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The female reproductive tract harbors a unique microbiome, especially the vagina. The
human vaginal microbiome exhibits a low diversity and is dominated by Lactobacillus
species, compared to the microbiome of other organs. The host and vaginal microbiome
mutually coexist in the vaginal microenvironment. Host cells provide Lactobacillus
glycogen as an energy source, and Lactobacillus produce lactic acid, which lowers
vaginal pH thereby preventing growth of other bacteria. Bacterial vaginosis can modulate
host immune systems, and is frequently associated with various aspects of disease,
including sexually transmitted infection, gynecologic cancer, and poor pregnancy
outcomes. Because of this, numerous studies focused on the impact of the vaginal
microbiome on women`s health and disease. Furthermore, numerous epidemiologic
studies also have demonstrated various host factors regulate the vaginal microbiome.
The female reproductive tract undergoes constant fluctuations due to hormonal cycle,
pregnancy, and other extrinsic factors. Depending on these fluctuations, the vaginal
microbiome composition can shift temporally and dynamically. In this review, we highlight
the current knowledge of how host factors modulate vaginal microbiome composition and
how the vaginal microbiome contributes to maintaining homeostasis or inducing
pathogenesis. A better understanding of relationship between host and vaginal
microbiome could identify novel targets for diagnosis, prognosis, or treatment of
microbiome-related diseases.
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INTRODUCTION

The presence of vaginal microbiota was first observed in 1892, when German obstetrician/
gynecologist Albert Döderlein identified a gram-positive, non-spore forming rod in the vaginal
fluid (1). This bacterium was called Döderlein`s bacillus at the time of its discovery, but it was later
renamed Lactobacillus due to its ability to produce lactic acid. Döderlein also discovered
Döderlein`s bacillus had an antagonistic action on Staphylococcus growth and the absence of
Döderlein`s bacillus in vaginal fluid was associated with puerperal fever (2, 3). These fundamental
findings formed the basis of our current knowledge that Lactobacillus is the most prevalent
bacteria in vagina and is central for women`s health. With the introduction and rapid
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advancement of high throughput sequencing methodologies, it
is now widely accepted that the vaginal microbiome is more
diverse and highly dynamic than previously assumed (4–6).
Furthermore, numerous observational studies have highlighted
that a non-Lactobacillus dominant vaginal microbiome is
correlated with various diseases, including sexually
transmitted infections (STIs), gynecologic cancer, infertility,
and preterm birth (7–12). However, most of these correlational
results were not supported by experimental study using animal
models due to the uniqueness of human vaginal microbiome.
This lack of experimental evidence makes it difficult to develop
new diagnostic and therapeutic tools. Thus, there is an urgent
need to understand mechanisms underlying the association
between vaginal microbiome and its related diseases. In this
review, we discuss current understanding and gaps in
knowledge regarding the vaginal microbiome, focusing on
host factors that change vaginal microbiome composition and
how vaginal microbiome affects host reproductive homeostasis
and disease.
VAGINAL MICROBIAL COMMUNITY

A thorough characterization of the optimal/healthy bacterial
community is a fundamental issue in vaginal microbiome
research. It was initially thought the vaginal microbiome
simply consisted of Lactobacillus. Following the introduction of
high throughput sequencing methods, it is now well established
that the vaginal microbiome is more diverse than previously
thought (4, 5, 13). Critically, the vaginal microbiome
composition dynamically changes in response to various
intrinsic and extrinsic factors (5, 6). Many scientists have tried
to define optimal vaginal microbial composition despite
tremendous difficulty due to the dynamic nature of the vaginal
microbiome. In 2011, Ravel et al. profiled the microbial
composition of healthy 396 north American women in
reproductive age (4). In this cohort, five major bacterial
communities were identified. Four of Community-State Types
(CSTs) were dominated by Lactobacillus species (CST-I; L.
crispatus, CST-II; L. gasseri, CST-III; L. iners, CST-V; L.
jensenii), whereas CST-IV was characterized by a high diversity
and high proportions of anaerobes, including Prevotella,
Dialister, Atopobium, Gardnerella, Megasphaera, Peptoniphilus,
Eneahtia, Eggerthella, Aerococcus, Finegoldia, and Mobiluncus.
Gajer et al. further divided CST-IV into CST-IVA and CST-IVB
according to abundance of Lactobacillus and other anaerobes
(CST-IVA; moderate Lactobacillus abundance, CST-IVB; high
abundance of Atopobium, Prevotella, Parvimonas, Sneathia,
Gardnerella, Mobiluncus, and Peptoniphilus) (5). This CST
nomenclature is still widely used. In the cohort from Ravel`s
report, the vaginal microbiome of 75% of women are dominated
by Lactobacillus species (4). In other words, the vaginal
microbiome of the remaining 25% of women was classified as
CST-IV, despite being healthy. This finding is remarkable
because it indicates that diverse vaginal microbiome is not
always associated with the disease status.
Frontiers in Immunology | www.frontiersin.org 2
HOST FACTORS DETERMINING VAGINAL
MICROBIAL COMMUNITY

The vaginal microbiome composition varies across hosts
depending on predisposing factors and physiologic status. In
addition, vaginal microbiome can be altered by lifestyle factors,
including diet, sexual activity, hygienic practice, antibiotics use,
contraceptives, smoking, stress, and obesity (Figure 1) (14–18).
Next, we will discuss several key factors that may impact the
vaginal microbial community.

