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Interleukins 4 (IL-4) and 21 (IL-21) belong to the common gamma chain cytokine family
which are highly involved in the progression of autoimmune diseases. While IL-4 is well
known to be involved in the suppression of apoptosis of autoreactive B cells, the role
played by IL-21 remains unclear. In the current study, we activated the human Burkitt’s
lymphoma Ramos B cells with anti-IgM to mimic B cell hyperactivation observed in
patients of autoimmune diseases. Consistent with other reported findings, anti-IgM led to
the downregulation of proteins involved in B cell survival and proliferation, as well as the
activation of caspase 3 activity and DNA damage, resulting in apoptotic cell death after 48-
hour treatment. Although both IL-4 and IL-21 reversed anti-IgM-induced apoptosis and
cell cycle arrest, they did so via different mechanisms: while IL-4 could directly suppress
anti-IgM-induced caspase 3 activation and marker indicative of DNA damage, IL-21 could
induce B cell proliferation in the presence of anti-IgM. Importantly, IL-21 also suppressed
activation induced cell death in human primary B cells. Pre-treatment with clinically
validated JAK inhibitors completely reversed the effects of IL-4 and IL-21 to rescue
anti-IgM induced cell death and DNA damage. The results indicate the underlying
mechanisms of how IL-4 and IL-21 differentially promote survival of hyperactivated B
cells and provide hints to treat autoimmune diseases.

Keywords: interleukin 4 (IL-4), interleukin 21 (IL-21), hyperactivated B cell, B cell tolerance checkpoint,
autoimmune disease
INTRODUCTION

The presence of B cell hyperactivity is one of the characteristics associated with the progression of
autoimmune disease, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),
type 1 diabetes (T1B), Sjögren’s syndrome (SS) and systemic/multiple sclerosis (SS/MS) (1–6). In
healthy individuals, elimination of self-reactive B cells is well controlled by apoptosis through the
activation of pro-apoptotic Bcl-2 family and Fas-mediated process in a CD4(+) T cell-dependent
manner during negative selection (7–9). However, expansion of autoreactive B cells happens when
the B cell tolerance checkpoints are impaired during autoimmune diseases (10–12). The
autoreactive B cells potentially trigger the disease progression through secretion of
autoantibodies, presentation of autoantigens, secretion of proinflammatory cytokines, modulation
org July 2022 | Volume 13 | Article 9198541

https://www.frontiersin.org/articles/10.3389/fimmu.2022.919854/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.919854/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.919854/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.919854/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:shawn@sinomab.com
https://doi.org/10.3389/fimmu.2022.919854
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.919854
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.919854&domain=pdf&date_stamp=2022-07-13


Hui et al. IL-4 and IL-21 Protect B-Cells
of antigen processing/presentation and the formation of ectopic
germinal centers (13). Except genetic mutation, cytokine
imbalance is another important factor leading to increased
survival and proliferation of autoreactive B cells in these diseases.
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Interleukin-4 (IL-4) and interleukin-21 (IL-21) belong to
common gamma chain family cytokines which could induce
the downstream signaling pathways through dimerization of
IL-4/IL-21 receptor and common gamma chain receptor. Both
B

C

D

A

FIGURE 1 | IL-4 and IL-21 activated JAK/STAT pathways and stimulated downstream gene expressions in Ramos B cells. Ramos and Jurkat were treated with gc
cytokines for 15 mins and harvested for western blot analyses. (A) IL-21 and IL-4 significantly induced STAT3 and STAT6 phosphorylation respectively. No STAT5
phosphorylation was observed in Ramos cells after any cytokine treatments. (B) IL-2, IL-9 and IL-21 treatments triggered STAT3 and STAT5 phosphorylation in
Jurkat cells. Ramos cells were starved in serum-free RPMI1640 medium for 24 hours and treated with either IL-4 or IL-21 for 6 and 24 hours. (C) IL-4 significantly
reduced CASP7 and induced CD23 expressions dose dependently at 6 and 24 hours respectively. (D) IL-21 significantly induced PRDM1 and IRF4 expressions
dose dependently at 24 hours. *p < 0.05, **p < 0.01, ***p < 0.001 as compared to vehicle controls art respective time points by one-way ANOVA, N = 3.
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cytokines are secreted by T follicular helper (TFH) cells (14, 15) to
promote pleiotropic activity in B cells, including proliferation
and activation of naive B cells, differentiation into mature and
plasma cells, class switch recombination, and formation of
germinal centers and memory B cells in human and mice
(16–21). Despite the normal functions, IL-4 and IL-21 are
highly involved in the progression of autoimmune diseases.
The genetic associations between IL-4/IL-21 and autoimmune
diseases had been well documented (22–33). Furthermore,
elevated IL-4/IL-21 serum levels and increased numbers of
IL-4/IL-21 producing T cells were observed in several human
autoimmune conditions (34–42). Although in-vitro and animal
studies have provided clues to explain how IL-4 promotes
abnormal active B cell function and survival during disease
conditions (43–48), the effect of IL-21 in B cell pathology
remains unclear.

