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Though some freshwater fish have been successfully cultivated in saline-alkali water, the
survival rates of freshwater fish are greatly affected by different saline-alkali conditions. The
mechanisms of immune adaptation or immunosuppression of freshwater fish under
different saline-alkali stress remain unclear. Here, grass carp were exposed to 3%. and
6%o salinity for 30 days. It was observed that salinity treatments had no obvious effects on
survival rates, but significantly increased the percent of unhealthy fish. Salinity treatments
also increased the susceptibility of grass carp against Flavobacterium columnare infection.
The fatality rate (16.67%) of grass carp treated with 6%, salinity was much lower than that
treated with 3%, salinity (40%). In the absence of infection, higher numbers of immune-
related DEGs and signaling pathways were enriched in 6%o. salinity-treated asymptomatic
fish than in 3%, salinity-treated asymptomatic fish. Furthermore different from salinity-
treated symptomatic fish, more DEGs involved in the upstream sensors of NOD-like
receptor signaling pathway, such as NLRs, were induced in the gills of 6%. salinity-treated
asymptomatic fish. However in the case of F. columnare infection, more immune-related
signaling pathways were impaired by salinity treatments. Among them, only NOD-like
receptor signaling pathway was significantly enriched at early (1 and/or 2 dpi) and late (7
dpi) time points of infection both for 3%. salinity-treated and 6%. salinity-treated fish.
Besides the innate immune responses, the adaptive immune responses such as the
production of Ig levels were impaired by salinity treatments in the grass carp infected with
F. columnare. The present study also characterized two novel NLRs regulated by salinity
stress could inhibit bacterial proliferation and improve the survival rate of infected cells.
Collectively, the present study provides the insights into the possible mechanisms why the
percent of unhealthy fish in the absence of infection and mortality of grass carp in the case
of F. columnare infection were much lower in the 6%, salinity-treated grass carp than in
3%o salinity-treated grass carp, and also offers a number of potential markers for sensing
both environmental salinity stress and pathogen.
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HIGHLIGHTS

1. Salinity treatments affect grass carp health.

2. Salinity treatments increase the susceptibility of grass carp
against F. columnare infection.

3. The adverse effects of salinity stress on grass carp were much
lower in the 6%o salinity-treated fish than in 3%o salinity-
treated fish.

4. NLRs regulated by salinity treatments may act as the sensors
for environmental salinity stress.

5. The inhibited IgM and NLRs may correlate with mortality of
grass carp with salinity treatments and F. columnare
infection.

INTRODUCTION

Saline-alkali water has the characteristics of high pH, high
salinity, high alkalinity, and unstable proportion of major ions,
which accounts for a considerable proportion of water resources
in the world. China has about 1.5 billion mu of saline-alkali land,
690 million mu of low-lying saline and alkaline water, and
saltwater water lakes that account for approximately 55% of
total lake area. To utilize saline-alkali water and saline-alkali land
to develop aquaculture is of great significance for improving
comprehensive production capacity of saline-alkali water and
soil resources. Some freshwater fish, such as crucian carp
(Carassius auratus gibelio), grass carp (Ctenopharyngodon
idella), bighead carp (Hypophthalmichthys nobilis), medaka
(Oryzias latipes) and channel catfish (Ictalurus punctatus), have
been successfully cultivated in saline-alkali water. In 2012, the
water quality standard for aquaculture in saline-alkali land was
published for the first time in China. Due to the differences of
chemical components in saline-alkali water, it was divided into
three levels including class I, class II and class III saline-alkali
water quality. Among them, class I saline-alkali water quality was
suitable for freshwater fish, shrimp and crabs (1).

The tolerance of several common freshwater fish against salinity
is different. The order of salinity tolerance of 5 freshwater fish is
Carassius auratus > Barbus capito > songpu mirror carp > C. idella >
Hypophthalmichthys molitrix (2). Different freshwater fish species
have different suitable range for saline-alkali concentration. Saline-
alkali stress higher or lower than this range will affect the growth
and survival of fish (3). Although many studies have examined the
effects of saline-alkali stress on the osmotic regulation (4-6),
changes in organizational structure (5), antioxidant system (7-9),
immune system (10), energy metabolism (11), growth and survival
in freshwater fish species, it still remains to lack a thorough grasp for
sensing mechanisms of freshwater fish under environment salinity
stress and pathogens. Pattern recognition receptors (PRRs) are
known to play an essential role in sensing intracellular and
extracellular products of various pathogens (12). PRRs-mediated
signaling pathways such as NOD-like receptor (NLR) and Toll-like
receptor (TLR) signaling pathways have been found to be regulated
by salinity stress (13). Therefore, the identification and

characterization of PRRs and PRRs-mediated signaling pathways
involved in the sensing of both saline-alkali stress and pathogens are
essential for revealing the mechanisms of immune adaptation or
immunosuppression of freshwater fish under different saline-
alkali stress.

In the past several years, high-throughput mass spectrometry
(MS)-based metabolomics and sequencing techniques have
been used to identify the responses of freshwater fish species
exposed to different concentrations of saline-alkali stress. For
Crucian carp (Carassius carassius), the metabolic changes in 7
key pathways, which include phenylalanine metabolism, glycine,
serine and threonine metabolism, pyruvate metabolism, tyrosine
metabolism, cysteine and methionine metabolism, aminoacyl-
tRNA biosynthesis and butanoate metabolism, played a role in
adaptation to extremely high alkalinity (14). For Nile tilapia
(Oreochromis niloticus) in response to alkalinity stress,
comparative transcriptome analysis revealed that the most
significant pathway was energy metabolism (15). For Nile tilapia
in response to salinity acclimation, significant changes in amino
acid metabolism and synthesis, energy material utilization, protein
synthesis and degradation, oxidation, and signal transduction
have been found (3). Grass carp is an economically important
freshwater fish in china, and can be cultivated in class I saline-
alkali water. However the molecular regulation mechanism under
different saline-alkali stress is still unexplored.

Flavobacterium columnare is a Gram-negative bacterium
causing columnaris disease in a wide-range of freshwater fish.
Previous studies have shown the immune response of grass carp
to F. columnare infection. After F. columnare infection, TOR
signaling was significantly activated, however ERK signaling was
significantly inhibited (16). In grass carp immunized with F.
columnare, the transcription and protein levels of IgM, IgZ and
pIgR were up-regulated (17). In this study, the effects of different
concentrations of salinity stress on the health and disease
resistance of grass carp were investigated. The transcriptomic
data between the untreated control fish and salinity-treated
asymptomatic or symptomatic fish, together with the
transcriptomic data between the untreated control and salinity-
treated fish infected with F. columnare for 1, 2 and 7 days, were
compared and analyzed to identify PRRs and PRRs-mediated
signaling pathways involved in the sensing of both saline-alkali
stress and pathogens. Our data showed that salinity stress
influenced multiple immune related pathways, especially for
NOD-like receptor signaling pathway. Furthermore, many fish-
specific NLRC3-like and NLRP-like genes were identified to be
pivotal in the sensing of saline-alkali stress and F. columnare
infection. Our study enriches the knowledge about the function
of fish-specific NLRs under environment salinity stress and
pathogen infection.