Race, Ethnicity, and Genetic Factors
A large body of evidence has demonstrated the composition of
vaginal microbiome differs across races and ethnicities. In
addition to reporting on classifying CSTs in the vaginal
microbiome, Ravel et al. also reported that black and Hispanic
women were more likely to have CST-IV than white and Asian
women (4). These results were further supported by the Human
Microbiome Project (HMP) (19). In this study, European
ancestry women were more likely to have a Lactobacillus
dominant community, whereas African ancestry women
tended to harbor a diverse microbial community, which was
characterized by a high prevalence of Gardnerella vaginalis and
bacterial vaginosis associated bacteria (BVAB). Differences
across ethnicity were observed even at the Lactobacillus species
level. Lactobacillus iners is the most common species in African
ancestry women and Lactobacillus crispatus is the most common
species in the vagina microbiome of European ancestry women
(4, 13, 19). These differences across races and ethnicities suggest
host genetic factors regulate the composition of the vaginal
microbiome. Indeed, several studies have suggested there is a
relationship between host genetic factor and microbial
composition. An analysis of the vaginal microbiome in Korean
monozygotic (MZ) twins, dizygotic (DZ) twins, and their
families revealed the vaginal microbiomes of MZ twin pairs
were more similar than DZ twins and cohabiting families.
Subsequent analysis revealed Prevotella sp. was the most
heritable taxa, and variations in the IL-5 gene were associated
with Prevotella sp. heritability (17). In similar study with
American MZ and DZ twin women, Lactobacillus crispatus
was heritable among European ancestry, but not African
ancestry (17). Another study reported an association between
genetic factors and vaginal microbiome composition in Kenyan
women (20). The authors proposed that genetic variations
associated with innate immune system and cell signaling could
shape the vaginal microbiome composition. We can gain insight
into the host genetic factors that affect the vaginal microbiome
composition from these studies. However, the specific genetic
variations and the mechanisms by which they may determine the
vaginal microbiome composition remain unclear.

Hormonal Changes and Pregnancy
There are several hypotheses to explain why the human vaginal
microbiome is unique and dominated by Lactobacillus. Some of
these hypotheses are mechanistic-based, whereas others focus on
evolution (21). Though the existing hypotheses cannot clearly
June 2022 | Volume 13 | Article 919728
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explain the unique nature of the human vaginal microbiome, it is
widely accepted that estrogen and glycogen deposition in the
vaginal epithelium are key factors. The vaginal mucosa of
reproductive women is covered by a stratified multilayered
squamous epithelium (22). Vaginal epithelial cells deposit
intracellular glycogen following estrogen stimulation.
Furthermore, humans have a relatively higher concentration of
glycogen in vagina than other mammals (21). Although
Lactobacillus cannot directly metabolize glycogen, a- amylase
in the human genital tract can cleave glycogen into smaller
carbohydrates, such as maltose, maltotriose, maltopentaose and
maltodextrins, which Lactobacillus use as an energy source (23).
During metabolic processes, Lactobacillus produces lactic acid
and creates an acidic vaginal microenvironment (pH < 4.5) (24,
25). Consequently, other bacterial growth is suppressed (26).
Because estrogen is essential for inducing Lactobacillus
dominancy, many researchers have investigated the effects of
hormonal changes on the vaginal microbiome from
various perspectives.

The vaginal microbiome composition fluctuates in response
to hormonal changes throughout women`s life. Because
maternal estrogen passes through the placenta into the blood
stream of the fetus, reproductive organs of the newborns are
affected by maternal estrogen during the early days after birth
(27). During this short period, the newborn vaginal epithelium
reflects the glycogen content of an adult (28). After the maternal
estrogen effects disappear, the concentration of vaginal glycogen
becomes low until puberty. Therefore, it is likely the vaginal
microbiome of prepubertal girls are not dominated by
Frontiers in Immunology | www.frontiersin.org 3
Lactobacillus species. In fact, an early cultivation method study
demonstrated that vaginal microbiota of prepubertal girls mainly
consisted of Staphylococcus epididermis, Enterococci, Escherichia
coli (aerobic microbe), Peptococcus, and Peptostreptococcus
(anaerobic microbe) (29). A recent 16s rRNA sequencing study
revealed the vaginal microbiome of healthy prepubertal girls was
dominated by Prevotella, Porphyromonas, and Ezakiella (30).
Similar to prepubertal period, vaginal glycogen levels in
menopausal women are lower than in premenopausal women
(31). In line with this, the vaginal microbiome of
postmenopausal women is also characterized by a low
abundance of Lactobacillus species and high diversity (32). In a
study of 87 American women, menopausal status and CST were
closely associated, and postmenopausal women were more likely
classified as CST-IVA (33). Critically, Lactobacillus loss following
menopause could be restored by hormonal replacement therapy,
demonstrating the importance of estrogen in regulating vaginal
microbiome composition (18).