In the current study, we demonstrated how IL-4 and IL-21
differentially disrupted the B cell tolerance checkpoint upon anti-
IgM activation in Ramos B cells. Ramos is a human Burkitts
Lymphoma cell line and could be used as a model for B-cell
antigen receptor (BCR) activation by cross-linking the BCR with
anti-IgM antibody, which would lead to the induction of cell
cycle arrest and apoptosis. Ramos was chosen in the current
study because of the following reasons. First, Ramos cells are
negative for EBV infection which better mimics the normal
primary B cells, given that EBV infection potentially modulates
the B cell phenotype (49). Second, more detailed studies of anti-
IgM effects on Ramos cells were performed when compared to
other B cell lines (50). Third, anti-IgM treatment led to more
obvious induction of apoptosis and growth arrest in Ramos cells
when compared to other B cell lines (51), thus greatly mimicking
the tolerance checkpoint induced apoptosis in hyperactivated
primary B cells. We first translated the studies performed in
murine B-cell lymphoma cell line CH31 (45) into human Ramos
cell line, confirming that IL-4 could similarly reverse the anti-
IgM induced apoptosis through cell maintenance in G1 phase,
suppression of DNA damage and attenuation of cleaved caspase
3 activity in human system. Interestingly, IL-21 suppressed anti-
IgM induced apoptosis via a different route, leading to the
induction of proliferation and accumulation of intermediate
caspase-3 p19 isoform in the Ramos model. Treatment with
clinically validated JAK inhibitors blocked STAT6 and STAT3
Frontiers in Immunology | www.frontiersin.org 3
activation in IL-4 and IL-21 treated Ramos cells respectively and
completely abolished rescues of anti-IgM induced cell death.
Preliminary results also demonstrated that IL-21 was able to
suppress CD40 ligand (CD40L) and anti-IgM induced cell death
in human primary B cells during activation. These results suggest
that IL-4 and IL-21 could disrupt the B cell tolerance checkpoint
and promote the survival of hyperreactive B cells through
different mechanisms. The blockade of JAK/STAT pathway
might serve as the strategy to treat autoimmune diseases
associated with IL-4 and IL-21 upregulation.
MATERIALS AND METHODS

Cells and Reagents
The human Burkitts Lymphoma cell line Ramos (CRL-1596™)
and human T lymphoblast cell line Jurkat (Clone E6-1,
TIB-152™) were purchased from ATCC. Low passage (20<)
Ramos cells was cultured in complete RPMI 1640 Medium
(#A1049101, ATCC modification, ThermoFisher Scientific,
Waltham, MA, USA), supplemented with 100 U/ml penicillin,
100 mg/ml streptomycin (15140122, ThermoFisher Scientific),
and 10% fetal bovine serum (FBS, A3160801, ThermoFisher
Scientific. Low passage of Jurkat cells (20<) was cultured in the
same complete medium but without antibiotics. Cells were
sub-cultured at 5x105 cells/ml and maintained at 37°C in a
humidified 5% CO2 atmosphere. Recombinant human IL-2
(#11848 -HNAH1-E ) , I L -4 ( #11846 -HNAE) , IL - 7
(#11821-HNAE), IL-9 (#11844-H08B), IL-15 (#10360-HNCE)
and IL-21 (#10584-HNAE) were obtained from Sino Biological
(Beijing, China). JAK inhibitors Tofacitinib (Tof, #4556),
Ruxolitinib (Rux, #7064) and Ritlecitinib (Rit, #6506) were
purchased from Tocris (Abingdon, United Kingdom).
AffiniPure Goat Anti-Human IgM, Fc5m fragment specific
(#109-006-129) was obtained from Jackson ImmunoResearch
(West Grove, USA).

Quantitative Real-Time PCR
For receptor expression studies, Ramos (106 cells/ml) and
Jurkat (106 cells/ml) cells were harvested for RNA extraction.
For STAT driven gene expression studies, Ramos cells (106

cells/ml) were starved in serum-free RPMI1640 medium for
TABLE 1 | Primer lists for homo sapiens.

Forward Reverse

IL-2Ra ATGGATTCATACCTGCTGATGTGG CAGGACCCAACTCACTTGGTGTAG
IL-2Rb ATGGCGGCCCCTGCTCTG CAGGACCCAACTCACTTGGTGTAG
IL-2Rg TTTCCTGTTTGCATTGGAAGCC GTTCCCGTGGTATTCAGTAACAA
IL-4Ra CTGCTCATGGATGACGTGGTCA GGTGTGAACTGTCAGGTTTCCTG
IL-7Ra ATGACAATTCTAGGTACAACTTTTG CTAGAATGTCCAGGACCGAGCCTT
IL-9Ra ATGGGACTGGGCAGATGCATCTGG CTAGAATGTCCAGGACCGAGCCTT
IL-15Ra ATGGCCCCGCGGCGGGCG GAAAACTGCTCTCACCACCTATGA
IL-21R ATGCCGCGTGGCTGGGCC CCCTGGACCCCAGGCCAGCTAA
CD23 GGTATGCCTGTGACGACATGGA TTCAGGTCCAAGTTCCGAAGGC
CASP7 AGTGACAGGTATGGGCGTTC CGGCATTTGTATGGTCCTCT
PRDM1 AACGTGTGGGTACGACCTTG CCGCATCCTCCATGTCCATT
IRF4 CAGCCCAGCAGGTTCACAACTA CCTGTCACCTGGCAACCATTT
GADPH GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA
Jul
y 2022 | Volume 13 | Article 919854

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hui et al. IL-4 and IL-21 Protect B-Cells
24 hours and then treated with 10 or 50 ng/ml IL-4 or IL-21
for 6 and 24 hours. Total RNA was extracted from Ramos and
Jurkat cells by RNAzol (R4533, Sigma, St. Louis, Missouri,
USA) following manufacturer’s protocol. All RNA showed
260/280 Ratio of 1.8 to 2.0 as measured by NanoDrop™ OneC
microvolume UV-Vis spectrophotometer (701-058108,
ThermoFisher Scientific). Reverse transcription was
performed in 500 ng of total RNA using PrimeScript RT
reagent kit (RR037A, Takara, Beijing, China) and the gene
expression was analyzed by quantitative real-time PCR using
TB Green Premix Ex Taq (RR420W, Takara) in LightCycler®

480 Real-Time PCR System (Roche, Basel, Switzerland). The
primers used were summarized in Table 1. Housekeeping
gene GAPDH was used for normalization.

