced m6A modification of FOXM1
mRNA and promoted FOXM1 expression, thereby affecting the
proliferation and migration of LC cells (103). Overexpression
of hypoxia-mediated YTHDF2 promoted LC cells proliferation
and migration by activating the AKT/mTOR axis, and
overexpression of YTHDF2 induced the EMT process in
LC (104).

Hepatocellular Carcinoma
HCC is a malignant tumor with high incidence and poor
prognosis,usually found in patients with chronic liver disease
(105). Studies have shown that combined the levels of METTL3
and YTHDF1 could be used as a biological indicator to indicate
the degree of malignancy and to assess the prognosis for patients
with HCC (106). METTL16 functions as an m6A writer and a
translation initiation facilitator, both of which together exert
their facilitating roles in HCC genesis (46). YTHDF1 promoted
the translation of autophagy-associated genes ATG14 and
ATG2A through binding to m6A-modified ATG14 and
ATG2A mRNAs, thereby promoting the progression of HCC
(107). Analysis of the GO and KEGG pathways of genes co-
expressed with YTHDF1 in HCC from the TCGA database
showed that YTHDF1 plays an essential role in modulating the
cell cycle and metabolism of HCC cells (108). METTL3 could
promote the progression of HCC through the following
mechanisms: METTL3 increased the degradation of SOCS2
mRNA via an m6A-YTHDF2-dependent manner, increased
m6A expression in SOCS2 mRNA, and suppressed SOCS2
expression in HCC; METTL3-mediated m6A modification
promoted LINC00958 expression via stabilizing LINC00958’s
RNA transcripts, and consequently increased HDGF expression
via spongy miR-3619-5p; METTL3 could facilitate translation of
the key EMT transcription factor Snail by installing m6A in its
coding sequence and 3′ UTR region, and interactions involving
YTHDF1 and eEF-2 increased snail translation (109–111).
KIAA1429 is highly expressed in HCC tissues, and KIAA1429
contributed to the migration and invasion of HCC cells by
increasing the level of m6A in DNA binding inhibitor 2 (ID2)
mRNA and inhibiting its expression (112). KIAA1429 caused
RBP HUR segregation and GATA3 pre-mRNA degradation by
inducing 3′UTR methylation of GATA-binding protein 3
(GATA3) pre-mRNA (47). The effect of WTAP on HCC
progression is mainly through its m6A modification leading to
post-transcriptional repression of ETS1, and another mechanism
Frontiers in Immunology | www.frontiersin.org 6
is that the p21/p27-dependent pathway can modulate the cell
cycle of HCC cells (113). YTHDF2 exerted inhibitory effects on
HCC cell proliferation and angiogenesis via mRNA for IL11 and
serpin family E member 2 (SERPINE2) (114). Knockdown of
YTHDF2 significantly suppressed the number of HCC stem cell
spheres and reduced the number of CD133+ stem cells (115).
Inhibition of YTHDF2 impaired m6A methylation of the OCT4
mRNA 5′-UTR, which is responsible for regulating HCC stem
cells, leading to translation inhibition of OCT4 (115).

Pancreatic Cancer
PC is a highly aggressive disease that is expected to be the second
leading cancer-related cause of death worldwide by 2030, usually
presenting as a locally advanced or metastatic disease with a lack
of effective treatments (116). It was shown that knockdown of
METTL3 enhances PC sensitivity to chemotherapeutic drugs but
has little effect on cell proliferation. By analyzing PC samples in
the database, METTL3 was correlated with ubiquitin-dependent
processes, mitogen-activated protein kinase cascades, RNA
splicing and modulation of cellular processes (117).
Overexpression of ALKBH5 sensitized PC cells to anticancer
drugs and inhibited PC progression by reducing m6A-dependent
WNT inhibitory factor 1 (WIF-1) levels and hindering its
activation (118). ALKBH5 downregulated the expression of
KCNK15-AS1 in PC cells by demethylation of KCNK15-AS1
and ultimately inhibited KCNK15-AS1-mediated migration and
invasion of PC cells (119). IGF2BP2 can act as a reader for the
m6A-modified lncRNA DANCR and play a role in promoting
DANCR stabilization, which in turn co-promotes the stem cell-
like properties of cancer and PC pathogenesis (120). The study
demonstrated that KIAA1429 is essential in maintaining the
stemness properties of PC cells (121). IGF2BP2 could mediate
long non-coding RNA DANCR stability and contribute to the
self-renewal of PC stem cells (120).

