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Epigenetic Aspects and Prospects in
Autoimmune Hepatitis

Albert J. Czaja™

Retired, Rochester, MN, United States

The observed risk of autoimmune hepatitis exceeds its genetic risk, and epigenetic factors
that alter gene expression without changing nucleotide sequence may help explain the
disparity. Key objectives of this review are to describe the epigenetic modifications that
affect gene expression, discuss how they can affect autoimmune hepatitis, and indicate
prospects for improved management. Multiple hypo-methylated genes have been
described in the CD4" and CD19" T lymphocytes of patients with autoimmune
hepatitis, and the circulating micro-ribonucleic acids, miR-21 and miR-122, have
correlated with laboratory and histological features of liver inflammation. Both epigenetic
agents have also correlated inversely with the stage of liver fibrosis. The reduced hepatic
concentration of miR-122 in cirrhosis suggests that its deficiency may de-repress the pro-
fibrotic prolyl-4-hydroxylase subunit alpha-1 gene. Conversely, miR-155 is over-
expressed in the liver tissue of patients with autoimmune hepatitis, and it may signify
active immune-mediated liver injury. Different epigenetic findings have been described in
diverse autoimmune and non-autoimmune liver diseases, and these changes may have
disease-specificity. They may also be responses to environmental cues or heritable
adaptations that distinguish the diseases. Advances in epigenetic editing and methods
for blocking micro-ribonucleic acids have improved opportunities to prove causality and
develop site-specific, therapeutic interventions. In conclusion, the role of epigenetics in
affecting the risk, clinical phenotype, and outcome of autoimmune hepatitis is under-
evaluated. Full definition of the epigenome of autoimmune hepatitis promises to enhance
understanding of pathogenic mechanisms and satisfy the unmet clinical need to improve
therapy for refractory disease.

Keywords: autoimmune, hepatitis, epigenome, chromatin modifications, micro-ribonucleic acids, treatment

1 INTRODUCTION

Autoimmune hepatitis has genetic risk factors within and outside the major histocompatibility
complex (MHC) (1, 2). The genetic risk factors within the MHC affect mainly the predisposition for
autoimmune hepatitis. The susceptibility alleles reside on the HLA-DRBI gene where they can vary
in association with ethnicity and age (3-9). The genetic risk factors outside the MHC are less
established. They are mainly polymorphisms or point mutations that may affect individual
pathways within the immune response (cytokine milieu, lymphocyte activation, and cell
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migration) (1, 2, 10-18). The major risk-laden loci are present in
approximately 50% of patients with autoimmune hepatitis (19),
and they do not explain the observed risk of the disease (19-21).

Epigenetics is a burgeoning science that describes molecular
modifications and mechanisms that can modulate gene activity
without altering the nucleotide sequence of deoxyribonucleic acid
(DNA) (22-26). The epigenetic changes have cell type specificity
and stability through cell replication (27), and they have been
heritable in diverse experimental models (25, 28). Key epigenetic
modifications have been described in the nuclear chromatin that
can affect gene transcription (29-31), and small non-coding
ribonucleic acids are epigenetic agents that can affect translation
of the gene product (32, 33). The epigenetic modifications may be
induced by environmental cues (34-37), and they have
a durability that may contribute to a transgenerational
inheritance through the germline (25, 28, 37, 38). Furthermore,
the epigenetic changes are modifiable, reversible, and amenable to
therapeutic intervention (19, 39-43).

Epigenetics may explain the difference between the genetic
risk and observed risk of autoimmune hepatitis, and it may
account for individual variations in clinical phenotype and
outcome that cannot be explained by the MHC, genetic
polymorphisms, or point mutations (39, 44-47). Chromosomal
regions may undergo structural adaptations in response to
environmental cues that alter DNA transcription (22, 38), and
non-coding ribonucleic acids, especially micro-ribonucleic acids
(miRNAs), may induce degradation or translational repression
of messenger ribonucleic acids (mRNAs) (48-53).

Salient epigenetic effects have already been identified in
experimental models and patients with diverse liver diseases,
including alcoholic steatohepatitis (54, 55), non-alcoholic fatty
liver disease (NAFLD) (56-58), primary biliary cholangitis
(PBC) (59-61), primary sclerosing cholangitis (PSC) (62-64),
cholangiocarcinoma (62, 65-67), hepatocellular cancer (68, 69),
and autoimmune hepatitis (21, 70, 71). They have also
been implicated in various non-liver diseases, including
systemic lupus erythematosus (SLE) (72, 73), rheumatoid
arthritis (74, 75), systemic sclerosis (76, 77), diverse neuro-
degenerative diseases (78), and various cancers (79-82).
Investigations of the epigenetic modifications affecting gene
expression in autoimmune hepatitis may improve its
management and satisfy an unmet clinical need for more
effective therapy of refractory disease (83-85).

The goals of this review are to describe the epigenetic
modifications that affect gene expression, examine transgenerational
inheritance of epigenetic marks, present the key epigenetic changes in
autoimmune hepatitis and other liver diseases, and indicate the
prospects that epigenetics will enhance understanding of
pathogenic pathways and treatment options in autoimmune hepatitis.

2 METHODS

Abstracts were identified in PubMed using the search words
“Epigenetic changes in liver disease,” “Epigenetic changes in
autoimmune hepatitis”, “microRNAs in liver disease”, and

“microRNAs in autoimmune hepatitis”. Selected full-length
articles constituted the primary bibliography. Selected
references cited in the primary sources constituted a secondary
bibliography, and a tertiary bibliography was developed from
references cited in the secondary bibliography. Several hundred
abstracts were reviewed, and the number of full-length articles
that were examined was 205.