Treatment Paradigm of Ramos Cells
To investigate the effects of cytokines, Ramos cells (106 cells/ml for
western blot and 5x105 cells/ml for other experiments) were
treated with IL-4 or IL-21 for an hour before challenge with
different concentrations of anti-IgM up to 48 hours. To study the
blockade of JAT/STAT pathway, cells were pre-treated with
different concentrations of Tofacitinib, Ruxolitinib and
Ritlecitinib for an additional hour before the cytokine
administration. After the indicated timepoints of anti-IgM
challenge, cells were harvested for western blot or flow cytometry.

Western Blot
Antibodies targeting cyclin A (sc-271682), cyclin D (sc-8396),
cyclin E (sc-377100), CDK1 (sc-54), CDK2 (sc-6248), CDK4
(sc-23896) and CDK6 (sc-7961) were purchased from Santa
Cruz Biotechnology (Dallas, Texas, USA); AKT (#9272),
p-AKT (#4060), p65 (#8242), p-p65 (#3033), STAT3 (#9139),
p-STAT3 (#9145), STAT5 (#94205), p-STAT5 (#9359), STAT6
(#5397), p-STAT6 (#56554), total caspase 3 (#9662) from Cell
Signaling Technology (Danvers, Massachusetts, USA); g-H2AX
(ab26350) from Abcam (Cambridge, UK); and tubulin
(100109-MM05T) from Sino Biological. HRP conjugated goat
anti-mouse (#7076) and goat anti-rabbit secondary antibodies
(#7074) were purchased from Cell Signaling Technology.

Total proteins were extracted from the Ramos cells in RIPA
lysis buffer (#20-188, Millipore, Burlington, Massachusetts,
USA) supplemented with Halt™ Protease and Phosphatase
Frontiers in Immunology | www.frontiersin.org 4
Inhibitor Cocktail (#78440, ThermoFisher Scientific) after
cytokine treatment for 15 mins or anti-IgM treatment up to
48 hours. After measuring the protein concentrations by
Pierce™ BCA Protein Assay Kit (#23225, ThermoFisher
Scientific), protein lysate was diluted in NuPAGE™ LDS
Sample Buffer (#NP0007, ThermoFisher Scient ific)
supplemented with 5% 2-mercaptoethanol (#1610710,
BioRad) and milliQ water to a desired concentration, boiled
at 95°C for 10 mins and stored at -80°C until use. Total protein
(20 to 40mg/lane) was separated through electrophoresis and
blotted on the nitrocellulose membrane (GE10600001, Sigma).
Membrane was blocked with 5% nonfat milk (#1706404,
BioRad) diluted in TBST, then incubated with primary
antibodies diluted in 5% BSA/TBST at 4°C overnight in a
rotating wheel. Next day, membrane was washed with PBST
and incubated with secondary antibodies (1:2000) diluted in 5%
milk/TBST for an hour at RT. Intensities of protein bands were
determined using ECL substrate kit (#34580, ThermoFisher
Scientific) in the ChemiDoc Imaging System (BioRad).

Apoptotic Assay
After 48-hour anti-IgM treatment, Ramos cells were washed
once in FACS wash buffer (2% FBS in PBS) and then stained with
dead cell apoptosis kits with annexin V (AV) for flow cytometry
(#V13242, ThermoFisher Scientific) according to the
manufacturer’s protocol. Cells were later stained with
propidium iodide (PI) provided in the kit, and the percentages
of live, apoptotic and necrotic populations were analyzed by BD
FACSLyric™ Clinical Cell Analyzer (BD Biosciences, New
Jersey, USA). Annexin V and PI single stained cells were used
for correcting fluorescence spillover emissions. Unstained
control was performed in cells without dye incubation.

Cell Cycle Analysis
After 48-hour anti-IgM treatment, Ramos cells were washed once
in PBS and drop fixed in 95% ethanol on ice for 2 hours. Fixed cells
were re-hydrated in FACS wash buffer and stained with 5 mg/ml PI
(P1304MP, ThermoFisher Scientific) in the presence of 100 ug/ml
RNase A (#19101, Qiagen, Hilden, Germany) at 37°C for 30 mins.
Percentages of cells in sub G0/G1, G1, S and G2-M phases were
determined by flow cytometry. Unstained control was performed
in cells without PI incubation.
TABLE 2 | CT values for gene expressions of cytokine receptors in Ramos and Jurkat.

Ramos Jurkat

IL-2Ra 24.49 ± 0.43 ** 31.31 ± 1.63
IL-2Rb 32.77 ± 0.19 30.68 ± 0.99
IL-2Rg 23.32 ± 0.37 20.13 ± 1.23 *
IL-4Ra 23.85 ± 0.40 ** 29.24 ± 1.45
IL-7Ra 30.55 ± 0.34 28.15 ± 1.78
IL-9R 33.18 ± 0.47 20.13 ± 1.23 ***
IL-15a > 35 > 35
IL-21R 24.48 ± 0.53 * 30.25 ± 1.69
GAPDH 17.83 ± 0.29 17.82 ± 0.99
July 2022 | Volume 13
Student t-test was used to compare differences between Ramos and Jurkat cells. Same housekeeping GAPDH expression was observed in Ramos and Jurkat groups. ***P<0.001,
**p<0.01,*p<0.05, N = 4 for Ramos and N = 3 for Jurkat groups.
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Mitochondrial Membrane Potential
(Dym) Analysis
After 48-hour anti-IgM treatment, Ramos cells were washed
o n c e i n FAC S w a s h b u f f e r a n d s t a i n e d w i t h
tetramethylrhodamine (TMRE, #T669, ThermoFisher
Scientific) for 15 min at RT. TMRE is a cell-permeant dye that
accumulates in active mitochondria with intact membrane
potentials. Percentage of cells with intact Dym was quantified
by flow cytometry. Unstained control was performed in cells
without dye incubation.