Cervical, Ovarian and Endometrial Cancer
CC, OC and EC are the three common malignant tumors in
women worldwide and are the leading causes of cancer-related
deaths in women (12, 122). METTL3 could promote the
proliferation of CC cells by targeting the 3’-UTR of hexokinase
2 (HK2) mRNA, and METTL3 also could promote aerobic
glycolysis of CC by recruiting YTHDF1 to enhance the stability
of HK2 (70). When METTL14 was knocked out in CC cells, their
cell cycle was arrested. METTL14 silencing inhibited signaling
pathway of PI3K/Akt/mTOR by suppressing phosphorylation of
Akt and mTOR, and the expression of downstream apoptosis-
related proteins was also affected (123). YTHDF1 enhanced EIF3C
translation in an m6A-dependent manner by binding to m6A-
modified EIF3C mRNA, while promoting overall translational
output, thereby promoting tumorigenesis and metastasis in OC
(124). IGF2BP1 recognized the m6A site in the 3’UTR of
paternally expressed gene 10 (PEG10) mRNA and recruited
polyadenylate-binding protein 1 (PABPC1) to strengthen the
stability of PEG10 mRNA and increase the expression of PEG10
protein, thereby promoting EC cell proliferation (125). Decreased
m6A methylation leads to lower expression of AKT negative
regulator PHLPP2, increased expression of AKT positive
May 2022 | Volume 13 | Article 917153
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regulator mTORC2, mutations in METTL3 or METTL14 may
lead to increased proliferation of EC cells through this pathway
(126). It was confirmed that WTAP could promote EC
progression by methylating the 3’-UTR of CAV-1 and down-
regulating the expression level of CAV-1 to activate the signaling
pathway of NF-kB in EC (127).