Even in reproductive aged women, the vaginal microbiome is
affected by various physiologic changes, such as menstrual cycle
and pregnancy. Several longitudinal studies demonstrated
temporal dynamics during menstrual cycle. In a notable study,
Gajer et al. analyzed vaginal swab samples from 32 reproductive
aged women obtained twice weekly for 16 weeks (5). Despite
individual differences, the vaginal microbiome composition
rapidly changed throughout hormonal cycle in some
participants. This vaginal microbiome instability was most
notable during menses. Another longitudinal study using
polymerase chain reaction reported similar results, that the
FIGURE 1 | Various intrinsic and extrinsic factors that affect vaginal microbial community. The composition of the vaginal microbiome differs across host
predisposing factors, such as race, ethnicity, and genetic variation. Lifestyle factors including diet, sexual behavior, hygienic practice, contraceptives, smoking, stress,
and obesity also affect vaginal microbiome composition. Particularly, Lactobacillus abundance changes by level of glycogen, which deposits in epithelial cells upon
estrogen stimulation. Prepubertal girls and postmenopausal women have relatively low abundance of lactobacillus species.
June 2022 | Volume 13 | Article 919728
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vaginal microbiome was highly dynamic during menstrual cycle.
In this study, Gardnerella vaginalis distinctively increased during
menses. The authors hypothesized that iron enrichment
following erythrocyte lysis is associated with increased
Gardnerella vaginalis abundance (6).

Contrary to dynamic change observed throughout the menstrual
cycle, the vaginal microbiome is relatively stable during pregnancy.
Romero et al. longitudinally evaluated vaginal samples from non-
pregnant women and pregnant women who delivered at term
without complication. The authors demonstrated bacterial
communities of pregnant women had a greater Lactobacillus
abundance and were more stable compared to non-pregnant
women. Although there were some microbial community
transitions in pregnant women, microbial community of pregnant
women often convert from a Lactobacillus dominated CST to
another Lactobacillus dominated CST, not to the high diversity
CST-IV (34). HMP data also revealed the vaginal microbiome was
stable and dominated by Lactobacillus during pregnancy (35).
Interestingly, microbiome stability and Lactobacillus abundance of
pregnant African ancestry women were prominent during second
and third trimesters, which are characterized by high estrogen levels.
This finding also suggests a positive correlation between estrogen
and Lactobacillus abundance.

Because the balance of estrogen and progesterone is
important for maintaining female reproductive homeostasis,
the effects of progesterone on the vaginal microbiome have
been reported. One study of Kenyan women demonstrated
depot-medroxyprogesterone acetate (DMPA) injection reduced
total bacterial load and Gardnerella vaginalis abundance (36).
Moreover, in reproductive aged women, DMPA and localized
progesterone contraceptive also reduced Lactobacillus
abundance (37, 38). Progesterone inhibits vaginal epithelium
proliferation (39). Thus, lack of epithelial-derived glycogen in a
progesterone-enriched environment may reduce lactobacillus
and other bacterial abundance (40). Contrary to these findings,
vaginal progesterone did not alter the vaginal microbiome or
Lactobacillus abundance in pregnant women (41). Due to
increased levels of endogenous estrogen and progesterone
during pregnancy, the contributions of exogenous progesterone
may be obscured in pregnant women. Taken together, several
studies have reported progesterone reduces the vaginal microbial
burden yet, how endogenous and exogenous progesterone affect
vaginal microbiome remains unclear.

Crosstalk Between the Gut Microbiome
and Diet
As described above, estrogen and glycogen are important for
Lactobacillus dominancy. One researcher hypothesized that a
high starch diet increases vaginal glycogen (21). Though contrary
hypotheses have been proposed. For example, another researcher
hypothesized a high fat diet is associated with Lactobacillus
dominancy because a high fat diet increased serum estradiol
(42). Neither hypothesis is widely accepted due to the lack of
experimental evidence. Nonetheless, dietary intake seems to be
an important factor in composing microbial communities. The
gut microbiome composition is strongly correlated with various
Frontiers in Immunology | www.frontiersin.org 4
nutrients from diet, such as protein, fat, sugar, starch, and fiber
(43–46). Such gut microbiome alterations due to specific diets
has an enormous impact on human health and disease
pathogenesis (47). Although the underlying mechanism is not
clearly defined, the vaginal and gut microbiomes seem to be
closely related. For instance, several studies suggested the gastro-
intestinal tract may serve as a bacterial reservoir or origin for the
vaginal microbiome (48, 49). Furthermore, the risk of BV
(Bacterial vaginosis) is correlated with Lactobacillus or BVAB
colonization in gut (49, 50). Because of this crosstalk between the
gut and vaginal microbiomes, researchers have tried to
demonstrate the direct and indirect influence specific dietary
nutrients may have on the vaginal microbiome.