WST-8 Proliferative Assay
Ramos cells (50000 cells in 100 ml) were seeded into 96-well plate
and stabilized at 37°C for an hour. After 48-hour anti-IgM
treatment, 10 ml WST-8 reagent (ab228554, Abcam) was added
to each well and incubated for 4 to 8 hours. WST-8 could be
reduced by cellular dehydrogenases to an orange formazan
product, which the amount of formazan produced is directly
proportional to the number of living Ramos cells. Optical density
(OD) of each well was measured by absorbance at 450 nm using
Varioskan LUX Multimode Microplate Reader (ThermoFisher
Scientific). Samples were tested in duplicate wells.

Primary B Cell Isolation and Treatment
Healthy human peripheral blood mononuclear cell (PBMC) was
purchased from iXCells Biotechnologies (San Diego, California,
USA). PBMC was cultured at the density of 2E6 cells/ml in the
complete RPMI1640 medium. After 24 hours, B cells were
purified from PBMC culture through negative selection using
human B Cell Isolation Kit II (#130-091-151, Miltenyi Biotec,
Bergisch Gladbach, North Rhine-Westphalia, Germany).
Purified B cells were resuspended in fresh complete
RPMI1640 medium and labelled with CFSE Cell Division
Tracker Kit (#423801, Biolegend, San Diego, California, USA)
following manufacturer’s protocol. Cells were then seeded into
96-well round bottom plate at the density of 2E5 cells/100µl, and
then challenged with 50 ng/ml IL-21 and 1 µg/ml CD40L
(#6420-CL/CF, R&D Systems, Minneapolis, USA) or 2 µg/ml
anti-IgM. Cells were harvested after 3-day incubation.

Flow Cytometry Analyses of Purified
B Cells
Purified B cells were washed once with FACS wash buffer and
then stained with PE anti-CD38 (#555460, BD Biosciences).
After 30-min incubation at RT, cells were washed once
with FACS wash buffer, resuspended in 0.1 µg/ml DAPI (for
accessing cell death) and then analyzed by flow cytometry.
Unstained control was performed in cells without CSFE and
antibody incubation.

Data Quantification and
Statistical Analyses
For western blot, the signal intensities of protein bands were
quantified by ImageJ (National Institutes of Health). Data
obtained from flow cytometry were analyzed by Flowjo
(version 10, BD). Statistical analyses were performed by Prism
Frontiers in Immunology | www.frontiersin.org 5
(version 7, GraphPad). Student t-test was used to indicate
difference in mean between two groups. One-way ANOVA was
used to determine statistical significance of means among 2 or
more groups across the time, cytokine concentration or drug
concentration. Two-way ANOVA was used to estimate how the
mean of a quantitative variable changes significantly according to
the levels of two categorical variables (anti-IgM and cytokine
concentrations; cytokine and JAK inhibitor concentrations). p <
0.05 is considered statistically significant for all statistical
tests used.
RESULTS

IL-4 and IL-21 Stimulated JAK/STAT
Pathway in Ramos Cells
Wefirst investigated ifRamos cells express corresponding receptors
to interact with the cytokines used in the current study. Jurkat cells
were used as the positive controls as the cells could potentially
respond to IL-2, IL-4, IL-9 and IL-21 stimulation (52–55).
Comparing the results of qRT-PCR between Jurkat and Ramos
cells, Ramos cells showed high expression levels of IL-2Ra, IL-2Rg,
IL-4Ra and IL-21R, low expression levels of IL-2Rb and IL-7Ra, and
no expressions of other receptor subunits (Table 2), suggesting that
Ramos cells mainly respond to IL-4 and IL-21 stimulation. Low
expression level of IL-2Rb could indicate limited IL-2 induced
dimerization of IL-2Rb and IL-2Rg, leading to failed stimulation
of downstream JAK/STAT pathway. We further confirmed the
results throughwestern blot analyses. Phosphorylation levels of two
STAT proteins, STAT6 and STAT3 (56, 57), were triggered in
Ramos cells after IL-4 and IL-21 treatments respectively
(Figure 1A). Although STAT3 and STAT5 phosphorylation was
observed in Jurkat (Figure 1B), no p-STAT5 protein was observed
after cytokine treatments in Ramos (Figure 1A), indicating that
STAT3 and STAT6 are major phosphorylated STAT proteins in
Ramos cell line. Biological activities of IL-4 and IL-21 were
confirmed by determining the levels of STAT driven gene
expressions. Treatment of IL-4 led to increased CD23 and
reduced CASP7 expressions (Figure 1C), while treatment of IL-21
triggered PRDM1 (BLIMP-1) and IRF4 expressions (Figure 1D) in
Ramos cells. The data were consistent to other literatures (58–60)
and showed that Ramos cells mainly respond to IL-4 and IL-21
treatments within all cytokine groups in the current study.

IL-4 and IL-21 Disrupted the B Cell
Tolerance Checkpoint and Promoted the
Survival of Hyperactivated Ramos Cells
The optimal doses of anti-IgM were tested by WST-8 assay after
48-hour treatment. All tested doses significantly reduced
proliferative activities of Ramos cells (Figure 2A) and the
intermediate dose (2 mg/ml) was selected for the following
experiments. Long-term treatment (24 to 48 hours)
significantly altered the activation of survival proteins AKT
and p65 (Figure 2B), with the activation of caspase 3 activity
and reduction of proteins involved in cell cycle (Figure 2C). No
cell cycle arrest proteins (p21 and p27) were identified in the
July 2022 | Volume 13 | Article 919854
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Ramos cells (Figure 2C). These results indicated that anti-IgM
could promote cell death by suppressing expressions of survival
and cell cycle proteins.

