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Systemic Lupus Erythematosus is a complex autoimmune disease and its etiology
remains unknown. Increased gut permeability has been reported in lupus patients, yet
whether it promotes or results from lupus progression is unclear. Recent studies indicate
that an impaired intestinal barrier allows the translocation of bacteria and bacterial
components into systemic organs, increasing immune cell activation and autoantibody
generation. Indeed, induced gut leakage in a mouse model of lupus enhanced disease
characteristics, including the production of anti-dsDNA antibody, serum IL-6 as well as
cell apoptosis. Gut microbiota dysbiosis has been suggested to be one of the factors that
decreases gut barrier integrity by outgrowing harmful bacteria and their products, or by
perturbation of gut immune homeostasis, which in turn affects gut barrier integrity. The
restoration of microbial balance eliminates gut leakage in mice, further confirming the role
of microbiota in maintaining gut barrier integrity. In this review, we discuss recent
advances on the association between microbiota dysbiosis and leaky gut, as well as
their influences on the progression of lupus. The modifications on host microbiota and gut
integrity may offer insights into the development of new lupus treatment.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibodies
attacking multiple organs, including kidneys, joints, lungs, the heart, and the brain (1). Without
known etiology, the cause of SLE has been attributed to a combination of genetic, epigenetic and
environmental factors. Genome-wide association studies (GWAS) have identified around 180 lupus
susceptibility loci in the human genome (2), most of which belong to three biological processes:
signal transduction in lymphocytes, toll-like receptor signaling and type 1 interferon (IFN)
production, and apoptotic cell processing (3). Dysregulated epigenetic factors also contribute to
the development of SLE. Studies suggest that a global DNA hypomethylation exists in the CD4+ T
cells and B cells of SLE patients (4), including genes involved in type 1 IFN signaling (5).
Environmental factors can trigger SLE and cause flares in patients. Ultraviolet light, air pollution,
infections and exposure to heavy metals are the most common triggers that can influence lupus
progression by modulating epigenetic factors, affecting host immune status, increasing oxidative
stress, regulating hormone levels or changing the configuration of the host microbiome (6).
Increasing evidence supports that an unbalanced gut microbiota is associated with lupus
pathogenesis (7–9). Dietary intervention modulating the composition of the gut microbiota, such
as butyrate, tryptophan or resistant starch reversed some lupus phenotypes in murine models (10–
12). It has been suggested that gut microbial dysbiosis enhance the inflammatory status and cause
damage on the gut barrier, resulting in a “leaky gut” (13, 14). Gut permeability-mediated
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translocation of bacteria and their products into the systemic
circulation could activate the immune system and promote
autoimmunity in genetically predisposed populations (15).
Conversely, an increased immune response would also break
the gut homeostasis resulting in microbial dysbiosis and
increased gut permeability (16). In this review, we summarize
the findings linking the loss of gut barrier integrity to lupus and
evaluate the mechanisms responsible for leaky gut in this disease
as well as its contribution to SLE pathogenesis.
EVIDENCE OF GUT DYSBIOSIS AND
LEAKY GUT IN SLE

Gut Dysbiosis in Lupus
Over 1000 bacterial species have been identified in the human gut
with around 160 species presenting in each individual microbiota
(17) and most of them are belong to four dominant bacterial
phyla, as Bacteroidetes, Firmicutes, Proteobacteria, and
Actinobacteria (18). The composition of gut microbiome is
highly variable. Genetic factors, such as histocompatibility
complex (MHC) polymorphism, and environmental factors,
including ethnicity, diet and geography, have been correlated to
the gut microbiota structure (19–21). A meta-analysis of studies
comparing the fecal microbiome of SLE patients and healthy
controls showed a lower diversity in SLE patients with a lower
abundance of Ruminococcaceae (9). SLE patients with active lupus
disease showed less diverse gut microbiota but a significantly
higher abundance of the bacterial phylum Proteobacteria (22).
Within the altered microbiota of SLE patients with disease active,
disease activity was positively correlated with the abundance of the
genera Streptococcus, Campylobacter, Veillonella, and negatively
correlated with the abundance of Bifidobacterium (23). A lower
ratio of Firmicutes to Bacteroidetes was observed in SLE patients
with a reduction of some families in the Firmicutes phylum (24,
25). However, various bacterial families of Firmicutes, including
Frontiers in Immunology | www.frontiersin.org 2
Lactobacill, Clostridiaceae and Lachnospiraceae, have been
reported to have a greater abundance in multiple mouse models
of lupus (11, 12, 22). However, the MRL/lpr lupus prone mice
showed a decreased abundance of Lactobacilli and the addition of
Lactobacillus spp. improved disease outcomes in this model (26).
Similarly, segmented filamentous bacteria (SFB), bacteria
belonging to the phylum Firmicutes, expand in the gut of
B6SKG mice that develop a lupus-like phenotype and they
promote the development of lupus by increasing Th17 cell
differentiation (27).