An early study reported a correlation between dietary
nutrients and BV risk based on Nugent score (51). The authors
demonstrated high fat intake was associated with severe BV.
Another report revealed high glycemic load was correlated with
BV risk based on Nugent score (52). More recently, 16s rRNA
sequencing has been used to assess the effect of specific nutrients
on the vaginal microbiome (37). In this study, no single nutrient
(including sugar, fiber, fat, and glucose) affected the vaginal
microbiome. However, vegetarian participants had a vaginal
microbiome characterized by higher alpha diversity compared
to non-vegetarian participants. Taken together, these results
suggest it is possible that nutrients regulate energy metabolism,
which may influence vaginal microbiome (37), although it is
unclear which specific nutrient is involved. Because most of these
studies evaluated nutrient intake through participant`s self-
assessment, cautious interpretation is necessary. Thus, a new
experimental model that precisely controls specific nutrients is
urgently needed to address the connection between ingested
nutrients and the vaginal microbiome.

There are reports that micronutrients also affect the vaginal
microbiome. Although initial reports revealed an association
between many micronutrients, such as calcium, folate, b-
carotene, and vitamins, with vaginal microbiome composition
or BV risk (51, 53), subsequent studies did not support these
results (54). Among these micronutrients, many researchers still
focus on vitamin D. An early observational study reported serum
level of 25-hydroxy-vitamin D [25(OH)D] was negatively
corelated with BV during the first trimester (55). The
association between vitamin D deficiency and BV during
pregnancy was confirmed in multiple reports (56, 57).
Recently, Jefferson et al. analyzed vaginal 16S rRNA profiles
and serum 25(OH)D levels of pregnant women (58). The authors
found a positive correlation between Lactobacillus crispatus and
serum 25(OH)D among European ancestry. Conversely, among
African ancestry, participant with lower serum 25(OH)D were
more likely to have higher Megasphaera. However, correlation
between vitamin D and the vaginal microbiome is controversial
in non-pregnancy women (59, 60).

Other Life Style Factors
Various lifestyle factors can affect vaginal microbiome
composition. Cigarette smoking has been strongly associated
with BV prevalence, even after adjusting other factors (19, 61). In
June 2022 | Volume 13 | Article 919728
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a pilot study analyzing vaginal microbiome in smokers and non-
smokers, women with CST-IV were 25-fold more likely to be
smokers than women with CST-I (15). The authors further
evaluated this result by performing a follow-up study
investigating metabolomic profiling (62). They suggested
vaginal biogenic amines, including agmatine, cadaverine,
putrescine, tryptamine, and tyramine, may contribute to
vaginal microbiome modulation. Further experimental
evidence is needed to support this hypothesis. Several
epidemiologic studies have shown that BV incidences increase
as psychological stress increases (63, 64). In an early study
investigating hormonal effects on glycogen deposition in the
vaginal epithelium, Wrenn et al. reported the stress hormone
cortisol inhibited glycogen deposition when administered with
estrogen (65). Although this result was derived from rodent
model with a higher cortisol concentration than is observed
physiologically, this study suggests stress hormones may play an
important role in vaginal glycogen deposition. Further studies
are needed to evaluate the effects of stress-induced cortisol levels
on human vaginal microbiomes.

Further, sexual behavior may directly impact colonization of
the vaginal microbiome. Numerous epidemiologic studies have
demonstrated that certain sexual behaviors were associated with
BV. In a longitudinal cohort study of 773 sexually active women,
BV acquisition was associated with the frequency of vaginal
intercourse and the number of sexual partners (61). Moreover,
condom use was protective against BV (66), suggesting that sexual
activity may directly alter the vaginal microbiome composition.
Frontiers in Immunology | www.frontiersin.org 5
Vaginal hygienic practices also impact the vaginal
microbiome composition. Specifically, washing practices are
associated with BV acquisition and reduced Lactobacillus
abundance (67, 68). In one study investigating the effect of
vaginal hygiene products on vaginal microbiome found
Lactobacillus growth was not inhibited when using vinegar and
iodine based products (69). Instead of directly inhibiting
bacterial growth, these products induced epithelial cell death
and proinflammatory response in vitro, marked by increased
interleukin (IL)-6 and IL-1b. More investigations are needed
to determine whether hygienic practices directly change the
vaginal microbiome composition or indirectly change the
vaginal microenvironment.
INFLUENCE OF THE VAGINAL
MICROBIOME ON HOST HEALTH
AND DISEASE

Host Immune System and Modulation by
the Vaginal Microbiome
Like other mucosal tissues, the female reproductive tract (FRT) is
a major portal for various pathogens. Both host and microbiota
play critical roles in the protection against foreign pathogens
(Figure 2A). The lower FRT, which consists of the ectocervix and
vagina, is covered by multilayered stratified squamous
epithelium on top of the lamina propria. The outermost
BA