MATERIALS AND METHODS

Experimental Fish
Healthy grass carps (mean weight 10 + 1 g) were obtained from
Sichuan province, China. Fish were reared in 1000 L aquarium
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with temperature maintained at 25 + 2°C. Fish were acclimated
for two weeks and fed with a commercial pelleted diet at 3% body
weight per day through-out the study. All animal experiments
were conducted in accordance with the Guiding Principles for
the Care and Use of Laboratory Animals approved by the
Institute of Hydrobiology, Chinese Academy of Sciences.

Cells, Bacterial Strain and Antibodies

CIK (C. idellus kidney) cells were grown in minimum essential
medium (MEM) supplemented with 10% FBS. The wild type F.
columnare strain and monoclonal antibodies against grass carp
IgM, IgD and IgZ were obtained from professor Pin Nie’s lab
(Institute of hydrobiology, Chinese academy of sciences). The
anti-GAPDH monoclonal antibody (#60004-1-Ig) was
purchased from Proteintech. Goat-anti-mouse Ig-HRP
conjugate secondary antibody (#31430) was purchased
from invitrogen.

Salinity Treatment and Infection

of Grass Carp

The salt concentrations (salinity) were prepared from a
commercially available sea salt (DPZ301). According to the
salinity of natural tidal flats (2-7%o), 330 fish were randomly
divided into three groups, with the salinity concentration set as
0%o (the untreated control group), 3%o and 6%o (pH 7.2-7.4). The
healthy condition and the numbers of surviving fish were
monitored daily for 30 days. During this period, new
aquaculture water and sea salt were replaced regularly, once a
week or so. Survival curves and percent of healthy fish were
generated by GraphPad Prism 7. The log-rank test was used to
test differences in survival rate and percent of healthy fish
between the untreated control and salinity-treated groups. After
30 days of salinity stress, the gill tissues from three individuals
each group were collected, and stored at -80°C used for
transcriptome sequencing. For salinity-treated groups of 3%o
and 6%o, the gill tissues were separately collected both from
asymptomatic and symptomatic fish.

After 30 days of salinity stress, 35 fish per group in triplicate
were infected with 2.5x10° pfu/ml F. columnare for 4 h in total
volume of 35 L aquarium, and next maintained in 70 L barrel. At
1, 2 and 7 d post injection (dpi), 3 fish from each group were
anaesthetized in 0.05% 2-phenoxyethanol, and the gills were
collected for transcriptome sequencing. The gills collected at 2
dpi were also used for measuring bacterial burden, Western
Blotting and quantitative real-time PCR (qRT-PCR) verification.
For survival assay, the numbers of surviving fish were counted
daily for 7 days. Survival curves were generated by GraphPad
Prism 7. The log-rank test was used to test differences in survival
between the control and salinity-treated groups infected with
F. columnare.

Bacterial Load

The gills from the control and salinity-treated groups infected
with F. columnare were rinsed and lysed in 500 UL of PBS. Serial
dilutions of homogenates were plated onto Shieh agar, and
colony counts were performed after 24 h incubation at 28°C.

The bacterial concentration was normalized with respect to the
weight (in mg) of each sample, and calculated in CFU/ml.

Histopathological Examination

After 30 days of salinity stress, the gill tissues of grass carp in the
untreated control group and gill tissues from symptomatic and
asymptomatic grass carp in 3%o and 6%o salinity-treated groups
were taken and fixed in 4% paraformaldehyde solution at 4°C for
24h. The fixed gill tissues were processed through the
conventional paraffin embedding technique, and sliced into 5
pm-thick tissue sections. Then the slides from 3 fish per group
were subjected to Hematoxylin and eosin staining, sealed with
neutral gum, observed and photographed with a Leica DM4 B
upright microscope.

RNA Isolation, cDNA Library Construction
and lllumina Deep Sequencing

Total RNA was isolated using the TRIzol® Reagent (Invitrogen)
from gill tissues including the untreated control fish (con), 3%o-
treated asymptomatic fish, 3%o-treated symptomatic fish, 6%o-
treated asymptomatic fish, 6%o-treated symptomatic fish, the
untreated control fish infected with F. columnare for 1 day
(named as con at 1 dpi or Gldcon), 3%eo-treated fish infected
with F. columnare for 1 day (named as 3%o-treatment at 1 dpi or
G1dP3), 6%o-treated fish infected with F. columnare for 1 day
(named as 6%o-treatment at 1 dpi or G1dP6), the untreated
control fish infected with F. columnare for 2 day (named as con
at 2 dpi or G2dcon), 3%o-treated fish infected with F. columnare
for 2 day (named as 3%o-treatment at 2 dpi or G2dP3), 6%o-
treated fish infected with F. columnare for 2 day (named as 6%o-
treatment at 2 dpi or G2dP6), the untreated control fish infected
with F. columnare for 7 day (named as con at 7 dpi or G7dcon),
3%o-treated fish infected with F. columnare for 7 day (named as
3%o-treatment at 7 dpi or G7dP3), 6%o-treated fish infected with
F. columnare for 7 day (named as 6%o-treatment at 7 dpi or
G7dP6). CDNA library construction and illumina deep
sequencing were performed according to the methods from
our previous report (18). The TruseqTM RNA sample prep Kit
(Illumina, California, USA) was used for creating mRNA-seq
libraries. The clean high quality paired-end reads from all 15
samples for the uninfected grass carp and 27 samples for the
grass carp infected with F. columnare were processed to produce
a de-novo assembly with Trinity, respectively. To identify
differentially expressed genes between the control and salinity-
treated groups without or with the infection of F. columnare, the
expression levels were measured by using numbers of fragments
per kilobase of transcript per million fragments sequenced
(FPKM). The raw reads were deposited in the SRA-NCBI
database with the following accession numbers: GSE185170 for
15 samples from the untreated control fish, 3%o-treated
asymptomatic fish, 3%o-treated symptomatic fish, 6 %eo-treated
asymptomatic fish and 6%o-treated symptomatic fish;
GSE185641 for 27 samples from con at 1 dpi (Gldcon), 3%o-
treatment at 1 dpi (G1dP3), 6%o-treatment at 1 dpi (G1dP6), con
at 2 dpi (G2dcon), 3%o-treatment at 2 dpi (G2dP3), 6%o-
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treatment at 2 dpi (G2dP6), con at 7 dpi (G7dcon), 3%o-
treatment at 7 dpi (G7dP3) and 6%eo-treatment at 7 dpi (G7dP6).

