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Liver inflammation and the immune response have been recognized as critical
contributors to cirrhosis pathogenesis. Immunity-related genes (IRGs) play an essential
role in immune cell infiltration and immune reactions; however, the changes in the immune
microenvironment and the expression of IRGs involved in cirrhosis remain unclear. CD45+
liver cell single-cell RNA (scRNA) sequencing data (GSE136103) from patients with
cirrhosis were analyzed. The clusters were identified as known cell types through
marker genes according to previous studies. GO and KEGG analyses among
differentially expressed genes (DEGs) were performed. DEGs were screened to identify
IRGs based on the ImmPort database. The protein-protein interaction (PPI) network of
IRGs was generated using the STRING database. IRGs activity was calculated using the
AUCell package. RNA microarray expression data (GSE45050) of cirrhosis were analyzed
to confirm common IRGs and IRGs activity. Relevant regulatory transcription factors (TFs)
were identified from the Human TFDB database. A total of ten clusters were obtained.
CD8+ T cells and NK cells were significantly decreased in patients with cirrhosis, while
CD4+ T memory cells were increased. Enrichment analyses showed that the DEGs
focused on the regulation of immune cell activation and differentiation, NK-cell mediated
cytotoxicity, and antigen processing and presentation. Four common TFs, IRF8, NR4A2,
IKZF3, and REL were expressed in both the NK cluster and the DEGs of liver tissues. In
conclusion, we proposed that the reduction of the CD8+ T cell cluster and NK cells, as
well as the infiltration of CD4+ memory T cells, contributed to immune microenvironment
changes in cirrhosis. IRF8, NR4A2, IKZF3, and REL may be involved in the transcriptional
regulation of NK cells in liver fibrosis. The identified DEGs, IRGs, and pathways may serve
critical roles in the development and progression of liver fibrosis.
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INTRODUCTION

Liver cirrhosis is the irreversible form of liver fibrosis. It was the
11th highest contributor to global mortality from 2000 to 2019
according to the WHO (1). Liver fibrosis is a common and
complex pathological pathway that results from diverse liver
injuries. Pathological, persistent liver injury leads to hepatocyte
necrosis and hepatic stellate cell (HSC) activation which can
result in distortion of hepatic architecture, nodular formation,
and excessive extracellular matrix (ECM) production. When
hepatic architecture is dysregulated and excessive nodules
occur, liver fibrosis converts to cirrhosis with progressive loss
of liver function. In recent years, liver inflammation and liver
immune microenvironment changes have been recognized as
critical contributors to cirrhosis pathogenesis (2, 3).
Accumulating experimental evidence has revealed that the
immune cells can regulate both the progression and regression
of liver fibrosis.

During the fibrogenic process, the immune system
participates in wound healing and tissue repair by initiating
inflammation. After liver injuries, the infiltrated immune cells
are recruited to the site of injured hepatocytes and contribute to
the liver fibrotic cascade by secreting pro-inflammatory
cytokines such as TNF-a, IL-6, and CCL4 (4). These cytokines
mediate the crosstalk between immune cells and HSCs, which
leads to HSC activation and transdifferentiation to
myofibroblasts. Some cytokines such as IFN-g, can also
regulate ECM synthesis and remodelling. For viral hepatitis
related fibrosis, the CD4+ T cell activity and CD8+ T cell
cytotoxic effects to achieve viral clearance can directly mediate
HSC activation and fibrogenesis (5). In addition, natural killer
(NK) cells display anti-fibrotic activity by directly killing
activated HSCs, inducing HSC apoptosis and cell cycle arrest
(6). Immunity-related genes (IRGs) play essential roles in
immune infiltration; however, the expression characteristics of
IRGs and immune microenvironment changes in cirrhosis
remain unclear.

Single-cell RNA (scRNA) sequencing technology advances
have made it possible to isolate and determine the
transcriptomic profiles of liver immune cells. This study
investigated the expression characteristics of IRGs and immune
microenvironment changes in cirrhosis by combining single-cell
RNA (scRNA) and RNA microarray expression data.
METHODS