Overall, SLE patients with active disease showed a distinct
dysbiosis in the gut microbiota. In comparison, lupus patients in
remission had a comparable microbial diversity with healthy
control subjects despite of a lower Firmicutes/Bacteroidetes ratio
(23, 24). The abundance of bacteria in the phylum Firmicutes
and genus Bifidobacterium are negatively correlated with
SLEDAI score in lupus patients, while bacteria from genus
Streptococcus are positively correlated with lupus activity in
different human lupus cohorts (23, 28, 29). At species level,
Ruminococcus gnavus (R. gnavus) was substantially enriched in
patients with lupus nephritis and the presence of antibodies
against a specific strain of R. gnavus was associated with disease
activity and the level of anti-dsDNA antibodies (30, 31). This
finding is significant because it was reported in two different
cohorts of lupus patients despite the large genetic and
environmental variability inherent to human populations.
There is therefore strong evidence from multiple studies that
SLE is associated with gut dysbiosis (Figure 1), and results
obtained with mouse models support a contribution of the
altered microbiome to SLE pathogenesis , with the
identification of several potential pathobionts.

Leaky Gut in Lupus
Mounting evidence suggests that a leaky gut is presented by
some, if not all, SLE patients (7, 8). The detection of microbial
components in blood stream of lupus patients suggests the
penetration of microorganisms and their products into
FIGURE 1 | Gut microbiota dysbiosis in lupus patients. The richness and diversity of gut microbiota as well as the Firmicutes to Bacteroidetes ratio are decreased in
different cohorts of lupus patients. Segmented filamentous bacteria have been reported to have a higher abundance in the gut microbiota of lupus patients. The abundance
of Streptococcus, Campylobacter, Veillonella, Clostridiacae and Lachnospiraceae are positively correlated to SLE disease activity, while that of Bifidobacterium is negatively
associated with lupus activity. Finally, pathobionts Ruminococcus gnavus and Enterococcus gallinarum are enriched in the gut of lupus patients.
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systemic circulation may be mediated by an increased intestinal
permeability (32–34). The recovery of bacterial DNA from the
liver of lupus patients with autoimmune hepatitis supported the
translocation of Enterococcus gallinarum (E. gallinarum) into
systemic organs (35). Besides complete bacteria, various bacterial
components have been detected in the blood of SLE patients,
implicating their leaking out of the gut. SLE patients and their
first-degree relatives showed a higher level of lipopolysaccharide
(LPS) or endotoxin, or expression of genes induced by these
bacterial products, than healthy controls (32, 33). Additionally,
(1 ! 3)-b-D-glucan, a component of fungal cell walls, was
detected in the serum of patients with active lupus nephritis
(34). Soluble CD14 and a1-acid glycoprotein, two serum
biomarkers for microbial translocation, have also been detected
at a higher level in SLE patients than healthy controls (8, 36). In
the other direction, the detection of serum proteins, such as
albumin and calprotectin, in the feces further supports a loss of
barrier integrity in the gut in SLE patients (30, 35).

The presence of endotoxin in the blood of MRL/lpr lupus-
prone mice also suggested gut barrier dysfunction, which was
further supported by a FITC-dextran assay, in which fluorescent
dextran is gavaged and its presence is measured in the serum
(37). Interestingly, supplementation with a commensal
bacterium, Lactobacillus reuteri (L. reuteri), rescued these
phenotypes in these mice, suggesting that microbiota play a
role in maintaining gut barrier integrity. However, the expansion
of L. reuteri has been reported in spontaneous Tlr7 transgenic
and inducible TLR7 lupus-prone mouse models (12). An
increased gut permeability in FITC-dextran assay, and the
translocation of Lactobacillus spp. to internal organs, including
mesenteric lymph node (MLN), liver, and spleen, in TLR7-
dependent mouse models suggest that L. reuteri may have
different effects on different genetic backgrounds, with the
potential involvement of TLR7 signaling. The presence of
endotoxin in the plasma as well as a FITC-dextran assay
indicated an increased gut permeability in lupus-prone
NZBWF1 mice (38). In addition, the detection of E. gallinarum
in the MLN and liver of (NZW × BXSB)F1 lupus-prone mice,
suggest that complete bacteria can be translocated into systemic
organs through a leaky gut (35). However, there was no evidence
of leaky gut in the B6.Sle1.Sle2.Sle3 lupus-prone mice in spite of
gut dysbiosis that was sufficient to transfer some autoimmune
phenotypes (11). Overall, an impaired gut barrier was detected in
SLE patients and multiple, but not all, lupus murine models
suggesting causal but not obligate links between the two.
RELATIONSHIP BETWEEN GUT
DYSBIOSIS AND LEAKY GUT IN SLE

Microbial Dysbiosis Promotes
Intestinal Permeability
Gut dysbiosis combined with increased intestinal permeability
has been reported in various diseases or disorders (39), implying
possible causal relationships between these two factors. Little is
Frontiers in Immunology | www.frontiersin.org 3
known about what causes a loss of gut barrier integrity in SLE,
except that E. gallinarium, a pathobiont that is expanded in
(NZW × BXSB)F1 lupus-prone mice, translocates in
monocolonized non-autoimmune gnotobiotic (or germfree,
GF) mice, suggesting an intrinsic ability to disrupt the gut
epithelial barrier (35). Results obtained in other disease models
may be however indicative of some of the mechanisms by which
dysbiosis may promote a leaky gut in SLE.

