
Frontiers in Immunology | www.frontiersin.

Edited by:
Stanislaw Stepkowski,

University of Toledo, United States

Reviewed by:
Chenming Sun,

Xian Jiaotong University, China

*Correspondence:
Stefan G. Tullius

stullius@bwh.harvard.edu

Specialty section:
This article was submitted to

Alloimmunity and Transplantation,
a section of the journal

Frontiers in Immunology

Received: 11 April 2022
Accepted: 07 June 2022
Published: 06 July 2022

Citation:
Schroeter A, Roesel MJ, Matsunaga T,
Xiao Y, Zhou H and Tullius SG (2022)

Aging Affects the Role of
Myeloid-Derived Suppressor

Cells in Alloimmunity.
Front. Immunol. 13:917972.

doi: 10.3389/fimmu.2022.917972

MINI REVIEW
published: 06 July 2022

doi: 10.3389/fimmu.2022.917972
Aging Affects the Role of
Myeloid-Derived Suppressor
Cells in Alloimmunity
Andreas Schroeter1,2, Maximilian J. Roesel1,3, Tomohisa Matsunaga1,4, Yao Xiao1,
Hao Zhou1 and Stefan G. Tullius1*

1 Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and
Women’s Hospital, Harvard Medical School, Boston, MA, United States, 2 Regenerative Medicine and Experimental Surgery,
Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany, 3 Institute of
Medical Immunology, Charite Universitaetsmedizin Berlin, Berlin, Germany, 4 Department of Urology, Osaka Medical and
Pharmaceutical University, Takatsuki City, Japan

Myeloid-derived suppressor cells (MDSC) are defined as a group of myeloid cells with
potent immunoregulatory functions that have been shown to be involved in a variety of
immune-related diseases including infections, autoimmune disorders, and cancer. In
organ transplantation, MDSC promote tolerance by modifying adaptive immune
responses. With aging, however, substantial changes occur that affect immune
functions and impact alloimmunity. Since the vast majority of transplant patients are
elderly, age-specific modifications of MDSC are of relevance. Furthermore, understanding
age-associated changes in MDSC may lead to improved therapeutic strategies. Here, we
provide a comprehensive update on the effects of aging on MDSC and discuss potential
consequences on alloimmunity.
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INTRODUCTION

Myeloid-derived suppressor cells (MDSC) are a heterogenous group of immature myeloid cells that
exhibit immunosuppressive functions affecting various immune cells (1). First observed in patients
with cancer, MDSC are generated under chronic pathological conditions including persistent
inflammation or malignancies where continuous stimulation and inhibition of standard
myelopoiesis pathways result in the formation of undifferentiated cells. Reflecting this
heterogeneity, MDSC in mice are phenotyped as CD11b+Gr-1+ with two major subsets:
granulocytic MDSC (G-MDSC) (CD11b+Gr-1+Ly6G+Ly6Clow) and monocytic MDSC (M-MDSC)
(CD11b+Gr-1+Ly6G-Ly6Chi), based on their expression of Ly6C and Ly6G (1–4). In humans, the
classification is more complex with M-MDSC phenotyped as CD11b+CD33+CD14+CD66b+HLA-
DRlow and G-MDSC as CD11b+CD33+CD14-CD15+HLA-DRlow cells (5). The functional capacities of
these cells have gained increasing attention in the recent past. Most importantly, MDSC have shown a
strong capacity to suppress CD4+ and CD8+ T-cell functions while promoting the activation and
expansion of regulatory T cells (Tregs) (5–9). The mechanisms of immune modulation have also been
shown to vary depending on the cell subset. Generally, G-MDSC suppress the immune function via
reactive oxygen species (ROS) whereas the effects of M-MDSC are primarily mediated through the up-
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regulation of inducible nitric oxide synthase (iNOS), arginase, and
immunosuppressive cytokines (10). However, immune
modulation is not limited on the effects on T cells but also
impacts innate immune cells including neutrophils, monocytes,
macrophages, and dendritic cells (DCs) (11), many of which play a
critical role in alloimmunity (12–16).
CLINICAL IMPACT

In organ transplantation, MDSC may promote allograft
acceptance and have therefore been of clinical interest in and
beyond organ transplantation.