ScRNA Sequencing Data Analysis
Published scRNA-seq data were retrieved from the Gene
Expression Omnibus (GEO) dataset GSE136103 (7). Single-cell
transcriptomic data of CD45+ liver leukocytes were chosen from
the liver tissue of 5 healthy controls and 5 cirrhotic patients. The
Seurat R package (Version 4.1.0) was used for downstream
principal component analysis (PCA) and t-distributed
stochastic neighbour embedding (t-SNE) analysis. Cells
with <200 genes, >2,500 genes, or >5% mitochondrial genes
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were filtered out. A total of 30,934 filtered liver cells were selected
for analysis. Gene expression was normalized using the
“LogNormalize” method and further scaled. After data
normalization, 2000 highly variable genes (HVGs) were
identified using the Seurat “FindVariableGene” function with
default parameters. Subsequently, PCA was applied to identify
significant principal components (PCs), and the P value
distribution was visualized using the “JackStraw” and
“ScoreJackStraw” functions. Ultimately, fifteen PCs were
selected for t-SNE analysis. The “FindClusters” function was
used to classify the cells into twenty different clusters with a
resolution of 0.5. The Seurat “FindAllMarkers” function with
default parameters (logfc threshold = 0.5) was applied to identify
marker genes for each cluster. Cell type identification was
performed based on the marker genes in each cluster and
manually checked according to previous studies (8, 9). The
Seurat “FindMarkers” function with default parameters (logfc
threshold = 0.25) was applied to identify differentially expressed
genes (DEGs) between the healthy group and the cirrhotic group.
The EnhancedVolcano R package (1.12.0) was used to visualize
the DEGs between the two groups.

RNA Microarray Expression Data Analysis
Raw data of GSE45050 were downloaded from the GEO database
using the GEOquery R package (Version 2.62.2) (10). DEGs were
calculated using the limma R package (Version 3.50.1). Genes
with an adjusted P value <0.05, and an absolute logFC > 0.8 were
considered DEGs. Volcano and heatmap plots were generated
using the ggplot2 R package (Version 3.3.5).

IRG Scoring
DEGs of scRNA data and RNA microarray expression data were
screened separately to identify IRGs based on the ImmPort database
(https://www.immport.org/shared/home), and IRGs were selected
for IRG scoring with the AUCell R package (Version 1.16.0).
According to the area under the curve (AUC) value of the selected
IRGs, gene expression rankings of each cell were generated to
estimate the highly expressed gene set proportion in each cell. Cells
expressing more genes within the gene set had higher AUC values.
The “AUCell_exploreThresholds” function was used to determine
the threshold to identify gene set active cells. Then, the AUC score of
each cell was mapped to the UMAP embedding using the ggplot2 R
package to visualize the active clusters.

GO and KEGG Enrichment Analysis
The DEGs in GSE136103 were analyzed by Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses. The ClusterProfiler R package (Version
4.2.2) was used to visualize the GO and the KEGG pathway data.

PPI Network Construction
Protein-protein interaction (PPI) network analysis was
performed using STRING (https://string-db.org/). A functional
network was constructed through Cytoscape (Version 3.9). The
Cytoscape plug-in cytoHubba was used to select the hub genes
based on the degree method.
July 2022 | Volume 13 | Article 918445
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RESULTS

ScRNA Profiling of Liver Leukocytes
in Cirrhosis
The scRNA sequencing dataset (GSE136103) from the GEO
database was analyzed, which included CD45+ liver leukocytes,
comprising 15,462 cells from liver cirrhosis patients and 21,779
cells from controls. After filtration, 30,934 cells comprising
11,974 cells from cirrhotic patients and 18,960 cells from
healthy controls were retained. The expression characteristics
of each sample are shown in (Figure 1A). nCount_RNA, which
represents the number of unique molecular identifiers (UMI),
positively correlated with nFeature_RNA, which represents the
number of genes, with a correlation coefficient of 0.82
(Figure 1B). The top 10 hypervariable genes (HVGs) were
identified (Figure 1C). IGKC and IGHG1 are the top two
HVGs, which encode allotypes of immunoglobulin that
regulate antigen-binding activity and immunoglobulin receptor
binding activity (11). PCA identified all 20 PCs with the P
value <0.05, as visualized with JackStrawPlot (Figure 1D).
Sixteen separate clusters were identified using 10 PCs, and the
top 5 marker genes of each cluster are listed (Figure 1E). These
clusters could be identified as known cell lineages through
marker genes, according to a previous study (8, 9). The ten
clusters were visualized using the t-SNE algorithm (Figure 2A).
Compared with the healthy group, the CD8+ T cluster and NK
cluster had a significantly lower frequency of their cells in the
cirrhotic group. The CD4+ memory T cluster had an increased
percentage of CD4+ memory T cells in the cirrhotic group.
(Figure 2B). The expression of cell type marker genes is shown
in the dot plot (Figure 2C) and violin plot (Figure 2D). The cell
Frontiers in Immunology | www.frontiersin.org 3
proportions of each cluster in two groups are shown in
Figure 2E. The number and proportion of each cluster in each
sample are shown in Figure 2F respectively. The CD8+ T cluster
and NK cluster were significantly reduced in the cirrhotic group
compared with the healthy group (11.6% vs. 36.4%, 15.7% vs.
28.7%), while the CD4+ T cells percentage was increased in the
cirrhotic group (41.0% vs. 17.8%).