FIGURE 2 | Host immune system and microbiome. (A) Lactobacillus crispatus produce both L- and D-lactic acid to protect the host against pathogens.
Lactobacillus crispatus also can produce hydrogen peroxide (H2O2) in vitro, however it’s antimicrobial role in vivo is controversial. Innate immune cells and epithelial
cells produce antimicrobial peptides (AMPs), such as secretory leukocyte protease inhibitors (SLPIs), elafin, calprotectin, lysozyme and defensins. Immunoglobulin (Ig)
G and IgA from memory B cells also contribute to protection. Lactobacillus iners produce only L-lactic acid, and inerolysin from Lactobacillus iners can damage host
epithelial cells. (B) Bacterial vaginosis (BV) is associated with various gynecologic and obstetric diseases. In BV, the vaginal microbiome is dominated by diverse
anaerobe bacteria, including Gardnerella and Prevotella. These bacteria form biofilm, which confers resistance to antibiotics, lactic acid, and H2O2. BV-associated
bacteria also produce sialidase and vaginolysin. Sialidase cleaves mucin, and vaginolysin damages host epithelial cells. BV induces proinflammatory response. IL-33
produced by epithelial cells directly inhibits effector CD4 and CD8 T cells during herpes simplex virus (HSV)-2 infection. Meanwhile, BV increases predisposing CD4 T
cells and increases risk of human immunodeficiency virus (HIV) acquisition.
June 2022 | Volume 13 | Article 919728
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superficial layer contains dead flattened cells, called cornified
cells (70). Cornified cells are loosely attached to the epithelium
and are consequently exfoliated. These exfoliated cells may act as
a decoy for pathogens (22). A multilayered squamous epithelium
is converted into simple columnar epithelium in the
transformation zone, which under constant hormonal
regulation. Above the transformation zone, the endocervical
epithelium can act as a glandular tissue. Particularly, cervical
epithelial cells within a crypt produce mucus, though human
vaginal epithelial cells do not produce mucus unlike rodents (71).
However, the human vaginal epithelium is covered with mucus
produced by the cervical epithelium. The mixture of mucus and
cornified cells acts as a primary physical barrier to protect the
host from pathogens. Furthermore, mucus can serve as a
chemical barrier. Vaginal epithelial cells and various immune
cells produce antimicrobial peptides (AMPs), including secretory
leukocyte protease inhibitors (SLPIs), elafin, calprotectin,
lysozyme and defensins (72). It was reported that SLPIs
inhibited HIV (Human immunodeficiency virus) infection of
monocytes in vitro (73). In addition, women diagnosed with
STIs, including HIV, Neisseria gonorrhoeae, Trichomonas
vaginalis, Chlamydia trachomatis, and Candida, had lower
SLPIs levels in their vaginal fluid (74, 75), demonstrating that
SLPIs play an important role in STIs protection. Calprotectin
and lysozymes, which are mainly produced by myeloid cells such
as neutrophils, have direct antimicrobial activities. Calprotectin
inhibits bacterial growth by iron chelating (76), and lysozymes
degrade bacterial cell walls (77). Meanwhile, defensins have
direct antimicrobial activity and inhibit bacterial toxins (78).
Because mucus is more than 90% water, it can contain and
deliver the above-mentioned water-soluble immune mediators
(79). Another component of mucus is immunoglobulin (Ig). IgA
is generally the most abundant antibody isotype in mucosal
fluids such as saliva, tears, milk, and gastrointestinal fluid (80).
However, cervico-vaginal mucus contains more IgG than IgA at
different stages of the hormonal cycle (80, 81). In a mouse model,
luminal IgG is produced by migrant memory B cells in the vagina
rather than circulation (82). Although the role of vaginal IgG has
not been fully elucidated, it was reported that IgG traps virus and
protects host from viral infection (83).

Lactobacillus, a representative species of optimal vaginal
microbiome, contribute to the hosts immunity. As mentioned
previously, Lactobacillus produces lactic acid, and lowers vaginal
pH (24, 25). The acidic microenvironment prevents growth of
pathogenic bacteria, including Chlamydia trachomatis, Neisseria
gonorrhoeae, and Escherichia coli (84–86). Additionally, lactic acid
has been reported to offer protection against viral infection. Lactic
acid abolished the surface charge of HIV (87). Consequently, HIV
diffused slowly and got trapped in acidic mucus. Not only does
lactic acid act as an acid, but it also exhibits direct antimicrobial
properties. One study used a fluorescence assay to evaluate the
effect of lactic acid on the outer membrane permeability of gram-
negative bacteria, which revealed lactic acid had more
permeabilization potency than hydrogen chloride at same pH
(88). Another traditional role of Lactobacillus is the production of
hydrogen peroxide (H2O2). Many early studies reported that the
Frontiers in Immunology | www.frontiersin.org 6
presence of H2O2-producing Lactobacillus species was associated
with decreased risk of gynecologic and obstetric diseases (89, 90).
Although H2O2 inhibited the growth of pathogenic strains, such as
Escherichia coli, Prevotella, and Gardnerella, in vitro (91), the role
of H2O2 in vivo is still under debate (92). For example,
Lactobacillus needs oxygen to produce H2O2 even though
Lactobacillus can grow in anaerobic conditions. However,
human vaginal microenvironment is physiologically hypoxic
(93). Critically, measured in vivo H2O2 levels are lower than the
potential bacteriocidic level (26, 94). Moreover, H2O2 derived
from Lactobacillus is inactivated by cervico-vaginal fluid, which is
physiologic content in FRT, and semen (94). Due to these results,
the antimicrobial role of H2O2 in vivo remains controversial.