Next, Ramos cells were pretreated with IL-4 and IL-21 before
anti-IgM challenge for 48 hours to investigate their modulatory
effects. AV/PI assay was used to quantify percentages of total
apoptotic cells, in which AV+PI- represented early apoptotic and
AV+PI+ indicated late apoptotic cells. Anti-IgM shifted Ramos
cells from live to apoptotic cell population in a dose dependent
manner, and the application of IL-4 or IL-21 reversed the anti-
IgM induced apoptosis (Figure 3A). No obvious necrotic cell
population (AV- PI+ cells) was identified after anti-IgM
treatment. Quantification confirmed that IL-4 could shift the
apoptotic cell back to live cell population similarly in both low
and high concentrations (Figures 3B, C), while IL-21 showed
dose dependent effect in reversing apoptosis of Ramos cells
(Figures 3D, E). Comparing to IL-4 treatment, application of
IL-21 at 50ng/ml promoted higher survival rate of Ramos cells
during anti-IgM treatment.
Frontiers in Immunology | www.frontiersin.org 6
IL-4 and IL-21 Rescued Ramos Cells
Through Differential Mechanisms
We then investigated the underlying mechanisms of how IL-4
and IL-21 suppressed anti-IgM induced apoptosis. The collapse
of the DYm was reported to associate with the anti-IgM induced
apoptosis in Ramos cells and eventually lead to initial release of
cytochrome c into the cytoplasm (61). As shown in the TRME
staining pattern, anti-IgM significantly reduced the number of
cells with intact DYm and both IL-4 and IL-21 could rescue this
mitochondrial dysfunction (Figure 3F), which the quantification
confirmed the result in a statistical manner (Figures 3G, H).

Cell cycle arrest is another characteristic associated with the
anti-IgM induced apoptosis in B cells (45, 62, 63). We
demonstrated this phenomenon in the Ramos cell model that
anti-IgM significantly increased percentage of cells in sub G0/G1
phase and decreased number of cells in G2-M phase (Figure 4A).
Both IL-4 and IL-21 significantly rescued the Ramos cells by
escapes from G0/G1 phase while they differentially regulated the
cell cycle reentry (Figure 4A). IL-4 was able to retain cells in G1
B

C

A

FIGURE 2 | Detrimental effects of anti-IgM on Ramos B cells. (A) Anti-IgM treatment significantly reduced proliferation after 48 hours in WST-8 assay. The
detrimental effects were driven by (B) reduction in p65 signaling and AKT survival proteins, (C) activation of caspase 3 activity and downregulation of cell cycle
related proteins after incubation of 2 µg/ml anti-IgM. ***p < 0.001 as compared to controls by one-way ANOVA, N = 3.
July 2022 | Volume 13 | Article 919854
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phase (Figure 4B) while IL-21 could evenly distribute cells into
either G1 or S phases (Figure 4C). This phenomenon was further
confirmed by the WST-8 assay that IL-21 (50ng/ml) but not IL-4
could significantly induce the proliferation rate of Ramos cells
under anti-IgM conditions in a dose dependent manner
(Figures 4D, E), suggesting IL-21 could further increase the
number of abnormal B cells in the culture.

Cells accumulated in the sub G0/G1 phase are classified as
apoptotic cells with DNA fragmentation and mitochondrial
dysfunction (64–66). We further investigated whether the
attenuation of apoptosis was related to suppression of caspase
activity and DNA damage, as well as the mitochondrial
dysfunction. IL-4 and IL-21 both rescued the loss of
mitochondrial membrane potential (Figures 3F-H). Western
blot analyses showed that IL-4 significantly suppressed the
levels of fully mature form of cleaved caspase 3 (p17) and
DNA damage marker g-H2AX, while IL-21 could induce a
trend in g-H2AX reduction and lead to accumulation of
Frontiers in Immunology | www.frontiersin.org 7
intermediate form of cleaved caspase 3 (p19) (Figures 4F, G).
Quantification confirmed the observation (Figures 4H-K). To
sum up, IL-4 and IL-21 could both rescue the Ramos cells from
anti-IgM induced apoptosis while the underlying mechanisms
were different.

JAK Inhibitors Demonstrated That IL-4
and IL-21 Rescued Hyperactivated Ramos
Cells Through JAK/STAT Pathways
IL-4 and IL-21 could stimulate multiple downstream signaling
pathways, including IRS2, Ras/MEK/ERK, PI3K/AKT/mTOR
and JAK/STAT, to stimulate proliferation, activation and
immune functions in the cells within the peripheral and
central immune systems (67–69). As STAT6 activation is
related to the survival of autoreactive B cells (70), we explored
the significance of JAK/STAT pathway in the rescue of anti-IgM
induced cell death through administration of JAK inhibitors.
Ruxolitinib (JAK1/JAK2), Tofacitinib (JAK1/JAK3) and
B C