In various clinical settings including kidney, lung, and
intestinal transplantation, significantly elevated levels of MDSC
have been reported suppressing T-cell proliferation and pro-
inflammatory cytokine levels when cultured in vitro (17–19). In
addition, clinical studies investigating the role of MDSC in acute
T-cell-mediated rejection (ATCMR) have shown an improved
allograft function in parallel with increasing peripheral MDSC
counts. In renal transplant biopsies, tissue injury has been
attenuated with high peripheral MDSC counts, corroborating
the immunosuppressive potential of MDSC in alloimmunity.
Interestingly, MDSC collected from patients had the capacity to
expand Tregs while inhibiting IL-17 production in vitro (20).
Moreover, MDSC expansion correlated linearly with an increase
in Tregs in vivo and Treg induction in vitro (21). Notably,
transplant recipients with infections or chronic lung allograft
dysfunction (CLAD) have shown lower G-MDSC levels when
compared to patients with stable transplant function (18).
Cytomegalovirus (CMV) infection, a major risk factor for
developing CLAD, has been linked to an impaired MDSC
differentiation (22, 23). In addition, hepatic stellate cells have
been shown to induce MDSC both in vivo and in vitro, indicating
the potential to promote liver allograft acceptance (24–27). Of
additional interest, numbers of MDSC increased in intestinal
transplant patients with acute cellular rejection (ACR) and
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positively correlated with serum IL-6 levels, a cytokine that has
previously been shown to induce MDSC expansion (1).
Furthermore, corresponding in vitro experiments have shown
that IL-6 and methylprednisolone promoted the differentiation
of bone marrow cells into MDSC. An accumulation of MDSC in
the intestinal mucosa was also observed, and MDSC were able to
suppress the T-cell-mediated destruction of donor intestinal
epithelial organoids. Thus, MDSC may play an important role
in suppressing the pathogenic T-cell response in the context of
intestinal transplants and control ACR (19).
IMPACT OF IMMUNOSUPPRESSIVE
DRUGS ON MDSC

In addition to the potential effects of MDSC on allograft survival,
interactions with commonly used immunosuppressive drugs
have been reported (Table 1). Clinically, circulating numbers
of MDSC increased rapidly after applying calcineurin inhibitors,
rapamycin, or corticosteroids (34, 35). Long-term, granulocytic
subsets (G-MDSC) fluctuated in numbers whereas monocytic
subsets (M-MDSC) remained relatively stable (38). Interestingly,
M-MDSC from tacrolimus-treated but not from rapamycin-
treated kidney transplant recipients were able to suppress the
proliferation of CD4+ T cells, indicating that rapamycin may
curtail the immunosuppressive abilities of M-MDSC (30). The
correlation of MDSC activity with CNI levels may be explained
by mechanistic findings that show an increased expression of
indoleamine 2,3-dioxygenase (IDO), an enzyme regulating the
immunosuppressive activity of MDSC, thereby inducing the
suppressive functions of recipient MDSC (28). Conversely,
rapamycin has been shown to downregulate IDO expression
and may therefore also attenuate iNOS expression in rapamycin-
exposed M-MDSC (30, 39).

In other experiments, however, rapamycin has been shown to
increase MDSC levels, enhancing cardiac and hepatic allograft
survival in mouse models potentially facilitated through the
TABLE 1 | Effects of immunosuppressive drugs on MDSC in transplant models.

Class Drug Year Model Effects Reference

CNI CsA
CsA

Tacrolimus

2015
2016
2020

Kidney Tx
Kidney Tx
Kidney Tx

Immunosuppressive function ↑
Numbers ↑ / immunosuppressive function ↑

Numbers ↑ / immunosuppressive
function ↑

[28]
[29]
[30]

mTORi Rapa
Rapa

Rapa
Rapa

2015
2017

2020
2021

Heart Tx
Liver Tx

Kidney Tx
Skin Tx

Numbers ↑ / graft survival ↑
Numbers ↑ / immunosuppressive

function ↑
Immunosuppressive function !