Acute Myeloid Leukemia
AML is the most frequent form of acute leukemia in adults, with
a very high mortality rate (128). m6A was demonstrated to
facilitate the translation of BCL2, PTEN and c-MYC mRNA in
human AML cells (129). METTL3 mRNA and protein
expression were upregulated in AML cells, and deletion of
METTL3 in AML cell lines induced differentiation and
apoptosis in recipient mice and delayed the progression of
AML (129). WTAP has also been shown to be upregulated in
AML cells and to play an essential role in the abnormal
proliferation and inhibition of differentiation of leukemic cells
(130). METTL14 was highly expressed in AML cells carrying t
(11q23), t (15, 17) or t(8;21) translocations and was downregulated
during myeloid differentiation (131). Knockdown of METTL14
facilitated AML and normal HSPC cells’ myeloid terminal
differentiation and suppressed the proliferation of AML cells.
METTL14 could modulate its target mRNAs, such as MYB and
MYC, by m6A modification, which was negatively modulated by
SPI1, demonstrating the role of SPI1-METTL14-MYB/MYC
signaling axis in hematopoiesis and AML cells (131). FTO was
demonstrated to be highly expressed in AML with t(11q23)/MLL
rearrangements or t(15;17)/PML-RARA, FLT3-ITD and/or NPM1
mutations, promoting AML progression (132). FTO promoted
leukemia oncogene mediated cell transformation and leukemia by
reducing m6A levels in mRNA transcripts, inhibited all-trans
retinoic acid (ATRA) induced AML cell differentiation, and
modulated the expression of its target genes such as retinoic acid
receptor alpha (RARA) and ankyrin repeat and SOCS box
containing 2 (ASB2) (132). It has also been demonstrated that
IGF2BP3 is required to maintain the survival of AML cells in an
m6A-dependent manner and that IGF2BP3 functions to promote
AML progression by interacting with RCC2mRNA and stabilizing
the expression of m6A-modified RNA (133). Studies have shown
thatoverexpressionofYTHDF2 inAMLcells causes decreasedhalf-
life of a wide range of m6A transcripts, including TNF receptor
superfamily member 2 (TNFRSF2) transcripts, which could help
maintain the function of leukemic stem cells, and enhanced
hematopoietic stem cell activity when YTHDF2 is knocked
down (134).
Other Cancers
Previous studies confirmed that METTL3 promotes bladder
cancer (BCa) progression by regulating AF4/FMR2 family
member 4 (AFF4) after m6A-directed transcription (135).
Moreover, METTL3 levels and RNA m6A abundance were
significantly increased in BCa stem cells, and knockdown of
METTL3 caused impaired aldehyde dehydrogenase activity and
sphere formation ability, which effectively inhibited the self-
renewal of BCa stem cells (136). METTL3 expression was
Frontiers in Immunology | www.frontiersin.org 7
observed to be significantly upregulated in cutaneous
squamous cell carcinoma (cSCC) tissues, and knockdown of
METTL3 led to a significant decrease in the level of the
undifferentiated marker k14 and a significant increase in the
early differentiation marker K10 in cSCC cells, significantly
inhibiting the stem cell-like properties of cSCC cells (137).
Knockdown of METTL3 gene in cSCC cells reduced m6A
levels and DNp63 expression in cSCC and inhibited cSCC cell
proliferation, which could be restored when exogenous DNp63
was added (137). Wang et al. demonstrated the interaction
between m6A modification and osteosarcoma (OS) stem cells,
with METTL14 and FTO expression showing a significant
decrease in OS stem cells, and elevated METTL3 and ALKBH5
expression in OS stem cells are closely associated with relatively
low metastasis-free survival (138). Li et al (139). demonstrated
that FTO modulates the proliferation, invasion and migration of
PCa by regulating the expression level of melanocortin 4 receptor
(MC4R), and that high expression of FTO partially reversed the
promotion of the malignant phenotype of PCa cells by high
expression of MC4R. In PCa cells, METTL3 could induce m6A
modification on KIF3C and promote the stabilization of KIF3C
mRNA through IGF2BP1 to promote PCa growth, migration
and invasion (140).
M6A MODIFICATION AND GLIOBLASTOMA