Intestinal permeability, microbial dysbiosis as well as age-
associated inflammation develop in old non-autoimmune mice.
The transfer of fecal microbiota from old mice into GF young
mice increased gut permeability in recipient mice, suggesting
that age-associated changes in microbiome composition can
promote intestinal permeability (40). The young recipients
colonized with microbiota from old mice also had a higher
level of plasma TNFa, implying that microbial dysbiosis can
also induce age-associated inflammation, which may further
exacerbate leaky gut in the old mice. On the other hand,
Tnfa-deficiency improved gut dysbiosis in old mice, suggesting
that host immunity can affect the microbiome configuration
as well.

Loss of certain bacteria in the gut may lead to an impaired gut
barrier function. Obese and diabetic mice show increased
intestinal permeability, metabolic endotoxemia and a
low-grade inflammation. A mixture of prebiotics specifically
increased the abundance of Bifidobacterium spp., which
improved systemic and hepatic inflammation, intestinal
integrity and endotoxemia. The findings suggest that
modifications on host microbiota affect the host immune status
and gut integrity (41). In-vitro stimulation of intestinal epithelial
cells with TLR-2 ligands induced the redistribution of tight
junction proteins, resulting in an improved monolayer
integrity. Since TLR2 is highly expressed by intestinal epithelia
cells in vivo where it recognizes bacterial components, such as
diacylated or tritylated lipopeptides, the absence of the
producing bacteria may affect gut integrity (42). Indeed,
feeding mice with lipoteichoic acid (LTA), a ligand for TLR2,
increased mucin expression and reduced inflammation and gut
leakage (43). In this sense, supplementation with beneficial
bacteria may restore the gut barrier function. Lactobacillus
plantarum increases the expression of tight junction proteins,
including ZO-1 and Occludin, in humans. Similarly, exposing a
Caco-2 cells monolayer to L. plantarum enhanced intestinal
integrity via the translocation of ZO-1 protein to tight
junctions. However, when TLR2 was blocked by neutralizing
antibodies, the protective effect was eliminated, suggesting that L.
plantarum may confer its protection by activating TLR2 (44).
When an anti- inflammatory molecule generated by
Faecalibacterium prausnitzii was supplemented in a type 2
diabetes mellitus model, it restored gut barrier function and
increased ZO-1 expression, suggesting that it directly contribute
to gut barrier integrity (45). Similarly, extracellular vesicles
secreted by Akkermansia muciniphila were found at a higher
level in the feces of healthy subjects compared to type II diabetes
patients, and oral delivery of these extracellular vesicles increased
gut barrier integrity in mice (46). Another commensal
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bacterium, Lactobacillus salivarius, showed a capacity to restore
barrier function in a monolayer of epithelial cells. The study
demonstrated that L. salivarius ameliorated the disassembly and
relocation of tight junctions induced by H2O2 in Caco-2 cell
monolayers, leading to an improved barrier integrity (47). In
graft-versus-host disease (GVHD) patients, oral administration
of Bacteroides fragilis increased the levels of short chain fatty
acids (SCFAs) and IL-22, as well as the number of regulatory T
cells, which may account for the improved tight junction
integrity and reduced inflammation (48). The findings
demonstrate that specific bacteria may improve leaky gut,
which may imply that leaky gut was caused by their loss.

Outgrowths of commensal pathobiont and/or pathogenic
infections can also be harmful to gut integrity. For example, an
enrichment of Bacteroides and Prevotellaceae_UGG-001 was
detected in a mouse model of experimental autoimmune
hepatitis (EAH). Administration of broad-spectrum antibiotics
prior to EAH induction prevented the development of hepatitis
and increased gut integrity (49). The commensal bacteria
Bacteroides fragilis (B. fragilis) showed a capacity to modulate
the development of colitis (50). Mice colonized with
enterotoxigenic B. fragilis showed an increased intestinal
permeability with damaged epithelial E-cadherin (51), which
was mostly likely mediated by the tight junction degrading
metalloprotease toxin produced by B. fragilis (52). Besides B.
fragilis, there are other pathogens expressing gut damaging
toxins, including toxin A and B producing Clostridium difficile
(53), enterotoxin producing Clostridium perfringens (54),
cytotoxic necrotizing factor 1 producing E.coli (55), vacuolating
toxin producing Helicobacter pylori (56), internalin producing
Listeria monocytogenes (57) and Zonula occludens toxin
producing Vibrio cholerae (58). Moreover, enteric Pseudomonas
fluorescens can induce the secretion of zonulin, a negative
modulator of tight junctions, resulting in cytoskeleton changes
and tight junction disassembly in a cell line (59). Additionally,
infection with the protozoans Giardia intestinalis and Blastocystis
hominis increased intestinal permeability in mice (60). Rotavirus
can also increase the permeability of gut barrier by altering the
location of tight junction protein occludin (61). Thus, many
microorganisms can affect positively or negatively gut barrier
integrity, and their identification in the context of lupus may be
critical to restore gut barrier function in SLE patients.