D E

F G

H

A

FIGURE 3 | IL-4 and IL-21 rescued anti-IgM induced apoptosis and mitochondrial dysfunction. (A) Representative images showed that IL-4 and IL-21 suppressed
anti-IgM induced early (bottom right quadrant, AV+PI-) and late (top right quadrant, AV+PI+) apoptosis, and shifted the cells back to live population (lower left
quadrant, AV-PI-). Quantification showed that (B, C) IL-4 significantly reduced apoptotic population in both concentrations while (D, E) IL-21 significantly reduced
apoptotic population in a dose dependent manner. (F) Representative images showed that IL-4 and IL-21 reversed anti-IgM (2 µg/ml) triggered loss of Dym in
Ramos. (G, H) Quantification confirmed the observation from the representative images. *p < 0.05, **p < 0.01, ***p < 0.001 as compared to indicated groups by
two-way ANOVA, N = 4.
July 2022 | Volume 13 | Article 919854
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Ritlecitinib (JAK3 selective) were selected in the current study
based on their clinical efficacies in treating lymphoma and
autoimmune diseases. Ruxolitinib and Tofacitinib were
approved by FDA to treat chronic graft-versus-host disease
and rheumatoid arthritis, while Ritlecitinib is under clinical
phase 3 trial to treat alopecia. The optimal doses of those
inhibitors were first determined by their effects in suppressing
major STAT phosphorylation. All three inhibitors significantly
Frontiers in Immunology | www.frontiersin.org 8
inhibited major STAT phosphorylation in the presences of IL-4
(Figure 5A) and IL-21 (Figure 5B) in a dose response manner.
Low dose (1mM for Ruxolitinib and Tofacitinib, 2mM for
Ritlecitinib) and high dose (5mM for Ruxolitinib and
Tofacitinib, 10mM for Ritlecitinib) were selected for the
following experiments.

The inhibitory effects of JAK inhibitors were first tested in the
WST-8 assay. Similar to the findings from Figures 4D, E, IL-21
B

C

D E

F G

H I J K

A

FIGURE 4 | IL-4 and IL-21 rescued anti-IgM induced apoptosis by differential mechanisms. (A) Representative images showed that anti-IgM (2 µg/m) shifted cells from S
and G2-M phases to sub G0/G1 phase, and the application of IL-4 and IL-21 reversed this deficit. Quantification showed that (B) IL-4 shifted the cells from sub G0/G1
to G1 phase and (C) IL-21 shifted cells from sub G0/G1 evenly to G1 and S phases. (D, E) WST-8 proliferative assays demonstrated that IL-21 (50 ng/ml) but not IL-4
re-stimulated proliferation after anti-IgM induced cell cycle arrest. (F, G) Representative images showed that IL-4 and IL-21 differentially modulated the levels of anti-IgM
induced cleaved caspase 3 and g-H2AX. Quantification indicated that (H, I) IL-4 significantly suppressed cleaved caspase 3 and g-H2AX upregulation while (J, K) IL-21
lead to accumulation of intermediate isoform of cleaved caspase 3 and showed a trend to g-H2AX suppression, under anti-IgM condition. For 4B-E, student t-test was
used to compare difference between control and anti-IgM groups, while one-way ANOVA was used to determine the effects of IL-4 and IL-21 during anti-IgM treatment.
For 4H-K, one-way ANOVA was used to determine the effects of IL-4 and IL-21 on suppression of cleaved caspase 3 and g-H2AX levels as compared to anti-IgM
control. *p < 0.05, **p < 0.01, ***p < 0.001. N = 4.
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could significantly increase proliferative activities of anti-IgM
treated Ramos cells while the application of JAK inhibitors
blocked this effect (Figure 5D). IL-4 showed a trend to
promote proliferation and JAK inhibitors also attenuated this
effect (Figure 5C). The effects of JAK inhibitors were further
investigated via AV/PI assay and cell cycle analysis. Application
of three JAK inhibitors blocked IL-4 and IL-21 rescues of anti-
IgM induced apoptosis (Figure 6A) and quantification
confirmed the observation (Figures 6B-E). Similar results were
observed in cell cycle analysis that all JAK inhibitors blocked
modulatory effects of IL-4 and IL-21 in shifting cells from sub
G0/G1 back to either G1 or S phases (Figures 7A-G). The above
functional changes were consistent to the re-induction of cleaved
caspase 3 and g-H2AX, which all JAK inhibitors reversed IL-4
and IL-21 effects in modulating caspase 3 activities and
Frontiers in Immunology | www.frontiersin.org 9
downregulating g-H2AX expression (Figures 8A, B).
These findings demonstrated that JAK inhibitors were with
potency in the order of Tofacitinib> Ruxolitinib> Ritlecitinib.
To sum up, IL-4 and IL-21 mainly suppressed the anti-IgM
detrimental effects through the activation of JAK/STAT pathway,
which might serve as the potential therapeutic target to
treat autoimmune diseases associated with hyperreactive B
cell pathology.

IL-21 Suppressed Anti-IgM and CD40L
Induced Cell Death in Purified B Cells
We further extended the above studies to primary human B cells
to conclude whether IL-21 induced similar beneficial effects in
normal B cells. CD40L and anti-IgM were chosen as co-
stimulatory factors to activate human B cells as reported in
B

C

D

A

FIGURE 5 | JAK inhibitors suppressed IL-21 driven proliferative activities under anti-IgM challenge. Western blot analyses demonstrated that Ruxolitinib, Tofacitinib
and Ritlecitinib inhibited (A) IL-4 triggered STAT6 phosphorylation and (B) IL-21 triggered STAT3 phosphorylation in a dose dependent manner. (C, D) WST-8
proliferative assays showed that all tested JAK inhibitors suppressed IL-4 and IL-21 rescues of anti-IgM arrested proliferation in Ramos cells. All groups shown in the
figures were treated with 1 µg/ml anti-IgM for 48 hours. *p < 0.05 as compared to indicated DMSO control group by two-way ANOVA, N = 3.
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literatures (54, 71–74). Although no proliferative induction was
observed in IL-21 treated groups based on CFSE staining pattern
(Figure 9A), IL-21 potentially suppressed both CD40L and anti-
IgM induced cell death (Figure 9B) in terms of increased
population of DAPI- cells and contributed to B cell
differentiation into CD38+ plasma cells (Figure 9C). These
preliminary results demonstrated that IL-21 induced some of
the beneficial effects as observed in Ramos B cells and triggered B
cell differentiation as reported in literature (19).
Frontiers in Immunology | www.frontiersin.org 10
DISCUSSION