Numbers ↑ / graft survival ↑ in obese
recipients

[31]
[32]

[30]
[33]

CS Dex

MP

Dex
Dex

2014

2018

2018
2018

Skin Tx

ntestinal Tx

Heart Tx
Heart Tx

Numbers ↑ / immunosuppressive
function ↑/ graft survival ↑

Differentiation ↑ /
immunosuppressive function ↑

Numbers ↑ / graft survival ↑ / Tregs
↑ Immunosuppressive function ↑

Graft survival ↑ / Tregs ↑

[34]

[19]

[36]
[37]
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induction of inducible iNOS (31, 32). Intriguingly, the adoptive
transfer of MDSC from rapamycin-treated recipients prolonged
allograft survival in third-party recipient mice (31). Most
recently, delayed allograft rejection following MDSC induction
by rapamycin has been shown in obese transplant recipients,
emphasizing on the effectiveness of rapamycin in transplant
recipients with preexisting conditions (33). As obesity has been
linked to cellular senescence, those findings are of particular
interest for the assessment of the role that MDSC may play in
aging (40–42). Taken together, these findings may indicate that
mTOR inhibition may have dual effects—both immunogenic as
well as tolerogenic—on MDSC (30). Steroids have also been
shown to impact MDSC numbers and functions (35). Steroid
treatment correlates with increasing numbers of MDSC and
Tregs in cardiac transplant models. Moreover, levels of Tregs
were diminished when anti-Gr-1 antibodies targeting MDSC
were administered in this study, emphasizing on the potential of
MDSC affecting Tregs (36).

In addition, supplementing a granulocyte-macrophage colony-
stimulating factor (GM-CSF) system with dexamethasone promoted
MDSC with an enhanced immunosuppressive function specifically in
vitro, and, when transferred into cardiac allograft recipients,
prolonged allograft survival and Treg expansion. Mechanistically,
iNOS and glucocorticoid receptor (GR) signaling pathways have
been shown to be essential for mediating these processes. iNOS
signaling was required for MDSC to regulate T-cell responses,
whereas GR signaling was essential for mediating the recruitment of
MDSC into allografts (37). The effects on MDSC were not only
limited to rapamycin and corticosteroids as cyclosporine A also
Frontiers in Immunology | www.frontiersin.org 3
significantly increased the numbers and immunosuppressive
functions of MDSC, ameliorating alloimmune responses (29).
MDSC IN ALLOIMMUNITY

Organ tpransplantation initiates a complex immunological cascade
composed of cellular and humoral components, ultimately leading,
if not successfully treated or modified, to an irreversible rejection. In
addition to the adaptive immune system, several components of the
innate immune response including dendritic cells (DCs), natural
killer (NK) cells, and macrophages play critical roles in this process
(43, 44). Accumulating evidence suggests that MDSC may also play
an important role in allorecognition. Experimental models
including kidney, heart, and skin transplantation have shown
elevated numbers of MDSC that can suppress T-cell proliferation
while inducing apoptosis, linked to graft prolongation (39, 45–47). It
has been demonstrated that MDSC are recruited from the bone
marrow, migrating into the graft early after transplantation (47).
Interestingly, graft survival was prolonged in old mice and those
exhibiting high serum levels of TGF-b, an immunosuppressive
cytokine that has been shown to increase with age (39, 46)..
When entinostat, a histone deacetylase inhibitor, was
administered to block MDSC function, graft survival was
abbreviated comparable to survival times observed in young mice
(48). In a pre-sensitized transplant model, massively elevated levels
of MDSC were found in the peripheral blood of recipient mice.
Notably, particularly the CD11b+Gr-1(-low) subtype has been shown
to prevent allograft injury after prolonged ischemia (49). In vitro
FIGURE 1 | Aging affects the role of MDSC in alloimmunity. Changes in MDSC numbers and functionality occur during aging. Environmental factors including
elevated cytokine levels, increased myelopoiesis, and malignancies impact MDSC numbers. Those effects impact alloimmunity in multiple ways including T-cell
suppression, Treg activation and migration, and aggravating IRI.
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experiments have shown that these effects are dependent on iNOS,
an enzyme that is upregulated in graft-infiltrating MDSC (16, 45).
Additional supporting evidence comes from findings showing that
the suppressive ability of MDSC is mediated by nitric oxide (NO),
secreted subsequent to receiving signals from activated T cells
including IFN-g and contact-dependent stimuli (16). Additional
experiments in iNOS knockout mice demonstrated that the
inhibition of activated T cells in lymphoid organs depended on
NO (50). In support of clinical findings, MDSC play also a critical
role in initiating the beneficial effects of Tregs with CCL5 secreted by
graft infiltrating MDSC promoting the accumulation of Tregs in
tolerant kidney allografts (20, 21, 51). Conversely, boosting Tregs
increased the numbers of CD11b+Gr-1(-low) MDSC in recipient
peripheral blood, spleen, and the graft itself (49).