Our previous work demonstrated the mechanism of m6A
methylation modification related to the regulation of TME
immune cell infiltration, stemness and biological processes in
GBM (6). We found that the copy number variations status of
the four m6A regulators YTHDC1, ALKBH5, FTO, and METTL3
were correlated with the development of GBM (6). Zhu et al.
demonstrated that YTHDC1 inhibits glioma cells proliferation by
decreasing VPS25 expression (141). Liu et al. demonstrated that
ALKBH5 demethylates the target transcript G6PD and enhances
its mRNA stability, promotes G6PD translation and activates the
pentose phosphate pathway, which in turn promotes glioma cell
proliferation (142). Zhang et al. confirmed that FTO can inhibit the
proliferation and invasion of GBM cells in vitro and in vivo by
regulating the m6A modification of primary microRNA-10a (143).
Shi et al. showed that METTL3-mediated m6A modification was
elevated significantly in TMZ-resistant GBM cells, and METTL3
functions as a key promoter of TMZ resistance in GBM, its
overexpression impaired the sensitivity of GBM cells to TMZ
(144). TMZ induced SOX4-mediated increases in chromatin
accessibility at the METTL3 locus, and METTL3 deletion
influenced the deposition of m6A on the histone modification-
related gene EZH2, leading to nonsense-mediated mRNA decline,
so that METTL3 silencing inhibited TMZ-resistant xenograft
growth in a synergistic manner when used in combination with
TMZ (145). Somatic mutation analysis revealed that more than
10% of GBM patients experienced alterations in m6A regulators,
mainly including profound deletions, amplifications and missense
mutations, with the highest frequency of mutations in IGF2BP1
(6). Fang et al. demonstrated that YTHDF2 affects the survival of
GBM patients by promoting m6A-dependent mRNA decay of
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LXRa and HIVEP2, and that YTHDF2 promotes tumorigenesis of
GBM by downregulating LXRa and HIVEP2 (146). NF-kB
activating protein (NKAP) affected GBM progression by binding
to m6A to promote the splicing and maturation of SLC7A11
mRNA as a novel ferroptosis inhibitor (147). Our previous study
found four m6A regulators, HNRNPC, HNRNPA2B1, ALKBH5,
and YTHDF3, to be significantly associated with overall survival by
Cox proportional hazards regression analysis of GBM samples in
TCGA and CGGA (6). Yin et al. demonstrated that HNRNPA2B1
canmediate the packaging of miR-30b-3p into extracellular vesicles
and promotes the ability of GBM cells to resist TMZ (148). It was
also shown that knockdown of HNRNPA2B1 in GBM cells could
lead to the inactivation of AKT and STAT3 signaling pathways in
tumor cells, reduce the expression of Bcl-2 and PCNA, and thus
inhibit the growth of GBM cells, and the establishment of xenograft
tumor models using GBM cells with knockdown of HNRNPA2B1
also revealed that knockdown of HNRNPA2B1 could inhibit the
progression of GBM in vivo (149). Analysis of GBM samples with
different m6A scores using K-M analysis showed that overall
survival was significantly higher in the group with low m6AScore
than in the group with high m6AScore, while the P-value for
m6AScore was lower than 0.05 (HR>1) in both uni- and mul-
tivariate Cox analysis. Survival of GBM patients between low and
highm6AScore groups of differentmolecular subtypes was assessed
using K-M analysis, which showed that the IDH-WT-m6AScore
low group had the best survival advantage and the IDH-WT-
m6AScore high group had the worst overall survival; among
different methylation statuses, the MGMT-methylated-m6AScore
low group had the highest overall survival and the MGMT-
unmethylated-m6AScore high group had the worst overall
survival; the m6AScore low group also had a significant survival
advantage over the high group in different x1p19q code statuses (6).
Figure 4 summarized the mechanism by which m6A mediators
affect GBM progression.

GBM is a commonly fatal cancer and contains GBM stem cells
(GSC) that initiate tumor self-renewal, and GSCs are considered to
Frontiers in Immunology | www.frontiersin.org 8
be a new therapeutic target for GBM (150). The study confirmed
thatMETTL3 facilitates mRNAmethylation, increases the stability
of SRY transcription factor 2 (SOX2), improves SOX2 protein
expression, and contributes to the radiation resistance and
maintenance of glioma stem cell-like cells (151). It was shown
that downregulation of METTL3 expression decreases the level of
m6A modification of serine- and arginine-rich splicing factor
(SRSF), which leads to YTHDC1-dependent NMD of SRSF
transcripts and reduces expression of SRSF protein, and
silencing of METTL3 or overexpression of dominant-negative
mutant METTL3 inhibits GSC growth and self-renewal (152). In
GSCs, the m6A reader YTHDF2 was highly expressed, while
YTHDF2 stabilized MYC and VEGFA transcripts in GSCs in an
m6A-dependent manner, exhibiting a role in linking GSC growth
and RNA epitranscriptomic modifications (36). ALKBH5 was
shown to be highly expressed in GSC, demethylation of FOXM1
nascent transcripts by ALKBH5 leads to enhanced the expression
of FOXM1, long non-coding RNA antisense of FOXM1 (FOXM1-
AS) facilitates the association of FOXM1 nascent transcripts with
ALKBH5, and depletion of ALKBH5 and FOXM1-AS blocks GSC
tumorigenesis via the FOXM1 axis (153). Our previous study
confirmed the important role of m6A modifications in GSC by
comparing GBM samples with different m6A modification
patterns (6).
THE IMMUNOMODULATORY POTENTIAL
OF M6A MODIFICATION IN GBM