Lactobacillus iners has several special properties compared to
other Lactobacillus species. Lactic acid exists as L- and D-
isomers in the vagina and it was reported D-lactic acid has
more protective potency against uropathogens (95). However,
Lactobacillus iners can produce only L-lactic acid, whereas
Lactobacillus crispatus and Lactobacillus gasseri produce both
D- and L- isoforms (96). Meanwhile, Lactobacillus iners can
produce inerolysin, a member of the cholesterol-dependent
cytolysin family (97).. This cytolysin can lyse eukaryotic cells,
including host epithelial cells. It has been proposed that
Lactobacillus iners lyse cells to acquire nutrients (98).
Particularly, inerolysin gene expression is upregulated in
dysbiosis (99). In line with this, Lactobacillus iners is more
correlated with BV than other Lactobacillus species. Multiple
observational studies demonstrated Lactobacillus iners can
coexist in CST-IV with other BV-related bacteria, unlike other
Lactobacillus species (4, 13). Furthermore, microbial
communities dominated by Lactobacillus iners are unstable and
prone to transition to CST-IV (5). In accordance with these
unique features, Lactobacillus iners is considered as an
intermediate risk bacterium.

BV is the disequilibrium status of vaginal microbiome, which
is characterized by low abundance of optimal Lactobacillus
species and increased non-optimal anaerobic species, including
Gardnerella, Prevotella, Atopobium, and other BVAB (72). In the
condition of BV, the host immune system is altered by various
mechanisms (Figure 2B). A recent study using three-
dimensional culture of human cervica l epithel ium
demonstrated host immune responses are modulated by the
microbiome (100). In this study, BVAB colonization in cervical
epithelial cells induced proinflammatory response, as measured
by increased expressions of IL-6, IL-8, interferon gamma
induced protein (IP)-10, monocyte chemotactic protein
(MCP)-1, macrophage inflammatory protein (MIP)-1b, MIP-
3a, and IL-1b. MUC1 (gene encoding mucin) expression was
decreased in Gardnerella vaginalis colonization. These findings
are supported by previous epidemiological reports that revealed
proinflammatory cytokines and chemokines levels are low in
vaginal fluid of women with a Lactobacillus dominant
microbiome (101, 102). In addition to immune modulation,
BV can disrupt protective immune barriers. For example,
mucin is a major structure for maintaining the viscosity of
cervico-vaginal mucus. Mucin is a large glycoprotein composed
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of a long protein backbone with O-linked glycan terminated by a
sugar unit, such as sialic acid (103). Several species of Gardnerella
and Prevotella, which are representative bacteria of BV, produce
the mucin degrading enzyme sialidase (104, 105). Bacterial
sialidase cleaves terminal sialic acid, and some bacteria use the
resulting carbon skeleton as an energy source (106). Thus,
abnormal watery discharge in BV could be linked to mucin
degradation (107). In synergic effect with mucin degradation,
Gardnerella vaginalis may directly damage epithelial cells.
Gardnerella vaginalis produces vaginolysin, a member of
cytolysin family, and vaginolysin lyse epithelial cells in a CD59
molecule-dependent manner (108). Also, a recent study
demonstrated Gardnerella induces human vaginal epithelial
cell apoptosis (109). Another influence of BV is biofilm
formation. Biofilm is a community of bacteria encapsulated in
self-produced extracellular matrix that adheres to epithelium
(110). Specifically, Gardnerella vaginalis is one of the
predominant bacteria in BV-associated biofilm (111). The
virulent property of biofilm is derived from its resistance to
immune defense systems. In fact, Gardnerella vaginalis in biofilm
is resistant to lactic acid and H2O2 produced by Lactobacillus
(112). Moreover, biofilm reduces the efficacy of antibiotics, such
as metronidazole (113). BV exhibits a high recurrence rate after
antibiotic treatment (114). Thus, biofilm may contribute to
BV recurrence.