qRT-PCR Validation of the

RNA-Seq Analysis

The same RNA samples at 2 dpi from the gill transcriptome of the
control and salinity-treated groups infected with F. columnare were
used for qRT-PCR validation of the RNA-seq analysis. The
concentration of total RNA was determined by using the
spectrophotometer (NanoDrop 2000; Thermo). RNase-free DNase
I (Thermo) was used to remove genomic DNA remnants at 37°C
for 30 min. The cDNA was synthesized using the RevertAid"™ First
Strand cDNA Synthesis Kit (Thermo Fisher Scientific) according to
the manufacturer’s instructions. qRT-PCR analysis was performed
to validate the DEGs involved in NACHT containing proteins on
ABI Prism 7000 under the following conditions: 3 min at 95°C,
followed by 45 cycles of 15 s at 94°C, 15 s at 56-60°C, and 30 s at
72°C. All reactions were performed in triplicate in a 96 well plate
and the mean value recorded. Those DEGs for validation include
NLRP12 (CI01000353_00909159_00930428.path1l), NLRC3
(CI01000433_00039954_00060508.pathl), NLRC3
(C101000140_02095891_02110510.pathl), NLRC3
(CI01117969_00000011_00000940.pathl), NLRC3
(C101000092_03702024_03712418.path1l), NLRP3-like
(CI01000152_01231478_01232527.pathl), NLRC3

(CI01000397_00142266_00144610.pathl), NLRC3
(Ctenopharyngodon_idella_newGene_4697), NLRP12
(C101000140_02047275_02055290.pathl), NLRP3-like
(CI01000070_04844701_04867804), NLRC3
(CI101000358_00550693_00557903.pathl) and NLRC3
(C101000427_00019738_00058058.path1). The housekeeping gene
B-actin and EF-10. were used for normalizing cDNA amounts. The
primers specific for the interested DEGs were listed in Table 1.

Western Blotting Validation of the
RNA-Seq Analysis

The gills samples collected at 2 dpi from the control and salinity-
treated groups infected with F. columnare were used for Western
Blotting validation of the RNA-seq analysis. After washed with
ice-cold PBS buffer, the gills were lysed in RIPA buffer containing
Halt Protease Inhibitor Cocktail (Thermo Scientific, Prod#
1860932). After incubation on ice for 30 min, lysates were
collected and centrifuged at 10,000 x g at 4°C for 15 min.
Total lysates were subjected to 10% SDS-PAGE and transferred
to PVDF membranes, followed by blocking with 5% nonfat milk
in Tris-buffered saline-Tween (TBST) for 1 h. The membrane
was washed, and then incubated with primary antibody
overnight at 4°C. The primary antibodies including anti-
GAPDH (1: 5000), anti-IgD (1: 2000), anti-IgM (1: 5000) or
anti-IgZ (1: 2000) were used. After washing with TBST, the

TABLE 1 | Primer information.

Name

Sequence

Application

CI01000353_00909159_00930428.path1 NLRP12F
Cl01000353_00909159_00930428.path1 NLRP12R
CI01000433_00039954_00060508.path1 NLRC3F
Cl01000433_00039954_00060508.path1 NLRC3R
CI01000140_02095891_02110510.path1 NLRC3F
CI01000140_02095891_02110510.path1 NLRC3R
CI01117969_00000011_00000940.path1 NLRC3F
CI01117969_00000011_00000940.path1 NLRC3R
Cl01000092_03702024_03712418.path1 NLRC3F
CI01000092_03702024_03712418.path1 NLRC3R

Cl01000152_01231478_01232527 .path1 NLRP3-like F
Cl01000152_01231478_01232527.path1 NLRP3-like R

Cl01000397_00142266_00144610.path1 NLRC3F
CI01000397_00142266_00144610.path1 NLRC3R
Ctenopharyngodon_idella_newGene_4697 NLRC3F
Ctenopharyngodon_idella_newGene_4697 NLRC3R
Cl01000140_02047275_02055290.path1 NLRP12F
Cl01000140_02047275_02055290.path1 NLRP12R
CI01000070_04844701_04867804 NLRP3-likeF
Cl01000070_04844701_04867804 NLRP3-likeR
Cl01000358_00550693_00557903.path1 NLRC3F
Cl01000358_00550693_00557903.path1 NLRC3R
Cl01000427_00019738_00058058.path1NLRC3F
Cl01000427_00019738_00058058.path1 NLRC3R
EF1oF

EF1aR

B-actinF

B-actinR

NLRP12-like 1F

NLRP12-like 1R

NLRP12-like 2F

NLRP12-like 2R

GGACCTTTTCCTTCGTTTCC
AGGAGAGGGATTTTCCCTGA
GCCCGTGATTAAAGAATCCA
GCCACAATCCCTCAACCTC
GCCAGGACTGGAACTCAAAA
ACCAGACCAGACCACTGAGC
ACATCTCAGCGTCCAGGAGT
CAGAGGAAAAGGTCCAGGTG
TGATGTCTTTTCGGCATCAG
ACCCTCATGCTGTTCTCCAC
CACGACGAATCCTTCTCACA
CCTGTCGTGGTTCTACAGCA
GTCAGTGAAGGGTCGGTGTT
CTTCCGGACAGTTTCCATGT
GAAGTGCTGCCCTCTATTGC
GGGAACCAGGTGTCTCTTGA
CCAGCCTCATGAACCAGATT
TGCAGCTTCACAGCTTCACT
GGAAAGTGGCTTTTCAGCAG
AAGCCGCTAGATGTTCCTGA
GCAGCAACAGATGAAAGCAA
AACACCGACCCTTCACTGAC
GCCCGTGATTAAAGAATCCA
AAGCCGCTAGATGTTCCTGA
CAGCACAAACATGGGCTGGTTC
ACGGGTACAGTTCCAATACCTCCA
CACTGTGCCCATCTACGAG
CCATCTCCTGCTCGAAGTC
CGGAATTCATGGAGATGCGGATTTTG
CGGGATCCTGCATTTGGCAGATCCTG
GACAGATCTGATGCCTGCGATTCAGCCACAG
CGGGGTACCGACATATGTATCCCCAGTTTATAC

QRT-PCR

Ligated to prFLAG—CMVTM—M vector
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membrane was next incubated with Goat-anti-mouse Ig-HRP
conjugate secondary antibody (1: 5000) for 1 h at room
temperature. The bands were detected using Pierce ECL
Western Blotting Substrate and ECL Western blot system
(LAS-4000mini).

Antibacterial Activity for NACHT
Containing Proteins
Based on transcriptome sequencing, the forward and reverse
primers NLRP12-like 1F/NLRP12-like 1R and NLRP12-like 2F/
NLRP12-like 2R were used for cloning the open reading frame
(ORF) of Ctenopharyngodon_idella_newGene_9152 (named as
NLRP12-like 1) and CI01000353_00909159_00930428.pathl
(named as NLRP12-like 2), and then inserted into p3xFLAG-
cMv ™14 Expression Vector (Invitrogen).

For in vitro antibacterial analysis, CIK cells seeded overnight
in 24-well plates at 2x10° cells per well were transfected with 300
ng p3xFLAG, NLRP12-like 1 or NLRP12-like 2 using
Lipofectamine'™ 2000 (Invitrogen). After 24 h post-
transfection, CIK cells were infected with F. columnare at a
multiplicity of infection (MOI) of 50 in serum-free M199
medium for 1.5 h. Then, the supernatants and cells were
collected at 6, 24 and 48 hpi. The mixture was diluted with
Shieh medium and plated onto Shieh agar to calculate bacterial
CFU (colony-forming units) by standard plate count method.