Leaky Gut Exacerbates Gut Dysbiosis
Damaged gut barrier integrity can active the innate immune
system resulting in the recruitment of various immune cells at
the site of injury. The cytokines, enzymes and growth factors
secreted by these immune cells disturb the immune homeostasis
and induce inflammation (62). An inflamed microenvironment
in the gut allows the bloom of some bacteria, such as
Enterobacteriaceae (63). In addition, a leaky gut allows the
passage of bacterial components and even living bacteria into
host systemic circulation (7, 8), inducing innate and adaptive
immune responses, which break the balance of tolerance and
immunity in the gut leading to a dysbiotic microbiome (16).
Induced gut leakage by dextran sulfate solution (DSS) in multiple
mouse models have demonstrated that gut leakage can enhance
Frontiers in Immunology | www.frontiersin.org 4
systemic inflammation and alter host microbiome composition
(64, 65). Leaky gut may also allow the undigested food particles
to travel out of the gut lumen and get into blood stream. As
external antigens, these food particles may provoke strong
immune responses leading to gut dysbiosis (39).

Genetic Variants Associated With
Leaky Gut
An GWAS for inflammatory bowel disease (IBD) has identified
susceptibility genes that are associated with intestinal barrier
function, which included genes involved in mucus and
glycoprotein regulation (ECM1, MUC3A and MUC19),
membrane receptor kinase (ERRFI1), membrane transport
(ITLN1 and VDR), tight junction regulation (PTPN2), epithelial
restitution (PTGER4), cell polarity (PARD3), cell adhesion (CDH1
and LAMB1), tight junction assembly (GNA12, MAGI2, MYO9B
and CDH1) and epithelial differentiation (HNF4A) (66). A
Crohn’s disease risk locus, Chr 5p13.1, regulates the expression
of the prostaglandin receptor EP4, which is expressed in intestinal
epithelial cells and affects gut barrier function (67). The mutation
on this gene could highly increase the risk for leaky gut. In
addition, a CARD15 polymorphism has been associated with
enhanced gut permeability and the development of Crohn’s
disease (68). Gluten-derived peptide gliadin disrupts gut
integrity by rearranging actin and tight junction proteins in
celiac disease (69–71). The human leukocyte antigen (HLA)
DQ2 and/or DQ8 is required for the presentation of gliadin to T
cells and consequent increased inflammatory responses,
suggesting a causative role of these two genetic factors in the gut
permeability induction (72).

Contrary to these intestinal autoimmune diseases, none of the
many genetic variants that have been associated with lupus
susceptibility are directly linked to barrier integrity, except
possibility for SLC17A4 (73). SLC17A4 is an organic anion
transporter expressed in the gut, and it is expressed at a high
level in gnotobiotic mice as compared to mice housed in
conventional conditions (74). It is therefore possible that
SLC17A4 variants are associated with SLE susceptibility through
their regulation of gut integrity in response to bacterial signals.
However, bacterial translocation has been detected in Tlr7 Tgmice
as well as in mice treated with TLR7 agonist (12). Tlr7
polymorphisms and copy number have been associated with
lupus susceptibility (75), and it would be of great interest to
evaluate whether these genetic variations are associated with leaky
gut and/or gut dysbiosis. Collectively, gene variants related to tight
junction proteins and some aspects of immune responsemay work
as major susceptibility factors for leaky gut, although no evidence
for such genes has yet been found in SLE.
MECHANISMS LEADING TO THE LOSS OF
BARRIER INTEGRITY IN LUPUS

Immune Activation and Inflammation
The chronic inflammation that characterizes lupus has been
attributed to dysfunctional B cells, T cells and dendritic cells (76).
June 2022 | Volume 13 | Article 919792
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In addition, an altered expression of inflammatory cytokines and
cell surface receptors has been identified in monocytes and
macrophages from SLE patients (77, 78). Various cytokines
and chemokines play a role in maintaining gut epithelial cell
integrity. For example, IL-13 and CXCL10 can modulate the
movement of gut epithelial cells to expel parasites to avoid
parasitic infection (79). Proinflammatory cytokines TNF-a,
IL-1b and IFN-g, all of which have been implicated in SLE
pathogenesis (80–82), suppress the expression of tight junction
proteins, alter the arrangement of tight junctions, and modulate
the actin cytoskeleton in intestinal epithelial cells, resulting in a
compromised gut barrier (83, 84). Furthermore, IL-1b and IFN-g
exert their functions on tight junctions through the activation of
the NF-kB pathway (85, 86). An increased NF-kB activation has
been associated with lupus pathogenesis, including through the
lower expression of its negative regulator A20 (87). However,
NF-kB is required for epithelial cell replacement and mice
lacking NF-kB showed a lower expression of antimicrobial
peptides and an increased apoptosis in enterocytes (88). The
different effects of NF-kB pathway on gut barrier integrity
suggest that its activation may be key for the maintenance of
immune homeostasis in gut epithelial tissues. Taken together,
the altered immune state in lupus patients may destroy the
balance between immunity and tolerance in the gut, causing
damage to the intestinal epithelial cells (Figure 2).