DEGs of Liver Cirrhosis and
Enrichment Analysis
To investigate the expression features of cirrhotic tissues, the
FindMarkers function with default parameters (logfc threshold =
0.25) was applied to identify DEGs in GSE136103 between the two
groups. A total of 191 DEGs were found. The heatmap and the
volcano plot of DEGs were shown in Figures 3A, B. We further
performed GO and KEGG analyses of the DEGs (Figures 3C, D).
These terms were mainly related to immune cell activation, T cell
differentiation, NK-cell mediated cytotoxicity, and antigen
processing and presentation. Among the DEGs, the expression
levels of some IRGs, such as FYN, IFNG, KLRD1, and HLA-G
which are related to the process of NK-cell mediated cytotoxicity;
some transcription factors (TFs) such as ID2, ETS1, IRF1, and
PRDM, which are essential for the development and
differentiation of NK cells were decreased in the cirrhotic group.
The change in these IRGs and TFs may contribute to the decrease
in the NK-cell population (Supplementary Figures 1, 2)

IRGs of Liver Cirrhosis
To investigate the IRGs expression characteristics in cirrhotic
patients, DEGs were screened to generate IRGs based on the
ImmPort database, which summarizes IRGs from published
B C

D E

A

FIGURE 1 | scRNA analysis of liver cirrhosis. (A) The gene features, gene counts, and mitochondrial gene percentage of each sample. (B) Correlation between
genes and counts in each sample. (C) HVGs are colored red, and the top 10 HVGs are labeled. (D) PCs selection using the JackStraw function. (E) Heatmap of the
top 5 DEGs in each cluster. The top 5 DEGs are labeled in yellow.
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studies. The number of overlapping IRGs between the ImmPort
database and DEGs was 55 (Figure 4A). The PPI network was
constructed to show the relationship between IRGs (Figure 4B).
The top ten hub IRGs including CD8A, IFNG, CCL4, CCL3,
CXCR4, ALB, JUN, CCL5, SOCS3, and FOS were selected. These
genes may play critical roles in the process of liver fibrosis
(Figure 4C and Supplementary Table 1). To investigate the
IRGs expression characteristics, the IRGs activity of each cell line
was identified using the AUCell R package (Figure 4D). Cells
expressing more genes exhibited higher AUC values, and these cells
were mainly in CD16+ monocytes and NK cells (Figure 4E).

DEGs of Liver Cirrhosis From RNA
Microarray Expression Data
To confirm the expression features of liver tissues in cirrhosis, the
RNA microarray expression dataset GSE45050, which included 5
cirrhotic patients and 3 controls, was analyzed to explore DEGs in
liver cirrhosis and screen the IRGs. A total of 507 up-regulated and
399 down-regulated DEGs were retained (Figure 5A and
Frontiers in Immunology | www.frontiersin.org 4
Supplementary Table 2). A heatmap of the top100 up-regulated
and top100 down-regulated DEGs is shown (Figure 5B). There
were 103 overlapping IRGs between the ImmPort database and
DEGs (Supplementary Table 3). The IRGs activity of each cell line
was also identified (Figure 5C), and the cells that exhibited higher
AUC values were also mainly in CD16+ monocytes and NK cells
(Figure 5D). To investigate the transcriptionally regulated activity
of IRGs, a list of 1,665 TFs was obtained from TFDB (http://
bioinfo.life.hust.edu.cn/HumanTFDB/#!/).Four common TFs,
IRF8, NR4A2, IKZF3, and REL were identified, which were
simultaneously the marker genes of the NK cluster and the
DEGs of liver tissues. (Figures 5E, F).