The current study suggests how IL-4 and IL-21 contribute to the
survival of hyperreactive B cells and the impairment in the B cell
tolerance checkpoint. Numerous autoimmune diseases are B-cell
mediated, characterized in the formation of autoantibodies, and/or
survival of autoreactive B cells; B-cell targeted therapy such as the
depletion of circulating B cells has demonstrated therapeutic
success in treating these B-cell mediated diseases (11, 75). B cell
B C

D E

A

FIGURE 6 | JAK inhibitors suppressed IL-4 and IL-21 rescues of B cell apoptosis. (A) Representative images showed that all JAK inhibitors suppressed IL-4 and
IL-21 effects in suppressing apoptosis induced by anti-IgM challenge. Quantification showed that application of three JAK inhibitors re-induced apoptotic population
and reduced live cell population even in the presence of IL-4 (B, C) and IL-21 (D, E) treatment. All groups shown in the figures were treated with 2 µg/ml anti-IgM for
48 hours. **p < 0.01,*p < 0.05 as compared to indicated DMSO control group by two-way ANOVA, N = 4.
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tolerance checkpoints happen in both central and peripheral
systems (10–12, 76, 77). Central tolerance is mediated by clonal
deletion, anergy and receptor editing in the bone marrow while
peripheral tolerance happens when the immature B cells
expressing BCRs with low affinity for self-antigens escape
central tolerance (75, 77). Those autoreactive B cells are further
eliminated through anergy, clonal deletion and irresponsiveness to
respective T helper cells during maturation in spleen and
activation in the germinal centers within spleen and lymph
nodes as a result of peripheral tolerance (75). Although there
remain small fractions of autoreactive B cells present in the
bloodstream of healthy individuals, they lack the abilities to
enter the germinal centers and produce high affinity auto-
antibodies to self-antigens (77–79), presenting minimal or no
risks in the elicitation of autoimmune diseases.
Frontiers in Immunology | www.frontiersin.org 11
The mechanisms of central and peripheral tolerance
checkpoints are well documented. Autoreactive B cells can
arise from deficiency in multiple tolerance checkpoints, leading
to the manifestation of variety of autoimmune diseases. For
example, nuclear antigen-specific autoreactive B cells in SLE
patients appeared to arise from impairment in the process of
anergy formation at the peripheral tolerance checkpoint as those
autoreactive cells were derived mostly from the naive B-cell
subset (80, 81). In RA patients, it was proposed that
autoreactive B cells were formed as a result of either defective
functions or deficiency of TFH cells (82). More evidence has
demonstrated that autoreactive B cells from different etiological
sources would express differential phenotypes as observed in RA,
SLE and SS patients (83–86), suggesting targeting differential
genes/proteins in repairing deficiencies or defects in multiple
B C D

E F G

A

FIGURE 7 | JAK inhibitors attenuated IL-4 and IL-21 rescues of cell cycle arrest and DNA damage. (A) Representative images showed that all JAK inhibitors
suppressed IL-4 and IL-21 effects in repairment of DNA damage and cell cycle reentry. (B-D) Quantification showed that application of three JAK inhibitors
suppressed IL-4 driven escape from sub G0/G1 and maintenance in G1 phase in Ramos cells. (E-G) Statistical analyses also demonstrated that all JAK
inhibitors suppressed IL-21 driven escape from sub G0/G1 and cell cycle reentry in Ramos cells. All groups shown in the figures were treated with 2 µg/ml
anti-IgM for 48 hours. ***p < 0.001, **p < 0.01, *p < 0.05 as compared to indicated DMSO control group by two-way ANOVA, N = 4.
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tolerance checkpoints would have different therapeutic efficacies
for treating different B-cell mediated autoimmune diseases.

We speculate that blockade of IL-4 and IL-21 upregulation
serves as a common strategy by repairment of the tolerance
checkpoints to trigger apoptosis of autoreactive B cells during
autoimmune diseases. However, autoreactive B cells refer only to
a small fraction in the whole B cell population, it is therefore
difficult to detect and study the rare disease-associated
antigen-specific B cells in patients (87). Blanket elimination of
B cells such as using B-cell depleting anti-CD20 antibodies, albeit
clinically efficacious, poses concerns over drug safety as cases of
infection and malignancy were observed (88, 89). There are
unmet medical needs to develop more selective and safer
treatment modalities to target different autoimmune diseases.
By employing anti-IgM-crosslinked BCR activation on Ramos
cells to mimic B cell hyperactivation, this serves as a platform for
studying potential targets with therapeutic potential for treating
autoimmune diseases (45, 50, 62, 90–92). We demonstrated that
Ramos cells could only respond to IL-4 and IL-21 stimulation in
terms of major STAT protein phosphorylation and modulation
of STAT driven gene expressions (Figure 1); the results were
consistent with the findings of others, corroborating the
contribution of these cytokines (IL-4 and IL-21) to
transcriptional regulation and survival in B cells (16–21).
Ramos cells that were treated with cross-linking anti-IgM for
48 hours exhibited reduced proliferation and increased
apoptosis, reminiscent to how autoreactive B cells were
eliminated through the tolerance checkpoints (Figures 2 and
Frontiers in Immunology | www.frontiersin.org 12
3A). As the mechanisms of how IL-4 could promote abnormal
active B cell function/survival during disease conditions were
well documented (43–48), we would like to focus on comparing
how IL-4 and IL-21 could modulate the homeostasis of
hyperactivated Ramos cells. Apoptosis, cell cycle arrest,
proliferation, DNA damage and mitochondrial dysfunction
were investigated in Ramos cells after cytokine and anti-IgM
treatment. IL-4 was able to reverse anti-IgM induced apoptosis,
DNA damage and mitochondrial dysfunctions by suppressing
cleaved caspase 3 activity and expression of DNA damage
marker g-H2AX (Figures 3 and 4). These data demonstrated
that IL-4 could potentially break B cell tolerance checkpoint and
promote survival of autoreactive B cells as previously reported
(44, 45, 93, 94). IL-21, on the other hand, was shown to reverse
anti-IgM induced mitochondrial dysfunction and apoptosis
through different routes. We demonstrated that IL-21 triggered
the accumulation of intermediate p19 isoform in hyperactivated
Ramos cells and induction of Ramos cell proliferation, as
evaluated by WST-8, cell cycle and western blot assays
(Figures 3 and 4). We hypothesize that IL-21 suppressed
apoptosis by retaining p19 isoform in the cytosol, leading to
the accumulation of p19 isoform in activated immune cells and
reduction in the strength of caspase 3 activity (95, 96). The
current data demonstrate that IL-21 is another important
contributor to the impairment of tolerance checkpoint as
suggested by other literatures (97, 98). To determine whether
the suppression of IL-4 and IL-21 induced downstream pathways
could serve as a strategy to treat autoimmune diseases, we used
B