Cell Viability Assay Mediated by NACHT
Containing Proteins

Cell viability was determined via CCK-8 assay (Beyotime,
Wuhan, China). CIK cells seeded overnight in 24-well plates at
2x10° cells per well were transfected with 300 ng p3xFLAG,
NLRP12-like 1 or NLRP12-like 2 using Lipofectamine'" 2000.
After 24 h post-transfection, CIK cells were infected with F.
columnare at a MOI of 50 for 1.5 h. At 6, 24 and 48 hpi, the cells
were collected, washed with PBS, and then suspended in a
working solution containing 10 pL CCK-8 reagent and 90 pL
serum-free M199 medium for 3 h. The absorbance at 450 nm was
measured by a PerkinElmer’s EnSpire Multilabel Plate Reader.

Statistical Analysis

Statistical analysis and graphs were performed and produced
using Graphpad Prism 7.0 software. Data from qRT-PCR are
presented as mean and SEM. The significance of data was
analyzed by Student’s t-test (**p < 0.01).

RESULTS

Effects of Salinity Stress on Health

of Grass Carp

To explore health conditions of farmed fish under saline-alkali
stress conditions, grass carp were selected for salinity tolerance
analysis. The observations revealed that the grass carp from
salinity-treated groups were damaged to varying degrees after 25
days treatment, especially for 3%o salinity-treated group
(Figures 1A-C). The fish body damage in 3%o salinity-treated

group was the most serious, with fish scales falling off, fin
ulceration and bleeding (Figure 1B). The fish in 6%o salinity-
treated group showed slight symptoms with fish scales falling off
and fin ulceration (Figure 1C). Compared with the untreated
control fish, there was no significant change in survival rates for
3%0 or 6%o salinity-treated group (Figure 1D), however the
percent of unhealthy fish significantly increased for 3%o or 6%o
salinity-treated group (Figure 1E).

The histopathological changes in the gills of grass carp with
different salinity treatments were observed by hematoxylin-eosin
staining. The gills from the untreated control and 6%o salinity-
treated asymptomatic fish showed normal structures of lamellae
(Figures 1F, G). In the gills from 6%o salinity-treated
symptomatic fish, the cell mass between lamellae (ILCM) was
decreased relative to control fish (Figure 1H). Under the 3%o
salinity stress, the gills showed obvious lamellar synechiae and
the higher numbers of plasma cells, especially for 3%o salinity-
treated symptomatic fish (Figures 11, J).

Analysis of Differentially Expressed

Genes (DEGs)

To elucidate the gene expression pattern under different salinity
treatments, we firstly compared the numbers of DEGs among the
untreated control, 3%o and 6%o salinity-treated groups. For
transcriptomic analysis of 15 samples, total 96.09 Gb clean
data were obtained. The clean data for each sample was more
than 5.87 Gb, and the percentage of Q30 value was above 91.87%.
A total of 1387 (755 up- and 632 down-regulated), 1545 (889 up-
and 656 down-regulated), 2675 (1411 up- and 1264 down-
regulated), 1129 (693 up- and 436 down-regulated), 631 (365
up- and 266 down-regulated), 1551 (795 up- and 756 down-
regulated) and 355 (231 up- and 124 down-regulated) genes were
differently expressed with Fold Change > 1.5 and p < 0.05 in con
vs 3%o-treated asymptomatic fish, con vs 3%o-treated
symptomatic fish, con vs 6%o-treated asymptomatic fish, con
vs 6%o-treated symptomatic fish, 3 %o-treated fish vs 6%o-treated
fish, 3%o-treated asymptomatic fish vs 6%o-treated asymptomatic
fish, and 3%o-treated symptomatic fish vs 6%o-treated
symptomatic fish, respectively (Table 2). For total DEGs, 387
and 598 common DEGs were present in 2 comparisons for 3%o
and 6%o salinity-treated fish, respectively (Figure 2A). For up-
regulated DEGs, 242 and 330 common DEGs were present in 2
comparisons for 3%o and 6%o salinity-treated fish, respectively
(Figure 2B). For down-regulated DEGs, 140 and 265 common
DEGs were present in 2 comparisons for 3%o and 6%o salinity-
treated fish, respectively (Figure 2C).

KEGG pathway enrichment analyses were conducted for 4
comparisons. For con vs 3%o-treated asymptomatic fish, 8
significantly enriched KEGG pathways were revealed, which
included 1 pathway (cytokine-cytokine receptor interaction)
involved in immune system for up-regulated DEGs (Figure 2D).
For con vs 3%o-treated symptomatic fish, 13 pathways were
significantly enriched for up-regulated DEGs. Among them, 2
pathways including NOD-like receptor signaling pathway (30
DEGs) and necroptosis (22 DEGs) were involved in immune
response. C-type lectin receptor signaling pathway was
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FIGURE 1 | Salinity treatments impair the health of grass carp. (A) The untreated grass carp. (B) The pathological symptoms of 3%. salinity-treated grass carp.

(C) The pathological symptoms of 6%. salinity-treated grass carp. (D) Effects of salinity treatments on the survival rate of grass carp. (E) Effects of salinity treatments
on the percent of healthy grass carp. (F) Histopathological staining of gill tissue from the untreated grass carp. (G) Histopathological staining of gill tissue from the
6%o salinity-treated asymptomatic fish. (H) Histopathological staining of gill tissue from the 6%o salinity-treated symptomatic fish. (l) Histopathological staining of gill
tissue from the 3%o salinity-treated asymptomatic fish. (J) Histopathological staining of gill tissue from the 3%o salinity-treated symptomatic fish.

significantly enriched only for total DEGs (Figure 2E). For con vs
6%o-treated asymptomatic fish, 5 pathways among 15 significantly
enriched KEGG pathways were involved in immune response,
which included cytokine-cytokine receptor interaction (31 up-
regulated and 33 down-regulated DEGs), necroptosis (24 up-
regulated and 30 down-regulated DEGs), apoptosis (21 down-
regulated DEGs), toll-like receptor signaling pathway (12 down-

regulated DEGs) and NOD-like receptor signaling pathway (42
up-regulated and 24 down-regulated DEGs) (Figure 2F). For con
vs 6 %o-treated symptomatic fish, 6 pathways among 11
significantly enriched KEGG pathways were involved in
immune response, which included NOD-like receptor signaling
pathway (37 up-regulated and 13 down-regulated DEGs), c-type
lectin receptor signaling pathway (25 up-regulated and 11 down-
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TABLE 2 | The number of DEGs among the untreated control, 3%. and 6%. salinity-treated groups.