Gut Dysbiosis Induced by Lupus
In lupus patients, the dysregulated immune state in the intestine
may induce microbial dysbiosis which in turn affects the integrity of
gut (8). An enrichment of commensals that damage gut integrity
has been detected in SLE patients and mouse models, such as R.
gnavus and E. gallinarium (28, 30). The combination of a defective
immunity and the use of immunosuppressive drugs lead to a high
frequency of pathogenic infections in SLE patients, including with
Staphylococcus aureus, Salmonella enterica, Escherichia coli,
Streptococcus pneumonia and Mycobacterial species (89).
Salmonella typhimurium showed a capacity to increase gut
permeability by upregulating the expression of Claudin-2, a leaky
gut mediator (90). It is therefore possible that Salmonella blooms
occurring in SLE patients may also promote leaky gut through this
mechanism. Translocation of oral microbes to the gut has been
reported in lupus patients (23, 30). Accordingly, inoculation of mice
with Porphyromonas gingivalis or Fusobacterium nucleatum, two
common oral bacteria, induced gut barrier damage and aberrant
inflammation (91, 92). Beside bacteria, various viral infections,
including HIV, CMV, bacteriophages and dengue virus, can also
cause increased gut permeability leading to a leaky gut (93–95). The
relationship between viral infections and leaky gut in lupus has
however not been investigated.

In accordance with gut dysbiosis, an aberrant fecal microbial
metabolism was detected in SLE patients (23). Several fecal
metabolites have shown potential to modulate gut homeostasis.
Short chain fatty acids (SCFA) produced by some bacteria
promote the proliferation of regulatory T (Treg) cells and
suppress the production of inflammatory cytokines (96). Besides
this well-documented modulating effect on inflammation, SCFA
Frontiers in Immunology | www.frontiersin.org 5
improve intestinal barrier function (97, 98). A low concentration
of the SCFA butyrate decreased monolayer permeability and
enhanced transepithelial resistance in epithelial cells in vitro,
while a high concentration of butyrate had the inverse effect.
Mechanistically, butyrate decreases permeability by accelerating
the assembly of tight junctions via the activation AMPK (99, 100).
Bifidobacterium species increase gut barrier integrity by producing
acetate, which increased the expression of the tight junction gene
Occludin (101). Since most butyrate-producing bacteria belong to
the Firmicutes phylum, inflammation and impaired gut barrier
integrity may be induced by the decreased relative abundance of
Firmicutes in SLE patients. In the Tlr7 Tg model of lupus, dietary
resistant starch reduced the translocation of L. reuteri by inducing
the production of SCFA (7). This implied, at least in this model, a
direct role of SCFA in maintaining gut barrier integrity to prevent
the translocation of pathobionts that amplify lupus pathogenesis
(Figure 2). Our group has recently identified an aberrant
tryptophan metabolism in the gut of the B6.Sle1.Sle2.Sle3 mice
that is largely regulated by the microbiota (102). Reducing dietary
tryptophan ameliorated autoimmune phenotypes with an
increased Treg suppressive function and lower autoantibody
titers (11). One of tryptophan metabolites produced by bacteria,
indole, can improve gut barrier function by upregulating the
expression of tight junction proteins in the gut (103, 104). An
altered tryptophan metabolism is also found in SLE patients (102)
and it may contribute to impaired gut integrity, although this has
never been formally investigated.
Side Effects of SLE Treatments
The medications used to treat SLE patients induce a leaky
gut directly or as the result of infections induced by
immunosuppression. Besides antibiotics, many non-antibiotic
medicines have shown adverse effects on host intestinal
homeostasis, including proton pump inhibitors (PPIs),
metformin, No-steroidal anti-inflammatory drugs (NSAIDs),
opioids and antipsychotics (105, 106). Specifically, NSAIDs and
hydroxychloroquine, which are widely used to treat SLE, have
gastro-intestinal side effects (107–109). NSAIDs can induce
mitochondrial and endoplasmic reticulum damage and oxidative
stress in intestinal epithelial cells, enhancing gut permeability and
local inflammation (110). Treatment of SLE patients with
hydroxychloroquine reduced the abundance of Enterobacteriaceae,
and glucocorticoids, a group of drugs broadly used to treat lupus,
reducedmicrobial diversity (9). The calcineurin inhibitor tacrolimus
(FK 506) increased gut permeability in humans and rats through
inhibiting mitochondrial respiration in gut epithelial cells (111).
Voclosporin (Lupkynis) is a calcineurin inhibitor that has been
recently approved for the treatment of lupus nephritis (112), and it
would be of interest to monitor its potential effect of gut
permeability. Finally, treatment with immunomodulatory drugs
increase the risks for infection with bacteria and viruses in SLE
patients (113–115). As mentioned above, intestinal infections
induced by these treatments may trigger immune activation and
inflammation in the hosts leading to damage to the gut
barrier (Figure 2).
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LEAKY GUT EXACERBATES
LUPUS PROGRESSION

A leaky gut allows foreign antigens to pass into the systemic
circulation, which may provoke both local and systemic immune
responses. As mentioned above, LPS and (1 ! 3)-b-D-glucan
have been detected in the sera of SLE patients (32, 64). These two
components are known to mediate secretion of proinflammatory
cytokines, including type I IFN, through activation of TLR-4 and
dectin-1, respectively (116). When given systemically to mice,
lipoteichoic acid, a major cell wall component from gram-
positive bacteria, induces various autoimmune diseases,
including SLE (117, 118). The bacterial amyloid curli and
DNA form immunogenic complexes that accelerate the
progression of SLE, via the generation of autoantibodies and
type I IFN responses (119). An impaired gut barrier may allow
the translocation of such antigens from intestinal lumen into
internal environment, resulting in a higher-level autoimmune
response. Exposure of E. gallinarum to human hepatocytes
induced the generation of autoimmune-promoting factors,
such as b2GPI and type I IFN, and activated the AHR pathway
(35). Thus, the translocation of pathobiont E. gallinarum into
livers of patients with SLE and autoimmune hepatitis may
contribute to the development of autoimmune disease in these
patients, as it did in mice. Collectively, microorganisms and their
products passing through an impaired gut barrier into internal
environment can result in a hyperactive immune system in hosts
contributing to lupus progression (Figure 3).