Presently a number of studies have reported a relationship
between m6A methylation and immune cell infiltration in the
TME (154), but this phenomenon cannot be explained by
classical RNA degradation. It has been reported that METTL3-
mediated mRNA m6A methylation promotes activation and
function of dendritic cells, and knockout of METTL3 in
FIGURE 4 | The potential role of m6A regulators in GBM progression and related mechanisms.
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dendritic cells leads to impaired dendritic cell phenotype and
functional maturation, decreased expression of co-stimulatory
molecules CD40, CD80 and cytokine IL-12, and decreased ability
to stimulate T cell responses (155). Yin et al. found that ablation of
METTL3 in myeloid cells promoted tumor growth andmetastasis,
and thatMETTL3-deficientmice exhibited increased infiltration of
M1/M2-like tumor-associated macrophages and regulatory T cells
into tumors compared to wild-type mice (156). Dong et al.
demonstrated that knockdown of METTL14 in tumor-associated
macrophages drives CD8+ T cell differentiation along a
dysfunctional trajectory that impairs CD8+ T cells to eliminate
tumors, and METTL14-deficient C1q+ tumor-associated
macrophages display reduced m6A abundance of the cytokine
subunit Ebi3 and elevated levels of transcripts (157). In a model
of neuroinflammation, knockdown of ALKBH5 increased m6A
modifications of interferon-g and C-X-Cmotif chemokine ligand 2
mRNA, thereby reducing their protein expression and the stability
of mRNA in CD4+ T cells, and these modifications contributed to
an attenuated CD4+ T cell responses and reduced neutrophil
recruitment into the CNS (158).

In our previous study, we divided GBM samples into high and
low m6AScore groups based on their m6A methylation status and
further analyzed the immune cell infiltration of the TME in both
groups to identify two clusters of immune phenotypes: immune
activation differentiation phenotype and immune desert
dedifferentiation phenotype (6). Selective depletion of m6A
regulators in tumor-associated macrophages has been
demonstrated to reduce infiltration of immunosuppressive cells,
thereby benefiting patients receiving immunotherapy (159). In our
previous study, we found that inconsistent ratios of pro- and anti-
tumor immune cells in TME of single tumor, disruption of
oncogenic dedifferentiation phenotypes in different pathways,
and dysregulation of distinct signaling pathways may be
correlated with the patterns of m6A modification, and that
differences in mRNA transcriptomes between distinct m6A
modification patterns were strongly associated with immune-
related biological pathways (6). In the GBM group with high
m6A scores, an immune tolerance phenotype characterized by
mesenchymal tissue subtypes and IDH1 wild molecule subtypes, as
well as high infiltration of immune cells and stromal cells was
demonstrated (160). In the high m6A scoring group despite higher
immune checkpoint expression, GBM individuals responded
poorly to anti-CTLA4 immunotherapy regimens due to
dysfunctional T cells, whereas the low m6A scoring group had
an immunodeficient phenotype with less immune cell infiltration
and a better prognosis (160). Meanwhile GBM patients in the low
m6A score group had higher t-cell exclusion scores and
microsatellite instability, as well as better response to anti-CTLA4
immunotherapy (160). Pan et al. demonstrated that m6A
modification patterns are closely associated with immune
responses, such as neutrophil-mediated immunity and neutrophil
activation involved in immune responses (13). In our previous
study, we divided the GBM cohort samples into two clusters based
on m6A modification patterns and compared the distribution of
immune cells in the two clusters and found that: tumor-promoting
immune cells (pDC, Neutrophil, CD56dimNK, imDC, Th2,
Frontiers in Immunology | www.frontiersin.org 9
MDSC, TAM, and Treg) were enriched in the poor survival
cluster and anti-tumor immune cells (NKT, TemCD4, TemCD8,
ActCD4, ActCD8, Th1, ActDC, TcmCD4, TcmCD8, CD56briNK
Th17, and NK) were enriched in the cluster with a survival
advantage (6). Pan et al. demonstrated that in the GBM
microenvironment, the expression level of the m6A regulator
ELAVL1 was negatively associated with the infiltration of most
immune cells, except for activated CD4+ T cells and type 2 helper T
cells (13). Knockdown of ALKBH5 in GBM cells significantly
inhibited hypoxia-induced recruitment and immunosuppression
of tumor-associated macrophages in allograft tumors, and CXCL8/
IL8 expression and secretion were significantly suppressed (161).
Hypoxia-induced ALKBH5 in GBM cells cleared m6A deposition
of lncRNA NEAT1, stabilized transcripts and facilitated NEAT1-
mediated parabasal assembly, which led to relocalization of the
transcriptional repressor SFPQ from the promoter of CXCL8 to the
parabasal and thereby promoted the expression of CXCL8/IL8
(161). Qi et al. found that miR-454-3p inhibits m6A modification
by binding to YTHDF2 enzyme, and histone methyltransferase
EZH2 inhibits miR-454-3p by methylation modification and
facilitates m6A modification of PTEN to increase M2
macrophage polarization in glioma cells (162). JMJD1C is a
H3K9 demethylase and miR-302a can target METTL3, which
can inhibit SOCS2 expression through m6A modification. Zhong
et al. demonstrated that JMJD1C facilitates macrophage M1
polarization in the glioma microenvironment through the miR-
302a/METTL3/SOCS2 axis in vivo vitro and inhibits tumor growth
(163). Pan et al. found that in glioma cells, HNRNPA2B1 could
contribute to the packaging of circNEIL3 into exosomes and
delivery to infiltrating tumor-associated macrophages in TME,
allowing them to acquire immunosuppressive characteristics by
stabilizing IGF2BP3, which in turn facilitates the progression of
glioma (164). YTHDC2 has also been shown to play an important
role in the immune infiltration of the microenvironment of low-
grade glioma and is a potential biomarker for its diagnosis and
prognosis (165).
NOVEL IMMUNOTHERAPY IN GBM
AND OTHER CANCERS