The Vaginal Microbiome and Sexually
Transmitted Infections
The human vagina is a portal of entry for a myriad of foreign
pathogens. Particularly, the FRT are exposed to pathogens
during sexual activity. Both bacteria (Chlamydia, Mycoplasma,
Trichomonas, and Neisseria gonorrhoea etc.) and viruses (Herpes
simplex virus; HSV, HIV, Human papilloma virus; HPV etc.) can
be transmitted during sexual intercourse, and these infectious
diseases are referred as STIs. Numerous epidemiological studies
reported that BV and vaginal microbiome dysbiosis were
corelated with STI risk (7, 8, 115, 116). However, there are no
studies that demonstrate an underlying mechanism to clearly
explain the relationship between BV and STI risk. In the absence
of knowledge regarding an underlying mechanism, several
studies have provided us with insights from which we can
propose potential mechanistic explanations. As mentioned,
BV-associated microbiome modulates host immune response
(100–102). In our previous publication, we demonstrated that
antibiotic-induced dysbiosis impairs antiviral response in a
mouse HSV-2 model (117). In our report, vaginal microbiome
dysbiosis markedly increased vaginal IL-33 secretion. IL-33
directly inhibited recruitment of effector CD4 and CD8 T cell
and local interferon (IFN)-g production during HSV infection.
IL-33 is an alarmin released from the epithelium in response to
tissue injury (118). Given some BV-related bacteria cause
epithelial damage, IL-33 could be a potential candidate to
explain the relationship between BV and viral infection. There
was also a study suggested mechanistic explanation in HIV
acquisition. Gosmann et al. prospectively followed 236 HIV-
uninfected African women (119) and found women with a
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diverse microbial community are at 4-fold higher risk of HIV
infection. Moreover, they also demonstrated participants with a
diverse microbial community have more CD4 T cells, the
primary target cell for HIV (120), in the vagina compared to
participants with Lactobacillus dominated community. The
author confirmed these findings in a mouse model and
suggested that non-optimal vaginal microbiome increased HIV
risk by inducing HIV target cell recruitment.

As with other STIs, the relationship between HPV and vaginal
microbiota is complex. HPV infection is the most common viral
infection in the FRT (121). Although more than 90% of HPV
infection are spontaneously resolved (122), HPV infection (especially
high-risk HPV 16, 18) can cause cervical intraepithelial neoplasia
(CIN) that consequently develops into cervical cancer (123).
Emerging evidence has begun to highlight the association between
vaginal microbial community and HPV status. In a large meta-
analysis study, vaginal microbiota dominated by non- Lactobacillus
species or Lactobacillus iners were associated with HPV infection
compared to Lactobacillus crispatus dominated community (9). In
addition to HPV prevalence, another report demonstrated that
vaginal microbiota can also contributes to CIN regression. Mitra
et al. longitudinally followed young women between the ages of 16-
26 who have been diagnosed with CIN2 (124). They found women
with a Lactobacillus dominant community were more likely to have
regression, whereas women with Megasphaera, Prevotella,
Gardnerella, and BVAB1 tended to have persistent CIN2. Despite
this result, the relationship between CIN and the vaginal microbiome
seems to have a causality issue. In contrast to the idea that the vaginal
microbiome modulates CIN progression, Kyrgiou et al. suggested a
hypothesis in their review that CIN actually modulates the vaginal
microbiome (125). Kyrgiou and colleagues tried to confirm their
hypothesis, but they published that CIN treatment by surgical
excision does not affect vaginal microbiome (126). On the
contrary, another group reported that surgical treatment of CIN
modulates the vaginal microbiome, resulting in an increased CST-I
and concomitant decrease of CST-IV (127). To address this
controversy, meta-analysis of the effect of CIN treatment on the
vagina microbiome is currently in progress (128). There are also
studies that reveal an association between other gynecologic cancers
and the vaginal microbiome regardless of oncovirus. A recent study
demonstrated that women with ovarian cancer were less likely to
have a Lactobacillus dominated vaginal microbiome compare to
those without cancer (10). This study also revealed that low
abundance of Lactobacillus is closely related to BRCA mutation,
which is a significant risk factor for ovarian cancer development
(129). This result may indicate that host genetic factors regulate the
composition of the vaginal microbiome. It also implies that the
contribution of ovarian cancer or the BRCAmutation on the vaginal
microbiome is still unclear.

Vaginal Microbiome and Pregnancy
Traditionally, intrauterine inflammation has been considered a
risk factor for poor obstetric outcomes. Because pathogens may
ascended from the vagina and cause intrauterine inflammation
(130), numerous studies have attempted to determine whether
vaginal microbiome dysbiosis contributes to obstetric diseases.
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These studies revealed that vaginal microbiome dysbiosis affected
the entire course of pregnancy from conception to delivery.
Among the broad spectrum of obstetric diseases, preterm birth
(PTB) is one of the most well-known diseases associated with
vaginal microbiome dysbiosis. In one study using 16r RNA
sequencing-based analysis, DiGiulio et al. reported that CST-
IV inversely related with gestational age at delivery (131). The
Multi-Omics Microbiome Study: Pregnancy Initiative (MOMS-
PI), one of the HMP studies, supported this result (11). The
MOMS-PI results showed women who delivered at term were
more likely to have a Lactobacillus crispatus dominant
community. Whereas women with PTB had higher prevalence
of specific taxa including BVAB1, Prevotella, and Sneathia amnii.
In addition, PTB samples had elevated levels of proinflammatory
cytokines, including eotaxin, IL-1b, IL-6, and MIP-1b. Also,
early pregnancy loss was associated with the vaginal microbial
community. One prospective case-controlled study reported that
first trimester miscarriage was associated with reduced
prevalence of Lactobacillus species and higher alpha diversity
(132). There were also studies that showed an association
between the vaginal microbiome and fertility. In one study
profiling the vaginal microbiome of idiopathic infertile women,
the vaginal microbiome of infertile women was more similar to
that of BV women compared to a healthy control (12).
Furthermore, the vaginal microbiome of idiopathic infertile
women had a low prevalence of Lactobacillus species. In line
with this result, Koedooder et al. suggested the composition of
vaginal microbiome could be used as a predictor of successful in
vitro fertilization (IVF) (133). In this report, women with a low
abundance of Lactobacillus were less likely to have a
successful implantation.