The contribution of leaky gut to lupus pathogenesis was
directly assessed with a chemically induced injury with DSS in
the spontaneous FcGRIIb−/− model and the pristane induced
model. The detection of bacteria in the MLN as well as endotoxin
and (1 ! 3)-b-D-glucan in the blood of these mice showed that
Frontiers in Immunology | www.frontiersin.org 6
the DSS treatment mediated the translocation of gut
microorganisms and their products into systemic circulation.
Importantly, DSS increased systemic inflammation, such as IL-6
production, as well as renal pathology. Additionally, an
enhanced apoptosis was observed in the MLN and spleen,
which may explain the increased presence of anti-dsDNA
antibodies in the blood and immune complex deposits in the
kidney (64). Taken together, these results suggest that a leaky gut
may exacerbate the severity of lupus pathogenesis.
THERAPEUTIC STRATEGIES TO
RESTORE GUT BARRIER FUNCTION

Lifestyle Modifications
Diet has been known to affect the gut integrity directly or
indirectly by modifying the host microbiota (120). Studies
suggest that a high-fat diet can directly downregulate the
expression and distribution of tight junction proteins (121–
123) and induce the secretion of bile acid into the gut lumen
increasing gut permeability (123–125). A combination of low
fiber and high fat content increased the abundance of mucin
degrading bacteria in the gut (126, 127), which may compromise
the mucus layer in the lumen and increase the susceptibility to
leaky gut. Moreover, a high fat diet changes the ratio of
Bacteroidetes/Firmicutes in adult C57BL/6J mice (128), may
partly explain its harmful impacts on gut homeostasis as
Bacteroidetes are commonly associated with chronic intestinal
inflammation, while many of beneficial bacteria belong to the
Firmicutes phylum. Notably, high fat diet exacerbates lupus
phenotypes in TLR8-deficient lupus-prone mice. The effects
are attributed to an enhanced TLR7 signaling in dendritic cells
(129). As mentioned above, an upregulated TLR7 signaling
FIGURE 2 | Mechanisms leading to the loss of gut barrier integrity in lupus. The following mechanisms can compromise a healthy gut (left) leading to a leaky gut
(right), singly or in combination, 1. The reduction or even loss of SCFA-producing bacteria is linked to alterations of the mucus layer lining the gut. 2. Expansion of
mucin-degrading bacteria, such as R. gnavus, promotes gut leakage. 3. Frequent intestinal infections induce inflammation and tissue damage. 4. The overactive
immune system leads to chronic inflammation and recruitment of inflammatory cells. 5. Proinflammatory cytokines affect gut integrity. 6. Some lupus treatments
cause damage on gut barrier function.
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increase gut permeability, therefore, high fat diet may cause more
severe gut leakiness in people genetically predisposed to lupus. In
addition, a diet rich in animal proteins but not in plant proteins
exacerbates intestinal inflammation in a chronic colitis model by
increasing the proinflammatory response of monocytes (130).
Similarly, a high-glucose and high-fructose diet can also induce
inflammation in the gut leading to the alteration of tight junction
proteins, which increased gut permeability (131). As patients
with SLE have a high prevalence of metabolic syndrome
featuring glucose tolerance, hypertriglyceridemia and others,
the disturbed glucose and lipid metabolism in lupus patients
may further aggravate diet-mediated gut permeability (132).
Additionally, food additives present in numerous processed
food items have shown adverse impacts on host microbiota.
An increased consumption of processed food and additives used
by food industry may explain the increased gut dysbiosis and gut
leakage in the general population as well as lupus patients (133).

On the other hand, certain dietary components or
supplements can restore gut integrity. Various nutrient
components, including vitamin D, have shown potentials to
improve gut integrity (120). However, vitamin D deficiency is
highly prevalent in patients with SLE (134–136). The
supplementation of vitamin D may restore the gut barrier
function in lupus patients. Administration of retinoic acid
(RA), a major oxidative metabolite of vitamin A, increases the
barrier function of epithelial cells in vitro and the relative
abundance of Lactobacillus spp., a group of bacteria that
support gut barrier function in mice, suggesting that retinoic
acid can directly enhance gut integrity or through modifying host
microbiota (137). In a similar way, all-trans-retinoic acid (tRA)
treatment on pristine-induced lupus mouse model reversed gut
leakage, showing a reduced serum endotoxin level. At same time,
tRA treatment also modified microbiome composition which
was dysregulated by pristine injection, supporting a dual role of
retinoic acid in affecting gut barrier function and microbiome
configuration. Supplementation of glutamine in children
improved intestinal barrier function (138). In contrast, a low
level of glutamine was reported in SLE patients (139, 140), which
may also account for an impaired gut barrier in lupus patients. In
addition, as mentioned above, SCFA can promote gut integrity
by enhancing tight junction assembly (100). Supplementation of
resistant starch, a highly fermentable fiber, in Tlr7 Tg mouse
model rescued the gut leakiness (12). Overall, these results
suggest that a healthy diet or dietary modifications that
improve lupus outcomes may also improve gut barrier
integrity, although it has never been tested in SLE patients.