A growing and promising field of novel immunotherapy is
represented by anti-PD-1/PD-L1 (immune checkpoint
blockade). Our previous study observed that the relationship
between anti-PD-L1 and anti-PD-1 treatment response and
m6A modification patterns was consistent with the relationship
between GBM and m6A modification patterns (6), which we
confirmed by establishing the m6AScore system (6), and our
analysis suggests that it may be due to the relatively high
component of immune cell infiltration in the high m6AScore
group. It was found that neoadjuvant PD-1 blockade in GBM cells
increased the proportion of T cell infiltration and progenitor-
depleted T cell populations found within tumors (166). The
authors also identified an early activated and clonally expanded
cluster of CD8+ T cells with a TCR that overlapped a population
of CD8+ PBMC, and significant changes were also noted in type 1
May 2022 | Volume 13 | Article 917153

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Value of m6A in Cancer Development
dendritic cells, which may promote T cell recruitment. Moreover,
monocytes and macrophages remain a major component of
infiltrating immune cells even after anti-PD-1 treatment (166).
In our previous study analyzing the m6Amethylation status of the
anti-PD-1 treated GBM cohort described above, we observed that
almost all anti-tumor immune cells were enriched in the low m6A
scoring group and almost all pro-tumor immune cells were
enriched in the high m6A scoring group; most of the classical
oncogenic pathways were enriched in the high m6A scoring group
(6). The YY1-CDK9 complex is pharmacologically or genetically
targeted to induce RNA m6A modification-dependent interferon
responses, decrease the infiltration of regulatory T cells, and
enhance the efficacy of GBM immune checkpoint therapy (167).
In GC, the low m6A signaling group showed a higher neoantigen
load and elevated anti-PD-1/PD-L1 immunotherapy response,
and two immunotherapy cohorts in melanoma and urothelial
carcinoma confirmed that patients with lower m6A signaling
showed significant benefits of treatment and were clinically
advantageous (74). The uroepithelial cancer cohort was grouped
by ELAVL1 expression and the proportion of patients responding
to PD-L1 blockade immunotherapy in the low ELAVL1 or high
ELAVL1 expression groups was analyzed, indicating that ELAVL1
high expression was associated with a relatively effective response
to PD-L1 therapy (13). In vitro experiments, YTHDF1 and
YTHDF2 knockdown in NSCLC cells upregulated tumor PD-L1
expression and changed a variety of immune-related genes, while
high expression of YTHDF1 and YTHDF2 was associated with
good prognosis, a large number of tumor-infiltrating lymphocytes,
and downregulation of PD-L1 in NSCLC patients (168). In the
NSCLC microenvironment, METTL3 could mediate the m6A
modification of circIGF2BP3 and facilitate its recycling in a
YTHDC1-dependent manner. circIGF2BP3 reduces PD-L1
ubiquitination and subsequent proteasomal degradation by
enhancing OTUB1 mRNA stability in a PKP3-dependent
manner, leading to immune evasion of CD8+ T cell-mediated
killing (169). It was found that there were significant differences in
overall survival and immune cells infiltration between different
m6A subgroups of cutaneous melanoma (170). The m6A score
was positively associated with regulatory T-cell and helper T-cell
content, which may explain why a high m6A score is associated