Adoptive transfer experiments demonstrated that the expansion
of MDSC is initiated by the inhibitory receptor immunoglobulin-like
transcript (ILT)-2 and its ligands leading to prolonged allograft
survival (52). Other cytokines including IL-2C, IL-33, and TNF-a
have also been shown to induce MDSC resulting in a suppression of
T-cell activation (53–56). Additional studies confirmed these findings;
however, no alterations of antigen-specific CD8+ T-cell proliferation
and cytotoxicity were found (57, 58). Based on previous findings, the
combinatorial application of induced MDSC and Tregs exhibited
superior immunosuppressive capabilities with prolonged graft
survival compared to the treatment with individual cell populations
(53). Notably, other regulatory myeloid cell types including
tolerogenic dendritic cells and regulatory/suppressor macrophages
have also been shown to prolong skin allograft survival by distinct
mechanisms of action (59).
THE ROLE OF MDSC IN ISCHEMIA–
REPERFUSION INJURY

Ischemia–reperfusion injury (IRI) is an inevitable component of solid
organ transplantation. In general, pro-inflammatory events are
initiated upon blood flow cessation and resumption causing a
myriad of immune cells to migrate into the graft. As an immediate
response, innate immune cells including neutrophils and
macrophages infiltrate the organ, secreting pro-inflammatory
cytokines while initiating phagocytosis and complement activation
(60–62).Adaptive immune cells suchasTandBcells contribute to the
deleterious events by producing pro-inflammatory cytokines,
lysosomal enzymes, and ROS (63–65). Recent data indicate that
MDSC may also play an important role in IRI. In murine kidney
transplant models, MDSC have been found to aggravate IRI. These
findings may be explained by the differentiation of M-MDSC into
harmful macrophages and dendritic cells (66). However, the
immunosuppressive effects that MDSC exert on adaptive CD4+ and
CD8+ T cells were not sufficient to prevent an impairment of renal
function. Supporting evidence comes from findings that
pharmacological depletion of MDSC in kidney IRI models using
anti-Gr-1 antibodies entailed beneficial effects. Interestingly, human
C-reactive protein (CRP), which has previously been found to
exacerbate renal IRI, has been shown to specifically promote the
kidney infiltration of G-MDSC, a subtype displaying augmented
Frontiers in Immunology | www.frontiersin.org 4
immunosuppressive activities. Consistently, blocking CRP reduced
the numbers of G-MDSC and attenuated albuminuria, suggesting a
regulating role ofCRP inMDSCactivation (67). In contrast, increased
renal infiltration of MDSC upon granulocyte colony-stimulating
factor (G-CSF) administration improved renal function after IRI
and attenuated acute tissue injury as well as chronic renal fibrosis
(68,69). Inaddition, furthermechanistic studieshaveshownthat renal
fibrosis can be alleviated by MDSC through CCL5-CCR-5 axis
regulationandTGF-b1/Smad/Snail signalingpathway inhibition(70).
CHANGES OF MDSC IN AGING