ScRNA Profiling of Cirrhosis by
Different Causes
To investigate the expression features of liver leukocytes in different
causes of cirrhosis, the scRNA sequencing dataset GSE136103 of 5
cirrhotic samples, including 11,974 cells was further analyzed. Of
these five cirrhotic samples, two samples, including 6089 cells, were
B

C D

E F

A

FIGURE 2 | Marker gene expression of each cluster. (A) tSNE projection of all liver CD45+ leukocytes. Different cell types were colored with unique colors. (B) tSNE
projection of the cirrhotic group and the control group. (C) Dot plot of cell type marker genes. Cell specific marker genes were selected according to previous
studies. The color of the dots represents the average expression, and size of dots represents average percentage of cells expressing the selected gene. (D) Violin
plot depicts the distributions of cell type marker genes in each cluster using density curves. The width of each violin plot corresponds to the frequency of cells with
relevant gene expression levels. (E) Cluster distribution in the two groups. (F) Cluster distribution in each sample.
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caused by non-alcoholic fatty liver disease (NAFLD), two samples,
including 3576 cells, were caused by alcohol, and one sample,
including 2309 cells, was caused by primary biliary cholangitis
(PBC). After identifying the cell lineages of every cluster according
to marker genes, ten clusters were visualized using the t-SNE
algorithm. The CD8+ T cells were decreased in all three groups,
and significantly decreased in the alcohol group (0.53%) and the PBC
group (13.7%). The reduction in the NK cells cluster was most
prominent in the PBC group (7.1%), followed by the NAFLD group
(13.1%). The CD4+ memory T cells cluster exhibited a prominent
increase in all three groups (49.9% of the PBC group, 37.9% of the
NAFLD group, and 36.3% of the alcohol group (Figure 6A). The
expression of cell type marker genes is shown in the dot plot
(Figure 6B) and Violin plot (Figure 6C). The cell proportions of
each cluster in the three groups are shown in Figure 6D.
DISCUSSION

Liver fibrosis is preceded by inflammation. Immune systems play a
vital role in regulating the fibrogenic process. Hepatocyte necrosis and
Frontiers in Immunology | www.frontiersin.org 5
HSC activation are major initiators. Activated HSCs secrete TGF-b,
which is a crucial pro-inflammatory and pro-fibrogenic factor. The
TGF-b/Smad signaling pathway is the classical fibrogenic pathway.
Tissue macrophages are attracted by the CCL2-CCR2 axis and
phagocytose necrotic hepatocytes and decrease ECM degradation
by regulating the expression of tissue inhibitors of metalloproteinase
(TIMP). Moreover, TLR4 signaling promotes fibrogenesis by
activating HSC, secreting adhesion molecules to recruit
macrophages, and boosting TGF-b signaling. The crosstalk between
persistent liver injury and the immune response, and the interactions
between liver cells and immune cells perpetuate fibrogenesis.

The T cell immune response is closely associated with liver
inflammation and viral clearance after hepatitis virus infection.
However, evidence indicates that T-cell immunity can also
influence the fibrosis process (12). Previous studies reported that
transferred CD8+ T cells contributed to liver fibrosis, and CD8+ T
cells were found to be able to mediate the direct activation of HSCs
in murine models (13). Another study reported that hepatic fibrosis
leads to the accumulation of liver resident IL10+ cells, and that these
cells could directly impair CD8+ T cell functions and result in the
development of hepatocellular carcinoma. CD4+ T cells activity
B

C D

A

FIGURE 3 | DEGs of cirrhosis from scRNA sequencing data. (A) Heatmap of all the DEGs. (B) Volcano plot (|logFC| > 0.25 and adjusted P value < 0.05).The DEGs
are colored red. (C) GO analysis of DEGs. The top 5 biological processes (BP), the top 5 cellular components (CC), and the top 5 molecular functions are shown.
(D) The top 10 KEGG pathways of DEGs.
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mediates the progression of liver fibrosis by intrinsic apoptosis (14),
by secreting signature cytokines IL-4, IL-10, and IFN-g (15), and by
stimulating other immune cells such as NK cells (16). Muhanna
et al. analyzed T cells distribution in cirrhotic tissues from 25 HCV
patients, sevenHBV patients, and six healthy controls (4). The study
found that CD4+ T cells and the CD4/CD8 ratio were decreased in
cirrhotic tissue, while the difference in intrahepatic CD8+ T cells
between the two groups was not significant. In this study, the
proportion of CD8+ T cells decreased in the cirrhotic group;
however, an increased proportion of CD4+ T cells, including
CD4+ effector T cells and CD4+ memory T cells, was found in
the cirrhotic group. This result is contrary to that of the study of
Muhanna, and there could be several reasons. First, in the study of
Muhanna, cirrhotic tissues were obtained by liver biopsy, which
could not represent immune microenvironment changes in the
entire liver. In this study (7), cirrhotic tissues were obtained from
patients who underwent liver transplantation. The tissues were
relatively complete and could reflect the complete landscape of
immune cell changes in cirrhotic tissues. Second, the etiologies
of cirrhosis in the two studies were different. In this study, the causes
of cirrhosis were NAFLD, alcohol, and PBC, while in the study of
Muhanna, the cirrhotic tissues came from patients with HBV or
HCV infection. The immune mechanisms of the fibrosis process
caused by different etiologies are not the same. Changes in T cell
populations are likely to be dependent on the underlying etiology
that drives the fibrosis process.