DEG Set DEG Number up-regulatedNumber down-regulatedNumber
con vs 3%eo-treated asymptomatic fish 1,387 755 632

con vs 3%o-treated symptomatic fish 1,545 889 656

con vs 6%eo-treated asymptomatic fish 2,675 1,411 1,264

con vs 6%o-treated symptomatic fish 1,129 693 436
3%o-treated fish vs 6%o-treated fish 631 365 266
3%o-treated asymptomatic fish vs 6%o-treated asymptomatic fish 1,551 795 756
3%o-treated symptomatic fish vs 6%o-treated symptomatic fish 355 231 124
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FIGURE 2 | Differentially expressed genes and significantly enriched KEGG pathways in grass carp treated with 3%o or 6%o salinity. (A) Venn diagrams showing
overlaps of total DEGs in gill samples from salinity-treated asymptomatic and symptomatic fish. (B) Venn diagrams showing overlaps of up-regulated DEGs in gil
samples from salinity-treated asymptomatic and symptomatic fish. (C) Venn diagrams showing overlaps of down-regulated DEGs in gill samples from salinity-treated
asymptomatic and symptomatic fish. (D) The significantly enriched KEGG pathways in the 3%o-treated asymptomatic fish. (E) The significantly enriched KEGG
pathways in the 3%o-treated symptomatic fish. (F) The significantly enriched KEGG pathways in the 6%o-treated asymptomatic fish. (G) The significantly enriched
KEGG pathways in the 6%o-treated symptomatic fish. The common immune-related signaling pathways for 3%. and 6%o-treated asymptomatic fish are underlined in
black, and in red for 3%o and 6%.-treated symptomatic fish.
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regulated DEGs), necroptosis (25 up-regulated and 15 down-
regulated DEGs), toll-like receptor signaling pathway (13 up-
regulated and 2 down-regulated DEGs), and salmonella
infection (26 up-regulated and 14 down-regulated DEGs)
(Figure 2G). Cytokine-cytokine receptor interaction was
significantly enriched only for total DEGs. Collectively, these
data suggest that the cytokine-cytokine receptor interaction
pathway is significantly enriched both for 3 %eo-treated and 6
%o-treated asymptomatic fish, c-type lectin receptor signaling,
necroptosis and NOD-like receptor signaling pathways enriched
both for 3 %o-treated and 6 %o-treated symptomatic fish.

Salinity Treatments Increase Susceptibility
to F. columnare Infection

To examine the effect of salinity stress on the disease resistance of
grass carp against bacterial infection, the grass carp treated by
3%o or 6%o salinity for 30 days were infected with F. columnarae.
The results from bacterial colony counting showed that salinity
treatments significantly increased the proliferation of F.
columnarae in vivo at 1 and 2 dpi. The bacterial loads in 3%o
salinity-treated group was the highest (Figure 3A). In consistent
with bacterial colony counting, salinity treatments significantly
impaired the survival of grass carp infected with F. columnarae.
Survival was more than 95% in the untreated control group,
however decreased to 83.3% for 6%o salinity-treated group, and
60% for 3%o salinity-treated group (Figure 3B).

In order to reveal the possible mechanism that salinity
treatments increase susceptibility to F. columnare infection, the
gills from the untreated control and salinity-treated groups infected
with F. columnare collected at 1, 2 and 7 dpi were used for
transcriptome sequencing. For transcriptomic analysis of 27
samples, total 177.79 Gb clean data were obtained. The clean data
for each sample was more than 5.73 Gb, and the percentage of Q30
value was above 93.70%. The DEGs (4152) were the highest for con
at 2 dpi vs 3%o-treatment at 2 dpi, with 2103 up-regulated and 2049
down-regulated DEGs. The DEGs (2034) were the second highest
for 3%o-treatment at 2 dpi vs 6%o-treatment at 2 dpi, with 1271 up-
regulated and 763 down-regulated DEGs. The numbers of DEGs
(356) were the lowest for con at 7 dpi vs 3%o-treatment at 7 dpi,
with 195 up-regulated and 161 down-regulated DEGs (Table 3).

We focused on immune-related signaling pathways. For up-
regulated DEGs in gills, cytokine-cytokine receptor interaction
pathway was significantly enriched for con vs 3%o-treated group only
at 2 dpi, whereas at 7 dpi for con vs 6%o-treated group. Furthermore,
MAPK signaling, Toll-like receptor signaling and cytosolic DNA-
sensing pathways were also enriched for con vs 3%o-treated group at 1
or2dpi,butnot for convs 6%o-treated group (Figures 3C, D).

More immune-related signaling pathways were impaired by
salinity treatments. Eight signaling pathways including phagosome,
intestinal immune network for IgA production, C-type lectin
receptor signaling, necroptosis, natural killer cell mediated
cytotoxicity, apoptosis, NOD-like receptor signaling and
cytokine-cytokine receptor interaction were significantly
enriched both for con vs 3%o-treated and con vs 6%o-treated
groups. Among these 8 immune-related signaling pathways, only
NOD-like receptor signaling pathway was significantly enriched

at early (1 and/or 2 dpi) and late (7 dpi) times of infection both
for con vs 3%o-treated and con vs 6%o-treated groups. In
addition, the numbers of significantly enriched immune-related
pathways varied greatly between the early and late times of
infection for con vs 3%o-treated group, but remained a stable
change between the early and late times of infection for con vs
6%o-treated group. At 1 dpi, 6 and 7 immune-related signaling
pathways were enriched for con vs 3%eo-treated and con vs 6%o-
treated groups, respectively. At 2 dpi, 9 and 7 immune-related
signaling pathways were enriched for con vs 3%o-treated and con
vs 6%o-treated groups, respectively. At 7 dpi, 1 and 5 immune-
related signaling pathways were enriched for con vs 3%o-treated
and con vs 6%o-treated groups, respectively (Figures 3E, F).

Salinity Treatments Are Involved in the
Regulation of Multiple NLRs in the
Absence of Infection or Bacterial Infection
Transcriptome analysis showed that NOD-like receptor signaling
pathway was significantly enriched for salinity-treated groups in
the absence of infection or F. columnarae infection. To clear
which genes of NOD-like receptor signaling pathway were
regulated by salinity, all DEGs involved in NOD-like receptor
signaling pathway from con vs 3%o-treated symptomatic fish, con
vs 6 %o-treated asymptomatic fish and con vs 6%o-treated
symptomatic fish (Figures 2E-G; Supplementary Figures 1, 2)
were firstly picked out for analysis. After getting rid of some same
sequences, a total of 56 distinct genes involved in NOD-like
receptor signaling pathway were up-regulated by salinity. Among
them, 11 DEGs (19.6%) are NLRC3-like genes (Figure 4A).
Sequence analysis revealed that these 5 nucleotide sequences
including CI01000057_04728914_04731946, CI01000095_
03598784_03614858, CI01000365_00436141_00445601,
CI01000437_00000063_00010815 and Ctenopharyngodon_
idella_newGene_5350 encode the complete open reading frame.
Interesting, 4 NLRC3-like genes among the 5 NLRC3-like genes
contain FISNA (fish-specific NACHT associated) domain and
lack CARD (caspase recruitment domain) (Figure 4B).

Then, these DEGs involved in NOD-like receptor signaling
pathway from the untreated control and salinity-treated groups
infected with F. columnare were picked out for analysis. At 1 dpi, the
transcription of 31 DEGs were impaired by salinity,and 9 DEGs (29%)
were NLRs (Figure 5A). At 2 dpi, the transcription of 54 DEGs were
impaired by salinity, and 13 DEGs (24.1%) were NLRs (Figure 5B). At
7 dpi, the transcription of 25 DEGs were impaired by salinity, and 10
DEGs (40%) were NLRs (Figure 5C). Furthermore, salinity
treatments also significantly impaired the transcription of some
genes connected to interferon responses, such as GVINPI,
GVINP1-like, GBP1, TRAF3, TRAF5, MA VS and so on (Figure 5).