Because poor obstetric outcomes are thought to be related to
intrauterine inflammation, the presence and role of the
endometrial microbiome have also been considered. Because
bacteria did not grow in endometrial tissue, as revealed in
early cultivation method-based studies (134), it was been
believed the uterine cavity was sterile. However, emerging
molecular-based studies highlighted that the upper FRT harbor
microbiome (135). Several studies reported that endometrial
microbiome is also dominated by Lactobacillus and
that reduced prevalence of Lactobacillus species in the
endometrium is associated with poor pregnancy outcomes
(136, 137). However, because most of these results were
derived from transcervical sampling, contamination from the
cervix or vagina cannot be excluded. A recent study analyzed the
microbiome of endometrial tissue sampled during abdominal
hysterectomy (138). In this report, the endometrial microbiome
was dominated by Acinetobacter, Pseudomonas, and
Cloacibacterium, whereas Lactobacillus species were rarely
observed in the endometrium. Though the existence of an
endometrial microbiome is agreed upon, the endometrial
microbiome composition remains controversial. Moreover, it is
unclear whether the vagina microbiome shapes the endometrial
microbiome and whether the endometrial microbiome
determines obstetric outcomes. Further studies are needed to
elucidate the relationship between two milieus.
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MODULATION OF THE VAGINAL
MICROBIOME BY ANTIBIOTICS
AND PROBIOTICS

BV symptoms, which include vaginal discharge and odor, cause
discomfort. Importantly, BV is a risk factor for various diseases.
Though antibiotics have been the gold standard treatment for BV,
BVhas a high recurrence rate following antibiotic treatment (114). As
an alternative to or combination treatment with antibiotics, several
methods have been proposed to restore the vaginal microbiome into
a Lactobacillus dominated community. Oral probiotics are
considered a promising method because of crosstalk between the
gut and vaginal microbiomes. Many Lactobacillus species including
Lactobacillus rhamnosus GR-1 and Lactobacillus fermentum RC-14
were tested. These oral probiotics successfully modulated the vaginal
microbiome effects in reproductive and postmenopausal women
(139, 140). However, a recent study indicated that there was no
effect in pregnant women (141). It is necessary to evaluate the long-
term efficacy of probiotics in addition to the vaginal microbiome
modulation effect in pregnant women. Vaginal microbiome
transplantation is another approach that has been considered. A
recent publication demonstrated a successful clinical transplantation
of a healthy vaginal microbiota into intractable BV patients (142).
Although no placebo control was included in this study, 4 out of 5
patients had long-term remission of up to 21 months. More recently,
molecular targets that may modulate the vaginal microbiome have
been proposed. Bloom et al. suggested that cysteine dependence of
Lactobacillus iners could be a potential target for vaginal microbiome
modulation (143). In this study, the authors found Lactobacillus iners
requires cysteine to grow in vitro and that a cysteine uptake inhibitor
selectively inhibits growth of Lactobacillus iners rather than other
Lactobacillus species. Consequently, the combined supplementation
of metronidazole and the cysteine uptake inhibitor in BV-like
community cultured in vitro promoted a growth of Lactobacillus
crispatus, but competitively suppressed Lactobacillus iners. Critically,
it is necessary to evaluate the in vivo efficacy of the cysteine
uptake inhibitor.
CONCLUSION

The host and microbiome exist in a mutual relationship. The
host and microbiome constantly interact each other, especially in
the complex and dynamic microenvironment of vagina. The
introduction of molecular-based sequencing methods revealed
that Lactobacillus dominated community represent reproductive
health and that BV is related to various aspects of several
diseases. However, most of our knowledge to date is based on
cross-sectional or observational studies. Due to the lack of direct
experimental evidence, there are frequently causality issues in
vagina microbiome research. Paradoxically, this hurdle is derived
from Lactobacillus dominancy of human vaginal microbiome.
Due to this unique property, we cannot extend animal model
results to humans. Recent advances using in vitro co-culture
systems are expected to be a potential candidate for overcoming
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this hurdle. The development of suitable animal models or
methodologic advances could resolve current debates discussed
in this review. A better understanding of the relationship
between host and microbiome could provide novel targets for
diagnosis and treatment of microbiome-related diseases.
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