NK cells are a subgroup of cytotoxic cells of the innate immune
system and participate in regulating various liver diseases (17). NK
cells with activating receptors such as NKG2D, can be activated to
initiate apoptosis of other cells, and release inflammatory cytokines
such as IFN-g, to stimulate other immune cells (18). Numerous
Frontiers in Immunology | www.frontiersin.org 6
studies have indicated that NK cells manifest an anti-fibrotic effect
by exerting cytotoxicity to activated HSCs (6, 19). In addition, IFN-g
secreted by NK cells is another vital factor contributing to the anti-
fibrotic effects of NK cells. IFN-g not only inhibits HSC activation
and ECM synthesis directly (20) but also amplifies NK-cell
cytotoxicity against HSCs by promoting NKG2D expression on
liver NK cells to attenuate liver fibrosis (21). A decreased frequency
of NK cells with a reduction of function can be observed in the liver
of both murine cirrhotic models (22) and cirrhotic patients
(4, 23, 24). In this study, the proportion of the NK cluster cells
decreased significantly in the cirrhotic group, which was consistent
with previous findings. Thus, targeting NK cells may shed light on
the treatment of liver fibrosis.

Enrichment analysis of DEGs between the cirrhotic group
and the control group mainly focused on the regulation of
immune cell activation and differentiation, NK-cell mediated
cytotoxicity, and antigen processing and presentation, and these
immune reaction pathways may be associated with the fibrosis
process. We further investigated the IRGs of DEGs and the top
10 hub genes of the PPI network. Among these hub genes, some
are cytokines and chemokines closely related to liver fibrosis
(IFNG, CCL3, CCL4, CCL5, and CXCR4) (25, 26). JUN and FOS
are transcription factors and the members of the MAPK
signaling pathway. They are involved in TGF-b/Samd pathway
transduction (27) and can positively regulate HSC proliferation
and the progression of fibrosis (28). SOCS3 is a member of the
suppressor of cytokine signaling family and has a negative
regulatory effect on cytokines such as IFN-g (29). IRGs are
essential for immune reactions and immune infiltration. The
variation in these genes also reflected the changes in the immune
microenvironment of liver fibrosis.
B C

D E

A

FIGURE 4 | IRGs and IRG scores of cirrhosis from scRNA sequencing data. (A) Venn plot showing IRGs of DEGs from the GSE136103 dataset and the gene set of
the ImmPort database. A total of 55 IRGs were found. (B) The PPI network of the IRGs. (C) Results of the CytoHubba plugin and expanded the subnetwork. The
color change from yellow to red was indicative of the rank of protein, where deeper red staining indicates higher protein rank. (D) Score of 55 IRGs. The threshold
was chosen as 0.58. (E) UMAP plots of the IRG score in all clusters. CD16+ monocytes and NK cells express more genes and exhibit higher AUC values.
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The IRGs were enriched in the pathway of NK-cell mediated
cytotoxicity, suggesting a potential role of NK cells in cirrhosis.
In addition, the IRG scores were calculated according to the
expression of IRGs, and high scores were mainly found for
CD16+ monocytes and NK cells in both scRNA data and RNA
microarray expression data. We further explored the potential
regulatory mechanisms by investigating TF DEGs in the gene set
of the NK cluster. A total of 4 common TFs were found in both
the NK cluster and DEGs of liver RNA microarray expression
data. IRF8 is a transcription factor of the IFN regulatory factor
family that regulates the expression of IFN. IKZF3 is a member of
the zinc family, and its encoding protein is an important TF
involved in the regulation of lymphocyte development. Studies
have shown that the loci of IKZF3 is associated with PBC (30).
The encoding protein of REL is the subunit of NF-kB, and the
Frontiers in Immunology | www.frontiersin.org 7
NF-kB signaling pathway has particular relevance to liver fibrosis
(31). NR4A2 is a member of the orphan nuclear receptor family,
and the overexpression of NR4A2 suppresses the activation of
HSCs and ECM production (32). NK cell immune reaction and
these genes may play critical roles in the process of liver fibrosis