The association of psychological stress and intestinal
dysbiosis and permeability have been established (141, 142).
Multiple lines of evidence support that stress and depression can
change the gut microbiota composition through hormones
levels, gut motility and inflammation, indirectly influencing gut
permeability (143). When chronic depression was induced in a
mouse model, increased corticotropin-releasing hormone,
serotonin level and gut motility was observed in the hosts and
these changed parameters may explain altered microbial profile
in the gut (142). Acute psychological stress was demonstrated to
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active mast cell in the gut by increased corticotropin-releasing
hormone. The induced overactive immunity increased
permeability in small intestine in humans (141). People living
with lupus are likely to feel anxiety and even hopeless because of
the uncontrolled disease activity. The changes in physical
appearance also bring pressures in social interactions (144). All
these psychological factors may play roles in increasing gut
permeability in lupus patients.

Medical Treatment
Larazotide acetate (LA) or AT1001, a tight junction regulator,
inhibited the redistribution and rearrangement of tight junction
components induced by zonula occludens toxin and its eukaryotic
analogue zonulin, maintaining monolayer integrity of IEC6 and
Caco-2 cells (145). Treatment with LA on a mouse model of celiac
disease blocked gliadin-induced gut inflammation and
permeability (145). LA is currently tested in phase III clinical
trials as an adjunct therapeutic to enhance intestinal barrier
function in celiac disease patients (146). Moreover, a zonulin
neutralizing antibody showed a similar protective function as LA
on lung permeability in two mouse models of acute lung injury
(147). As increased serum zonulin levels has been correlated to
intestinal permeability in several autoimmune diseases (148),
blockage of zonulin pathway may be a potential therapeutic
strategy to restore the gut barrier function. More specifically to
lupus, a high level of zonulin was detected in the fecal samples of
SLE patients (Preprint) (149). Oral administration of LA reversed
gut permeability in C57BL/6 mice colonized with a strain of R.
gnavus derived from lupus patients (Preprint) (150).These
findings suggest that LA provides a promising therapeutic
option to improve gut barrier functions in lupus.

Some drugs to treat diabetes, hypertension and other diseases
have shown a potential to modify gut integrity. Metformin is
widely used in type 2 diabetes to lower blood glucose level.
Administration of metformin induced gut microbial dysbiosis
with an increased relative abundance of the gut opportunistic
pathogen Escherichia_Shigella (151). However, an opposite effect
was observed in a sepsis-related liver injury (SLI) rat model.
Administration of metformin in aged SLI rats decreased the
abundance of Klebsiella and Escherichia_Shigella and increased
that of Bifidobacterium, Muribaculaceae, Parabacteroides
distasonis and Alloprevitella. Fecal microbiota transfers (FMT)
from metformin treated SLI rats decreased liver damage, colon
barrier dysfunction as well as inflammation in recipient SLI rats
(152). Metformin also decreased inflammation and gut leakage
in obese mice fed with a high-fat diet by modifying their gut
microbiome and increasing goblet cell proliferation leading to a
higher mucus production (153). A similar microbiota restorative
function of metformin was also found in a model of high-fat diet
induced type 2 diabetes (154). These results suggest the potential
of metformin in treating host microbial dysbiosis and leaky gut.
Further research is required to investigate underlying
mechanisms, and to understand why the outcomes of a
treatment with metformin on gut microbiome and barrier
integrity may be context dependent. Metformin has shown
beneficial effects in mouse models of lupus (155) as well as in
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SLE patients (156), at least in part through the normalization of
T cell metabolism (155, 157). It would be of great interest to
investigate whether metformin also restores gut microbial
homeostasis and barrier integrity. Another diabetes drug,
berberine, also showed beneficial effects on epithelial integrity.
In the Caco-2 cell monolayer model of intestinal barrier,
berberine prevented IFNg and TNFa-induced gut permeability
by inhibit ing myosin light chain kinase-dependent
phosphorylation of the myosin light chain mediated by HIF-
1a (158). Berberine treatment did not increase the expression of
tight junction proteins in another Caco-2 cell assay but increased
their transepithelial electrical resistance. This finding led the
hypothesis that berberine does not affect the expression and
distribution of tight junctions but tightens the tight junction
integrity (159). Although berberine and its derivatives have not
been tested in lupus, they are being evaluated in numerous
inflammatory conditions, including those involving
inflammatory T cells such as lupus (160). The concomitant
assessment of their effect on gut barrier integrity may reveal
valuable mechanistic insights.

Captopril, a hypertension drug that works as angiotensin-
converting enzyme inhibitor, has shown long-lasting beneficial
effects on the microbial composition, permeability and pathology
of the gut in spontaneously hypertensive rats (161). b-blockers,
another class of blood-pressure reducing drugs, alleviated
intestinal permeability and decreased bacterial translocation in
patients with portal hypertension (162). Since a leaky gut
accelerates the pathogenesis of SLE, medication that restore gut
integrity may serve as efficacious therapeutic agents for lupus.