with a better prognosis (170). Furthermore, high m6A score
pa t i en t s pre sen ted a s t ronger re sponse to nove l
immunotherapies, and two immune-related samples receiving
anti-PD-1 or anti-PD-L1 therapy confirmed that patients in the
high m6A score group had a better response to novel
immunotherapy (170).
SUMMARY AND CONCLUSIONS

In our present review, we comprehensively summarized the
pathophysiological functions of m6A regulators, the modification
patterns of m6A, the potential role of m6A in cancer and CSCs, the
roleofm6Amodificationson the tumor immunemicroenvironment,
and the role of m6A modifications in novel immunotherapy of
tumors, especially in GBM. The m6A modification process occurs
primarily in the adenine of the RRACH sequence, a dynamic
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reversible biological process in which writers catalyze the
installation of m6A on RNA and erasers remove the modifications.
The reader’s recognition of m6A methylation influences mRNA
splicing, export, degradation, and translation, modifies the
underlying biological processes accordingly. m6A and its associated
regulators play multiple significant roles in cancers, mechanistically
becausem6Amethylation and its associated regulators can influence
theprocessingofmiRNAsand thebiological functionsof lncRNAsas
well as can facilitate circRNAs’ translation.

Importantly, the effect of m6A on cancer progression appears
to be bidirectional. Some genes can facilitate tumor progression
after methylation, while others can inhibit tumor progression
after methylation. This is also highlighted by the effect of m6A on
TME immune cell infiltration. In GBM, m6A methylation
modification facilitated the enrichment of pro-tumor immune
cells and promoted tumor development. In contrast, in gastric
cancer, m6A methylation modification appeared to show a
bidirectional effect on TME immune cell infiltration, with both
pro-tumor and anti-tumor immune cells enriched in the high
m6A methylation modification group. Anti-PD-1/PD-L1 is a
growing and promising area for novel immunotherapy. The role
of m6A methylation modifications in novel immunotherapy has
been demonstrated, but the limited research is currently focused
on peripheral cancers. About m6A methylation modifications in
novel immunotherapies for GBM is still lacking in detail.

The development of epitranscriptomics has provided new
explanations for the discovery of biological mechanisms of cancer
development, and m6A modification is the most representative of
them, providing new targets for cancer treatment. However, the
current understanding of m6A modifications especially in GBM is
still limited, and we believe that upcoming studies on m6A
modifications will focus on the following four points: first,
quantifying m6A methylation modifications in individual tumors
with possible future application as new biomarkers for predicting
cancer recurrence, selecting therapies, and identifying treatment
response; second, to investigate the relationship between novel
immunotherapies and m6A modifications in GBM, the effect of
m6A modifications on macrophage polarization in the GBM
microenvironment and its mechanisms; third, the effect of m6A
modification on the biological behavior of GBM stem cells and its
role in the maintenance of GBM cell stemness: fourth, to identify
m6A-related antigens and immune subtypes in GBM for the
development of mRNA vaccines.
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