Aging is characterized by an increased accumulation of
proinflammatory cytokines together with modifications of the
composition and the effects of various immune cell types of both
theadaptiveand innate immunesystems (71,72). Ingeneral, adaptive
immune function appears modified in aging, manifesting clinically
with a compromised response to vaccines and a limited capacity to
combat infections (73).At a cellular level, thymic involution leads to a
decreasedproductionofnaïveTcells in the elderlywitha restrictedT-
cell receptor repertoire. In addition, functional impairments of naïve
CD4 T cells that include a compromised proliferation upon
stimulation by antigen-presenting cells in addition to a limited
cytokine production have been observed. Consistently, effector
functions have been inferior when compared to cells derived from
young progenitors (74). In parallel, B-cell production also declines
with age and an accumulation of phenotypically distinct, age-
associated B cells has been reported (75–77). These findings are in
line with functional limitations, leading to an impaired capacity to
mount sufficient antibody responses (78). Furthermore, functional
changes in natural killer T cells (NKT cells) have been observed in
elderly individuals (79). In addition to changes in the adaptive
immune response, alterations of innate immune cells have also
been found. Macrophages from old mice have shown a reduced
production of pro-inflammatory cytokines following stimulation by
lipopolysaccharides (LPS) (80–83). These findingsmay be attributed
to various age-related changes including a reduced Toll-like receptor
(TLR) expression, decreased nuclear factor kappa B (NF-kB) and
mitogen-activated protein kinase (MAPK) activation, and increased
levels of the signaling protein A20, which blocks TRAF6 signaling,
thus interfering with the TLR4 pathway (82, 84–88). In addition, an
impaired cytokine production by DCs and monocytes upon
stimulation has been reported (89, 90). MDSC are considered
progenitors of innate immune cells and increase in numbers with
aging (Figure 1) (91, 92). Elevated numbers of MDSC have been
shown to accumulate in the blood, bone marrow, and secondary
lymphoid organs in aging andmay, in fact, through the initiation of a
defective PI3K-Akt signaling pathway contribute themselves to
immune senescence (93, 94). Further experimental studies suggest
that the expansion ofMDSCwith aging relies, at least in part, onNF-
kB activation (95). In addition, a shift toward myelopoiesis in bone
marrow hematopoietic stem cells (HSC) occurs with aging and may
further promote the increase of MDSC in elderly individuals (96).
Moreover, MDSC could increase myelopoiesis themselves by
secreting TGF-b, a cytokine which promotes the differentiation of
July 2022 | Volume 13 | Article 917972

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Schroeter et al. Aging in MDSC Affects Alloimmunity
hematopoietic stem cells into myeloid cells (97). Consistently,
elevated numbers of MDSC have also been shown in older humans
with elevated levels of proinflammatory cytokines including TNF-a,
IL-6, and IL-1b necessary for MDSC differentiation. Interestingly,
elderly individuals with a history of cancer showed significantly
higher levels of MDSC in the peripheral blood, pointing toward a
role of MDSC in cancer development (6–8, 98). Additional evidence
comes from clinical studies that also observed elevated numbers of
MDSC with a predominance of the granulocytic subtype in old
individuals (99). At a functional level, older MDSC isolated from
spleen and bonemarrowhave shown an augmented ability to inhibit
T-cell functions when compared with MDSC from young donors.
Consistently, removal of MDSC from aged splenocyte cultures
restored T-cell proliferation in vitro and was associated with
reduced NO levels (93). Additional supporting evidence comes
from studies showing a correlation between increased MDSC levels
in oldmice and limitedT-cell tumor cytotoxicity. In addition,MDSC
also delayed the response to tumor cells when adoptively transferred
to youngmice. Mechanistically, age-associated induction of arginase
1 in MDSC may play an important role in suppressing T-cell
functions (100). Thus, age-related changes in MDSC and their
subsequent impact on other immune cells may influence allograft
tolerance in various ways. In addition, age-associated limited Th1
alloimmunity may enhance the effects by older MDSC (101).
Moreover, suppressive capacities of Tregs have been found to be
well-preserved experimentally, thus promoting graft acceptance
(101). At a molecular level, an augmented expression of senescent
cell markers p16 and p21 has been found in agingMDSC. However,
other senescence-associated phenotypes including the accumulation
of gH2AXand53BP1 foci, reduced laminB1expression, and induced
IL-6 expression have not been detected. Moreover, senolytics (ABT-
263) were unable to eliminate these cells (102).