Finally, vaccination with heat-killed gut pathobiont E.
gal l inarum reversed gut permeabil i ty and bacterial
translocation induced by this bacterium, as well as decreased
the production of autoantibodies and prolonged the survival of
lupus-prone mice (35). Taken together, a number of therapeutic
interventions have proved protective effects on gut integrity in
various diseases and models. The application of these treatment
options to lupus patients warrants further research to determine
their clinical efficacy.

Antibiotics and Probiotics
As described above, infections or enrichment of harmful bacteria
in the gut could increase intestinal permeability, therefore
antibiotics-mediated selective elimination may restore the gut
barrier function. Indeed, the gastrointestinal antibiotic rifaximin
decreased the abundance of Clostridium and improved intestinal
barrier function in a mouse model of chronic stress (163).
Similarly, the rifaximin treatment of patients with
decompensated cirrhosis decreased the abundance of
Streptococcus in the gut and ameliorated endotoxemia with
alleviated gut permeability (164). Since SLE disease activity has
been positively correlated with the abundance of Streptococcus in
the gut (23) and infections of Clostridium difficile was also linked
to the mortality of SLE patients (165), the suppressing effects of
rifaximin on both bacteria may offer a new approach in the
treatment of lupus. Furthermore, rifaximin prevents stress-induced
mucosal inflammation and intestinal barrier impairment
in rats by increasing the expression of occludin (166).
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Oral supplementation with two other non-absorbable
antibiotics, neomycin and polymyxin B, improved intestinal
leakiness in Western diet or high salt diet mouse models (167,
168). The findings suggest that antibiotics can ameliorate
microbiota dysbiosis triggered by environmental factors as
well as local inflammation, leading to a healthier gut. In lupus
prone MRL/lpr mice, an antibiotic cocktail or vancomycin
alone restored the microbiome structure and gut barrier
function, supporting a therapeutic benefit of antibiotics in
lupus (37). However, since a lower microbiome diversity and
richness have been reported to SLE patients (22, 25, 30, 31,
169), it could be further reduced by broad-spectrum antibiotics,
which should therefore be used with caution. More
sophisticated interventions are needed to target specific
pathogens without killing beneficial bacteria in SLE patients.

Probiotics are living commensal or nonpathogenic
microorganisms that provide health benefits to hosts (170). A
number of studies have shown that supplementation of
probiotics can exclude invading bacterial pathogens by
suppressing their adhesion and by producing antimicrobial
compounds (171). As summarized above, an increased
infection rate has been reported in lupus patients due to
abnormalities in their immune system and immunosuppressive
treatments. Thus, probiotics may serve as a substitute for
antibiotics to prevent bacterial infections and improve
infection-mediated gut permeability. Many probiotics exert
their functions through immune regulation, particularly
through the modification of immune cell populations and the
balance between pro- and anti-inflammatory cytokines (172).
Administration of the probiotics Lactobacillus rhamnosus and L.
delbrueckii to pristane-induced lupus mice reduced the
populations of Th1 and Th17 cells and the levels of
proinflammatory cytokines IFNg and IL-17 (173) .
Furthermore, supplementation of NZB/W F1 mice with
specific strains of L. reuteri suppressed the MAP kinase and
NF-kB signaling pathways, reducing the levels of IL-1b, IL-6 and
TNFa (174). Because of the gut-damaging role of multiple
pro-inflammatory cytokines, including IL-1b, TNFa and IFNg
(83, 84), suppression on proinflammatory cytokines mediated by
probiotics may contribute to an improved gut barrier as well.
Lastly, probiotics can promote the expression of mucus
glycoprotein and strengthen tight junctions, therefore
enhancing the integrity of gut barrier (175). Notably,
Lactobacillus treatment on lupus prone MRL/lpr mice
significantly increased the expression of multiple tight junction
proteins, including ZO1, Occludin, and Claudin-1, in intestinal
epithelial cells, suggesting that certain probiotics may rescue gut
permeability detected in SLE patients and restore the normal gut
barrier function (176).
CONCLUSION

In summary, increased gut permeability, or leaky gut, in lupus
patients can be induced by overactive immune responses, gut
microbial dysbiosis, side effects of treatments, or any
combination of these factors (Figure 2). The resulting gut
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leakage allows bacteria to escape from the gut lumen and enter
the systemic circulation, which in turn promotes local and
sys temic inflammat ion , chang ing gut microbiome
configuration and metabolites profile. Overall, the leaky gut,
the overactive immune responses and microbial dysbiosis can
exacerbate each other, creating a vicious feed-forward loop
(Figure 3). Certain lifestyle modifications, medications,
antibiotics and probiotics have shown promising results on
improving gut permeability in other diseases or mouse models.
Considering the close relationships between immunity,
microbiome and intestinal integrity in lupus patients, an
unbiased evaluation of these leaky gut interventions should be
evaluated in pre-clinical models of the disease for their ability to
Frontiers in Immunology | www.frontiersin.org 9
restore the balance in the immune system and/or gut
microbiome, and ultimately, to change disease outcomes.
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