Salinity Treatments Impaired the Innate
and Adaptive Immune Responses in the
Case of Bacterial Infection

To reveal the possible mechanisms the grass carp treated by
salinity treatments were more vulnerable to the infection of F.
columnare, analysis of coexpression of differential genes were used
for seeking the common immune-related DEGs regulated by
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salinity treatments at all time points of infection. For the subcluster
shown in Figure 6A, the transcriptions of 79 DEGs were impaired
by salinity treatments, which include 11 cytokines or cytokine
receptors, 5 mast cell proteases, 3 Granzyme-like proteins and so
on (Figure 6B). For the subcluster shown in Figure 7A, the
transcriptions of 24 DEGs related to immunoglobulin light chain
or heavy chain were impaired by salinity treatments (Figure 7B),
together with 15 cytokines or cytokine receptors (Figure 7C) and
15 genes connected to interferon responses (Figure 7D).
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FIGURE 3 | Salinity treatments increase susceptibility to F. columnare infection. (A) The effect of salinity treatments on the bacteria proliferation. (B) The effect of
salinity treatments on the larvae survival in response to F. columnarae infection. (C) The significantly enriched KEGG pathways for up-regulated DEGs in gills
collected at 1, 2 and 7 dpi from the 3%o-treated grass carp infected with F. columnarae. (D) The significantly enriched KEGG pathways for up-regulated DEGs in gills
collected at 1, 2 and 7 dpi from the 6%o-treated grass carp infected with F. columnarae. (E) The significantly enriched KEGG pathways for down-regulated DEGs in
gills collected at 1, 2 and 7 dpi from the 3%o-treated grass carp infected with F. columnarae. (F) The significantly enriched KEGG pathways for down-regulated
DEGs in gills collected at 1, 2 and 7 dpi from the 6%o-treated grass carp infected with F. columnarae.

Confirmation of DEGs by qRT-PCR and
Western Blotting
The expression of 12 candidate DEGs was confirmed by qRT-
PCR in the untreated control and salinity-treated groups infected
with F. columnare for 2 d. The expression of 12 NLRs for con at 2
dpi vs 3%o-treatment at 2 dpi agreed with their significant
changes determined by RNA-seq. For con at 2 dpi vs 6%o-
treatment at 2 dpi, the expressions of CI01000353_00909159_
00930428.pathl NLRP12, CI01000140_02095891_02110510.path1
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TABLE 3 | The number of DEGs among the untreated control and salinity-treated groups infected with F. columnare collected at 1, 2 and 7 dpi.

DEG Set DEG Number up-regulated Number down-regulated Number
con at 1 dpi vs 3%o-treatment at 1 dpi 1,765 793 972
con at 1 dpi vs 6 %o-treatment at 1 dpi 1,110 419 691
3%o-treatment at 1 dpi vs 6%o-treatment at 1 dpi 421 207 214
con at 2 dpi vs 3%eo-treatment at 2 dpi 4,152 2,108 2,049
con at 2 dpi vs 6%o-treatment at 2 dpi 1,379 666 713
3%o-treatment at 2 dpi vs 6%o-treatment at 2 dpi 2,034 1,271 763
con at 7 dpi vs 3%o-treatment at 7 dpi 356 195 161
con at 7 dpi vs 6%o-treatment at 7 dpi 1,416 672 744
3%o-treatment at 7 dpi vs 6%o-treatment at 7 dpi 1,306 583 723
A
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FIGURE 4 | The DEGs involved in NOD-like receptor signaling pathway and regulated by salinity stress in the absence of infection. (A) The gene cluster for DEGs
involved in the NOD-like receptor signaling pathway in gills from con vs 3%o-treated symptomatic fish, con vs 6%o.-treated asymptomatic fish and con vs 6%o-treated
symptomatic fish. A color key denotes the gradient scale of gene expression from low (blue) to high (red) degrees. Those NLR genes are highlighted in red.

(B) Domain diagrams for 5 differentially expressed NLRs with the complete open reading frame.
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FIGURE 5 | The DEGs involved in NOD-like receptor signaling pathway and regulated by salinity stress in the case of F. columnare infection. (A) The gene cluster for
DEGs involved in the NOD-like receptor signaling pathway in gills collected at 1 dpi. (B) The gene cluster for DEGs involved in the NOD-like receptor signaling
pathway in gills collected at 2 dpi. (C) The gene cluster for DEGs involved in the NOD-like receptor signaling pathway in gills collected at 7 dpi. Those NLR genes are
highlighted in red. A color key denotes the gradient scale of gene expression from low (blue) to high (red) degrees.
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NLRC3, CI01117969_00000011_00000940.pathl NLRC3,
CI01000140_02047275_02055290.pathl NLRP12, CI01000070_
04844701_04867804.pathl NLRP3-like, CI01000427_00019738_
00058058.pathl NLRC3 and CI01000092_03702024_03712418.
pathl NLRC3 agreed with their significant changes determined
by RNA-seq (Figure 8A). In all, 19/24 (79.2%) consistency existed
between qRT-PCR and RNAseq. In addition, the protein levels of
IgM, IgD and IgZ were examined in gills from the untreated control
and salinity-treated groups infected with F. columnare for 2 d by

Western blotting. Compared with the untreated control, salinity
treatments significantly decreased the protein levels of IgM, IgD
and IgZ, especially for 3%o salinity-treated group (Figures 8B, C).

3%o Salinity-Treated Group Has a

Lower Immune Responses Than 6 %o
Salinity-Treated Group

Compared with 6% salinity-treated fish, 3%o salinity-treated fish
have more severe symptoms, the higher percent of unhealthy fish,
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FIGURE 6 | The immune-related DEGs regulated by salinity treatments at all time points of infection. (A) The expression trend for DEGs in gills collected at 1, 2 and
7 dpi. The control group at each time point is highlighted in red. (B) The immune-related DEGs with the similar expression trend. Those NLR genes are highlighted in
red. A color key denotes the gradient scale of gene expression from low (blue) to high (red) degrees.
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FIGURE 7 | Salinity treatments impair the innate and adaptive immune responses in the case of bacterial infection. (A) The expression trend for DEGs in gills

collected at 1, 2 and 7 dpi. (B) The immune-related DEGs related to immunoglobulin light chain or heavy chain with the similar expression trend. (C) The immune-
related DEGs related to cytokines or cytokine receptors with the similar expression trend. (D) The immune-related DEGs related to interferon responses with the
similar expression trend. For (B=D), a color key denotes the gradient scale of gene expression from low (blue) to high (red) degrees. For (A-D), the control group at
each time point is highlighted in red.
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FIGURE 8 | Validation of transcriptome data by gRT-PCR and Western Blotting. (A) Validation of transcriptome data by qRT-PCR for differentially expressed NLRs in
gills collected at 2 dpi. Data represented means + SEM (n=3), and were tested for statistical significance. **p < 0.01; ns, not significant. The asterisk above the bracket
indicates statistical significance between the two groups connected by the bracket. (B) Validation of transcriptome data by Western Blotting for immunoglobulins in gills
collected at 2 dpi. (C) Gray quantification for Ig protein bands. Western blotting results were quantified using Quantity One software. *p < 0.05; **p < 0.01.