As previously mentioned, the immune mechanisms of fibrosis
caused by different etiologies are not the same; therefore, we further
explored the immune cell changes in cirrhotic patients caused by
NAFLD, alcohol, and PBC. NAFLD is hallmarked by hepatic
steatosis and is tightly associated with inflammation and insulin
resistance. NK-cell activities attenuate fibrosis progression of
NAFLD by regulating cytokine production (33, 34) and the
immune response of other immune cells (35). Our study showed
NK cells were decreased in the NAFLD group, and targeting NK
cells may be a feasible therapeutic strategy for NAFLD. Excessive
B
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FIGURE 5 | IRGs and relevant regulatory TFs of cirrhosis from the GSE45050 dataset. (A) Volcano plot of DEGs (|logFC| > 0.8 and adjusted P value < 0.05). Up-
regulated genes are colored red and down-regulated genes are colored blue. (B) Heatmap of the top 100 up-regulated and top 100 down-regulated DEGs.
(C) Score of 103 IRGs. The threshold was chosen as 0.28. (D) UMAP plots of the IRG score in all clusters. CD16+ monocytes and NK cells express more genes
and exhibit higher AUC values. (E) Venn plot showing TFs in the NK cluster of the GSE136103 dataset, Human TF database, and TFs in DEGs of the GES45050
dataset. (F) Dot plot of the 4 identified common TFs.
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alcohol consumption affects cellular immunity. Early studies already
indicated that alcohol abuse resulted in reduced T cell numbers (36,
37). Alcohol exposure disrupted the balance between different T cell
subsets leading to a decreased frequency of naïve CD4+ T cells and
CD8+ T cells, as well as an increased frequency of memory T cells
(38, 39), and this conclusion was further supported by our results. It
is striking that CD8+ T cells were significantly decreased in the PBC
group. Generally, it is thought that CD8+ T cells activation and
infiltration are mediators of bile duct damage, and reports have
demonstrated that special differentiated CD8+ T cells are increased
in PBC patients (40, 41). Further studies are urgently needed to
explore the changes in the overall level of T cell subsets and detailed
immunologic mechanisms.

In the present study, the scRNA sequencing data GSE136103
was used, which came from the study conducted by
Ramachandran et al. (7). The study isolated all hepatic non-
parenchymal cells (NPCs) and analyzed the microenvironment
of human liver cirrhosis to provide a spatial map and a
conceptual framework of liver fibrosis. Our study only
analyzed and devoted attention to immune cells (CD45+
NPCs) and divided these cells into more detailed immune
subpopulations to explore the immune microenvironment
change in cirrhosis, which was a supplement to the original
research. However, the study had several limitations. First, the
scRNA data showed the changes in the numbers of immune cells,
but could not reflect their functional changes. Second, the sample
size, especially the number of cirrhotic samples of different
etiologies was not large enough to draw accurate conclusions.

In conclusion, we proposed that the reduction in the CD8+ T
cluster and NK cells, as well as the infiltration of CD4+ memory
Frontiers in Immunology | www.frontiersin.org 8
T cells, contributed to immune microenvironment changes in
cirrhosis. The identified DEGs, IRGs, and pathways may play
critical roles in the development and progression of liver fibrosis.
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type marker genes. (C) Violin plot depicts the distributions of cell type marker genes in each cluster using density curves. (D) Cluster distribution in the three groups.
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Supplementary Figure 1 | Gene expression levels of IRGs (FYN, IFNG, KLRD1,
and HLA-G) on t-SNE plots between the healthy group and the cirrhotic group. Red
coloration indicates the expression of the genes.

Supplementary Figure 2 | Gene expression levels of TFs (ID2, ETS1, IRF1, and
PRDM1) on t-SNE plots between the healthy group and the cirrhotic group. Red
coloration indicates the expression of the genes.

Supplementary Table 1 | IRGs of liver cirrhosis from GSE136103 dataset.

Supplementary Table 2 | DEG of liver cirrhosis from GSE45050 dataset.

Supplementary Table 3 | IRGs of liver cirrhosis from GSE45050 dataset.
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