Overall, senescence of MDSC remains ill-defined currently. Age-
related changes in MDSC favoring a generally immunosuppressive
environment may have beneficial effects in transplantation,
ameliorating alloimmunity in older recipients.
THERAPEUTIC STRATEGIES

Over the recent past, therapeutic strategies utilizing MDSC have
been proposed for various immune-related diseases (103). In
cancer, MDSC contribute to tumor progression, metastasis
development, and resistance to immunotherapeutic drugs by
establishing an immunosuppressive microenvironment (104, 105).
Thus, various therapeutic strategies including the depletion of
MDSC, blocking MDSC migration, and attenuating their
immunosuppressive capacities have been tested (106–109).
Autoimmune diseases such as multiple sclerosis, myasthenia
gravis, and rheumatoid arthritis have also been shown to be
associated with changes in MDSC, and corresponding therapeutic
strategies have been proposed (110–113). In transplantation,
adoptive transfer of MDSC has yielded promising results in
various experimental models (56, 114, 115). Promoting the
accumulation of MDSC through nanoimmunotherapy targeting
myeloid cell precursors demonstrated graft tolerance in most
Frontiers in Immunology | www.frontiersin.org 5
recipient animals. Intriguingly, the effect was already present after
short-term administration of the nanobiologics (116). Further
supporting evidence comes from other experimental models in
which adoptively transferred MDSC were found to expand after
transplantation, migrating into the graft and prolonging allograft
survival (117). Moreover, MDSC facilitated the recruitment of
Tregs into cardiac allografts by inducing programmed death
ligand-1 (PD-L1) (118). It needs to be stressed, however, that not
all studies confirmed the effects of MDSC on graft prolongation (45,
119). MDSC have thus far not been tested clinically in transplant
patients. Notably, MDSC may lose their immunosuppressive
functions in an already immune-activated environment as MDSC
transferred into patients with acute graft-versus-host-disease lost
their suppressive capacity and their potential to improve transplant
outcomes. Mechanistically, an inflammasome-induced
differentiation of MDSC into mature cells may play a role (120).
In addition to bone marrow-derived MDSC, induced pluripotent
stem cells (iPSC) have been evaluated for their immunosuppressive
potential. Interestingly, fibroblast-derived iPSC cultured in medium
containing GM-CSF, M-CSF, IL-4, and LPS have been able to
suppress allogeneic T- as well as B-cell response while reducing
alloantibody production in vivo (111, 121).

Taken together, MDSC cell therapy may, at least in theory,
have immunosuppressive potential in organ transplantation;
however, confirmatory clinical studies are missing (58).
CONCLUSION

MDSC have a profound impact on immune responses. While the
immunosuppressive capacities of MDSC may have potential in
clinical transplantation, effects need to be confirmed. Side effects
including an increased risk for malignancies need to be carefully
assessed (122). Aging impacts both MDSC numbers and
functionality with potential consequences on their capacity to
modulate immune responses. Understanding those aspects in
greater detail may contribute to novel therapeutic strategies for
improving allograft survival in an age-specific fashion (45, 56, 58,
123, 124). Moreover, monitoring the frequencies of MDSC as
biomarkers in organ transplant recipients may provide
additional valuable diagnostic information.
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