and higher susceptibility to F. columnare infection. To clarify the
possible mechanisms why the severity of pathological symptoms and
mortality of grass carp treated with 6%o were much lower than those
treated with 3%o, comparative transcriptome analysis were
performed for 3%o-treated asymptomatic fish, 3%o-treated
symptomatic fish, 6%o-treated asymptomatic fish and 6%o-treated
symptomatic fish. For the subcluster shown in Figure 9A, the
transcriptions of 41 immune-related DEGs were lower in 3%o-
treated fish than in 6%o-treated fish, which include 7 NLRs (2
NLRC3, 1 NLRC3-like, 1 NLRP3, 1 NLRP3-like, 1 NLRP3-like
isoform X1 and 1 NLRP12), 9 claudin proteins (3 claudin-4, 2
claudin-8, 1 claudin-10, 1 claudin-10-like, 2 claudin-23), 5
semaphorins (semaphoring-3D, semaphoring-3ab, semaphoring-
3E, semaphoring-4C isoform X1 and semaphoring-4B), 6
cytokines or cytokine receptors (XCR1b, CXCR7a, CXCR4b,
CXCR3, CD48, CD163), 3 hypoxia-inducible factors (2 hypoxia-
inducible factor-2 alpha and 1 hypoxia-inducible factor-4 alpha),
3 TRIM proteins (inTRIM 83, inTRIM99 and TRIM39) and
so on (Figure 9B).

Two NLRP12-Like Genes Impaired by
Salinity Treatments Contribute to Inhibit
the Proliferation of F. columnare

Salinity treatments significantly enriched NOD-like receptor
signaling pathway, and regulated the transcription levels of a
large number of NLR receptor genes, especially for piscine
NLRC3-like and NLRP-like genes, whose functions are
unknown. To screen and identify the target genes of sensing
environment salinity stress and pathogens, we were interested to
know whether these NLRs regulated by salinity have a function
in the regulation of antibacterial or antiviral immune responses.
At present, we cloned and obtained 2 NLRP-like genes. Among
them, the gene corresponding to Ctenopharyngodon_idella_
newGene_9152 was named as NLRP12-like 1 (GenBank
accession number: ON012777). The complete ORF of
NLRP12-like 1 encodes 1024 aa, which contains 1 N-terminal
FISNA, 1 NACHT and 9 LRR domains (Figure 10A). The gene
corresponding to CI01000353_00909159_00930428.pathl was
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FIGURE 9 | The immune-related DEGs with the lower expressions in 3 %o salinity-treated fish than in 6%. salinity-treated fish. (A) The expression trend for DEGs in
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named as NLRP12-like 2 (GenBank accession number:
ON012778). The complete ORF of NLRP12-like 2 encodes 910
aa, which contains 1 N-terminal FISNA, 1 NACHT and 10 LRR
domains (Figure 10B).

To evaluate the role of NLRP12-like 1 and NLRP12-like 2 on the
F. columnare proliferation and cell survival, we performed
antibacterial assay and CCK8 assay. Compared with control cells
transfected with FLAG empty plasmid, the overexpression of
NLRP12-like 1 or NLRP12-like 2 in CIK cells significantly

inhibited the proliferation of F. columnare at 6, 24 and 48 hpi
(Figures 10C, D), and increased cell survival at 24 and 48 hpi
(Figures 10E, F).

DISCUSSION

The development and utilization of fish culture in saline-alkali
water is an important way to improve comprehensive production
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studies have shown the effects of salinity on the
electrocardiogram and some of blood serum minerals (20),
thyroid activity (21), serum total protein (22), the behavior and
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in brackish water, the salinity of 5%o and 7.5%o had no effect on
the weight gain rate and survival rate of grass carp (24). In the
present study, we report the effects and molecular regulation
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FIGURE 10 | The effects of NLRP12-like genes impaired by salinity treatments in bacterial infection. (A) Domain diagram for grass carp NLRP12-like 1. (B) Domain
diagram for grass carp NLRP12-like 2. (C) The effect of grass carp NLRP12-like 1 on the F. columnare proliferation. (D) The effect of grass carp NLRP12-like 2 on
the F. columnare proliferation. (E) The effect of grass carp NLRP12-like 1 on the cell survival. (F) The effect of grass carp NLRP12-like 2 on the cell survival. For
(C-F), Data represented means + SEM (n = 3), and were tested for statistical significance. o < 0.01; ns, not significant. The asterisk above the bracket indicates

infection. However evaluation of the percent of unhealthy fish in
the absence of infection and the survival of grass carp infected
with F. columnarae showed that salinity treatments significantly
impaired the health and disease resistance of grass carp.
Interesting, the severity of pathological symptoms and
mortality of grass carp treated with 6%o were much lower than
those treated with 3%o, which was different from this
phenomenon observed in euryhaline teleosts. The fish cultured
in low salinity present better growth performances and survival
rates than in normal salinity in large yellow croaker Larimichthys
crocea, grey mullet Mugil cephalus and pompano Trachinotus
marginatus (25-27). These differences may reflect the existence
of different adaptive mechanisms to salinity stress between the
marine and freshwater fish species.
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For immune-related signaling pathways, none was annotated
in the gills of tiger puffer (Takifugu rubripes) with the low-
salinity stress of 4%o (28), cytokine-cytokine receptor interaction
(41 DEGs) annotated in the gills of hybrid tilapia with the salinity
stress of 25%o (29), TNF signaling pathway (60 DEGs), NF-
kappa B signaling pathway (55 DEGs) and cytokine-cytokine
receptor interaction (70 DEGs) annotated in the gills of Siberian
sturgeon Acipenser baeri with the high-salinity stress of 30%o
(30). In the present study, higher numbers of DEGs involved in
cytokine-cytokine receptor interaction were enriched in the gills
of grass carp treated with 6%o salinity (64 DEGs) than in the gills
of grass carp treated with 3%o salinity (36 DEGs) in the absence
of infection. All these data suggest that the higher salinity need
recruit the greater numbers of cytokines and their receptors to
balance inflammatory response, since cytokines play a role in a
variety of inflammatory processes (31). Besides that, these DEGs
involved in Toll-like receptor signaling pathway and apoptosis
were only impaired in the 6%o-treated asymptomatic fish. Most
genes involved in Toll-like receptor signaling pathway are
cytokines and cytokine receptors such as chemokine ligand 8b,
chemokine ligand 11, chemokine ligand 18a, chemokine ligand-
like protein, tumor necrosis factor-alpha, interleukin-8 and so
on. For these DEGs related to apoptosis, the expressions of
calpain-1, calpain-2, calpain-8, cathepsin B, and tumor necrosis
factor-alpha so on were decreased. In the pacific oyster
Crassostrea gigas and the white shrimp Litopenaeus vannamei,
it is believed that apoptosis suppression may be one of reasons
that they are able to deal with large variations in salinity as
euryhaline organisms (32, 33). We speculate that apoptosis
suppression might contribute to the salinity adaptation of grass
carp in the salinity water of 6%o more than in 3%o. Further
research is needed to confirm how apoptosis suppression affect
the survival of freshwater fishes in different saline-alkali water.