A

FIGURE 8 | JAK inhibitors reversed IL-4 and IL-21 induced modulation of caspase 3 activity and DNA damage marker. (A) Representative images of western
blot showing all JAK inhibitors reversed IL-4 effects in downregulating expressions of mature cleaved caspase 3 (p17) and g-H2AX during anti-IgM stimulation.
(B) Representative images of western blot showing all JAK inhibitors reversed IL-21 effects in suppressing expression of g-H2AX and intermediate cleaved
caspase 3 (p19) accumulation during anti-IgM stimulation. The dose of anti-IgM was 2 µg/ml and cells were treated for 24 hours.
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B

C

A

FIGURE 9 | IL-21 rescued CD40L and anti-IgM induced cell death in human primary B cells. (A) Representative graphs of CFSE labelling cells showed no
differentiation was induced by any stimulatory factors in 3 days. (B) Representative graphs showed that IL-21 could suppress cell death induced by CD40L and anti-
IgM in terms of increased number of DAPI- cells. (C) Representative graphs showed that IL-21 was able to induce CD38+ B cell differentiation both in the absence
and presence of CD40L.
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three JAK inhibitors to suppress IL-4/STAT6 and IL-21/STAT3
activation in anti-IgM-treated Ramos cells. All three inhibitors
reversed IL-4 and IL-21 driven rescues of cell apoptosis, cell cycle
arrest and DNA damage with potency in the order of
Tofacitinib> Ruxolitinib> Ritlecitinib (Figures 6-8). These data
indicate that suppression of both JAK1 and JAK3 is more
effective in treating autoimmune diseases that are associated
with IL-4 and IL-21 upregulation.

To further explore the feasibility of this simple platform for
testing drugs in B cells, we extended the studies to primary B cells
isolated from the healthy human PBMC culture. It is well known
that IL-4 could further enhance anti-IgM induced proliferation
through IgM maturation (48, 99). Furthermore, IL-4 could
protect B cell from anti-IgM induced apoptosis through
upregulation of Bcl-xL and downregulation of Bim in murine
and human primary B cell cultures (44, 100). These studies
showed that IL-4 is one of the main factors to increase B cell
survival under anti-IgM stimulation. As a recently identified
cytokine, IL-21 is capable of regulating proliferation, activation
and differentiation of human B cells in the presence of co-
stimulatory signals (19, 101). While IL-21 mainly drive B cell
apoptosis in the presence of LPS or CpG DNA stimulation (101),
it could further induce CD40L or anti-IgM induced proliferation
in both murine and human B cells (54, 74, 101, 102). More
importantly, IL-21 could suppress anti-IgM induced apoptosis in
murine B cells (101). In our 3-day B cell culture, we could
demonstrate the similar phenomenon that IL-21 could suppress
cell death induced by CD40L and anti-IgM treatments
(Figure 9), while no proliferative induction was observed in 3
days as previously reported (74). These data are consistent to the
some of the observation in Ramos B cells in the current studies.

JAK inhibitors, due to their limited selectivity, are known to
exhibit higher incidences of undesirable side effects, confining its
wider clinical applications (103). Instead, the more selective
monoclonal antibodies targeting IL-4 and IL-21 were developed
and tested in patients with autoimmune diseases, which showed
significant clinical efficacies (104–106). The antibody therapies
might help eliminating a selected population of autoreactive B
cells with specific and unique phenotypes triggered by IL-4 and IL-
21 (44, 70, 107, 108), as well as depleting the CD19highCXCR3high B
cell which is associated with poor clinical outcomes after rituximab
treatment (109). Further studies are still needed to delineate the
Frontiers in Immunology | www.frontiersin.org 14
exact mechanisms of action of IL-4 and IL-21 on the B cell
differentiation and survival of autoreactive B cells in primary B
cell cultures in the presence of different co-stimulatory factors and
the animal models of autoimmune diseases, and how antibodies
against these cytokines can modulate the phenotypes of
autoreactive B cells and improve the clinical outcomes of patients
with autoimmune diseases.
CONCLUSION

The current study provides a simple in-vitro platform to study
the B cell tolerance checkpoints in the hyperactivated Ramos
cells. IL-4 and IL-21 have been shown to break the tolerance
checkpoints and promote differential phenotypes of the rescued
cells. Blockade of IL-4 and IL-21 driven JAK/STAT pathways
serves as a specific therapeutic approach to eliminate
autoreactive B cells in the patients with autoimmune diseases.
The antibodies targeting a combination of cytokines might
provide more selective and safer approaches to target
autoimmune diseases in the future.
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