NOD-like receptor signaling pathway is one of crucial
signaling pathways for in host defense against pathogen
infection. Recent studies have shown that NOD-like receptor
signaling pathway is significantly enriched in silvery pomfret
under high salinity stress (32%o), and in all salinity comparison
groups including 14%o vs 22%o, 22%o vs 30%o and 14%o vs 30%o
for the ark shell Anadara kagoshimensis (13, 34). In grass carp,
NOD-like receptor signaling pathway is significantly enriched in
6%o-treated asymptomatic fish but not in 3 %o-treated
asymptomatic fish, which may suggest that in the absence of
infection, NOD-like receptor signaling pathway can only sense
salinity stress above a certain level. Salinity treatments can trigger
an inflammatory response in a very small amount of grass carp,
as evidenced by the increased NLRP1, NLRP3, NLRP12, pro-IL-
1B and IL-1PB (Supplementary Figure 1). Different from salinity-
treated symptomatic fish, more DEGs involved in the upstream
sensors of NOD-like receptor signaling pathway, which include
32 NLRs (NODI1, CARD, NLRC3-like proteins, NLRP1-like
proteins, NLRP12-like proteins), anthrax toxin receptor 2
(ANTXR), RNA helicase DHX33, and GPCR, were induced in
the gills of 6%o-treated asymptomatic fish (Supplementary
Figure 2). In addition, compared with 3%o-treated
asymptomatic and symptomatic fish, the expressions of 7
NLRs were significantly higher in 6%o-treated asymptomatic

and symptomatic fish. We speculate that these NLRs regulated
by salinity treatments may act as the sensors for environmental
salinity stress. How these NLRs affect grass carp adaptation to
salinity stress remain to study further.

It is generally believed that all NLRs have the common
domains of NACHT-LRR. However unlike NLRC subgroup in
mammals, these NLRs with the FISNA (Fish-specific NACHT
associated) domain but not caspase recruitment domain is
considered to be unique for teleost fish (35). Interesting, these
NLRs unique for teleost fish, were regulated by salinity and F.
columnare infection. The function of most NLRs unique for teleost
fish is unknown. Our previous study has shown the negative
regulation of NLRC3-like 1 in the Edwardsiella piscicida infection.
Zebrafish NLRC3-like 1 can interact with the adaptor protein
RIPK2 of NOD-like receptor signaling pathway via its FISNA and
NACHT domains, and inhibit the assembly of the NOD1-RIPK2
complex (36). Although the exact functional mechanisms remain
to be further investigated, the present study showed that two novel
NLRs unique for teleost fish, whose expression levels were
significantly impaired by F. columnare infection in the grass
carp treated with salinity treatments, could inhibit F. columnare
proliferation and improve the survival rate of infected cells. All
these dada revealed that these NLRs unique for teleost fish have
different functions in pathogen infection. Furthermore, previous
studies showed that transfer from fresh water to seawater did not
alter plasma levels of immunoglobulin M (IgM) in the tilapia
(Oreochromis mossambicus), however salinity >20%o
downregulated the mRNA expression levels of IgM and reduced
antibody production in the vaccinated Nile tilapia (O. niloticus)
(37, 38). Compared with the full seawater (38%o)-acclimated fish,
the total IgM levels of seabream was increased for the acclimation
to hypersaline water (55%o) for 14 days, but no changes for
brackish water acclimation (12%o) for 14 or 100 days (39). The
results of the present study were consistent with a previous study,
which showed a suppressed immune response in freshwater fish in
response to salinity treatment and bacterial infection (38). In the
absence of infection, salinity treatments have no effects on grass
carp IgM, IgD, IgZ, Ig light chain or heavy chain. In the existence
of pathogen, salinity treatments significantly impaired the
production of Ig levels, especially IgD and IgZ. Significantly, the
IgM levels in grass carp left untreated or treated with 3 %o and 6 %o
salinity were consistent with the survival of grass carp with the
infection of F. columnare (untreated control group > 6%eo-treated
group > 3%o-treated group). Thus, optimum salinity range may be
an important factor in activating the innate and adaptive immune
pathways to achieve maximum antibody production, and the
inhibited IgM and NLRs may correlate with mortality in grass
carp following F. columnare infection.

The possible mechanisms why the severity of pathological
symptoms and the percent of unhealthy grass carp treated with
6%o0 were much lower than those treated with 3%o were also
further explored. Besides ionic and osmotic stress, salinity stress
can induce secondary stresses, especially oxidative stress in teleost
(40). However oxidative stress plays an essential role in the
pathogenesis and progression of inflammatory disease such as
inflammatory bowel disease (41). The tight junction (T7) claudin
proteins and hypoxia-inducible factors are involved in the
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regulation of oxidative stress and intestinal inflammation (42, 43).
The downregulations of several “tightening” TJ proteins like
claudin-1 and -4, together with an upregulation of claudin-2,
were found to contribute to the barrier defect observed in
ulcerative colitis (44). Hypoxia-inducible factor-2 alpha was
found to play a protective role against ischemia of the kidney
via amelioration of oxidative stress (45). A conditional knockout
of myeloid hypoxia-inducible factor-1 alpha ameliorated whereas
the knockout of hypoxia-inducible factor-2 alpha aggravated
murine dextran sodium sulfate-induced colitis (46). Here,
comparative transcriptome analysis revealed that 3%o salinity-
treated fish has a lower transcriptional levels for 9 claudin proteins,
2 hypoxia-inducible factor-2 alpha and 1 hypoxia-inducible
factor-4 alpha. In addition, semaphorins have been identified as
the “immune semaphorins” (47). Among them, semaphorin 3A is
important in downregulating autoimmune diseases, semaphorin
3E as a critical factor for protective immunity against intracellular
chlamydia muridarum infection, and semaphorin 4C in protecting
against allergic inflammation (48-50). The expressions of these
“immune semaphorins” in 6%o salinity-treated fish were higher
than in 3 %o salinity-treated fish. Therefore, the difference of
immune response involved in oxidative stress and inflammation
might lead to the difference in the severity of pathological
symptoms and the percent of unhealthy grass carp between 3%o
and 6%o salinity-treated grass carp.

In short, this study characterized the pathological changes
and transcriptomic responses in the gills of grass carp treated
with 3%o and 6%o salinity. Through the expression data from 5
libraries in the absence of infection and 9 libraries with the
infection of F. columnare, the present study provided some useful
insights into the immune responses of grass carp in response to
3%o and 6%o salinity stress, and offered a number of candidate
genes as potential markers of sensing environmental salinity
stress and pathogens, especially for NLRs. In future work, we will
further investigate the exact mechanisms how NLRs unique for
teleost fish affect grass carp adaptation to salinity stress and
disease resistance against pathogens.
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