3 EPIGENETIC MODULATION OF
GENE TRANSCRIPTION

The transcriptional activity of genes occurs within chromatin (86).
Chromatin is composed of histones arranged in octamers and
double-stranded DNA that makes 1.65 turns around each
octamer (38, 39, 86, 87) (Figure 1). Two copies of four
core histones (H2A, H2B, H3, and H4) comprise the octamer (38,
86-88), and each DNA-enwrapped octamer constitutes a
nucleosome (89). The nucleosomes are linked by a short DNA
sequence of 60 base pairs, and the beaded filament is condensed and
packaged in the nucleus as chromatin (86). A histone linker
molecule maintains proper packaging of the DNA by binding to
the site of DNA entry and exit from each nucleosome (86, 87, 90).

3.1 Impact of DNA Methylation on

Gene Transcription

The methylated state of the DNA (39, 91-93) influences
transcriptional activity within the nucleosome. Modifications
in the chromatin structure can alter access and binding of
transcription factors to the enhancer/promoter sequences of
the DNA that are pivotal for transcription (94, 95) (Figure 1).
The inability of RNA polymerase (RNAP) to access the DNA
binding site can prevent opening of the double-stranded DNA
and copying of the nucleotide sequence (39, 92).

DNA methylation occurs at a site in which a cytosine
nucleotide (C) is separated from a guanine nucleotide (G) by a
phosphate molecule (p) (46) (Table 1). Methylation of the
cytosine in the CpG dinucleotide to 5-methylcytosine is
mediated by DNA methyltransferases (DNMTs), and the
methylation inhibits the binding of transcription factors to the
DNA (91, 92) (Figure 1). It can also alter chromatin structure by
attracting proteins that bind to the methylated cytosine (46, 92).
The net effect of DNA methylation is to repress transcriptional
activity and silence gene expression (39).

Ten-eleven translocation methylcytosine dioxygenase (TET)
enzymes mediate the oxidation of the methylated cytosine to 5-
hydroxymethylcytosine (39, 96, 97, 118, 119) (Table 1). This
product can then undergo additional processing and
demethylation by thymine-DNA-glycosylase and excision
repair (118, 120, 121). The restoration of cytosine to its
unmodified state can de-repress transcriptional activity and
promote gene expression (Figure 1). The counter effects of
DNMTs and TET enzymes on DNA methylation constitute a
homeostatic mechanism that can respond to diverse stimuli, be
disrupted in disease states, and be manipulated by therapeutic
interventions (39, 122).
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FIGURE 1 | Compacted and relaxed nucleosomes. Nucleosomes consist of two copies of four different histones (H) arranged as a histone octamer and double-
stranded deoxyribonucleic acid (DNA) wrapped 1.65 times around each octamer. The entry and exit of the DNA from the nucleosome is secured by a linker histone
(H1). Each core histone within the octamer has an N-terminal tail that can undergo post-translational modifications (PTMs) by the attachment of methyl (me), acetyl
(ac), or phosphate (ph) groups to a particular amino acid in the histone tail. Lysine (K), serine (S), or arginine (R) are among other amino acids that can serve as
attachment sites. The PTMs are orchestrated by various enzymes. Methylation of the histone tail is catalyzed by histone methyltransferase (HMT); acetylation is
catalyzed by histone acetyltransferase (HAT); and phosphorylation is catalyzed by kinases. The PTMs can be reversed by enzymes that dissociate the appended
groups from the amino acid residues. Acetylation is reversed by histone deacetylase (HDAC); methylation is reversed by histone demethylase (HDMT); and

phosphorylation is reversed by phosphatases. Histone acetylation relaxes the nucleosome and promotes gene transcription, and histone de-acetylation compacts
the nucleosome (heterochromatin) and represses gene transcription. Histone methylation can decrease (H3K9me3) or increase (H3K4me3) transcription depending
on the methylation site and other variables. Histone phosphorylation can recruit other molecules, such as bromo-domain-containing protein 4 (BRD4), to the
acetylation site (crosstalk) and promote gene transcription. DNA can be methylated by DNA methyltransferase (DNMT) or de-methylated by ten-eleven translocation
methylcytosine dioxygenase (TET). DNA methylation is restricted to sites in which cytosine (C) is separated from guanine (G) by a phosphate (p). Methylated DNA is

compacted and transcription factors have limited access to transcription sites. Ribonucleic acid polymerase (RNAP) is prevented (X) from copying the nucleotide
sequence, and gene transcription is decreased. De-methylated DNA is relaxed; RNAP can open the double-stranded DNA; and gene transcription is increased.

3.2 Impact of Histone Modifications on
Gene Transcription

The N-terminal tail of the core histones can undergo multiple
post-translational modifications (PTMs) that include acetylation,
methylation, and phosphorylation (39, 86, 113, 123-126)
(Table 1). The PTMs can alter the chemical structure, charge,
and configuration of the histones, and the cumulative effect of
multiple histone modifications can determine the transcriptional
activity of the DNA (127) (Figure 1). PTMs also influence the
cellular repair response to DNA injury (128). The modification
of histones is a dynamic process that can preserve the integrity of
the genome (129) and modulate transcriptional activity to
maintain biological homeostasis (39, 86).

3.2.1 Histone Acetylation

The transfer of an acetyl group from acetyl-coenzyme A (acetyl-
CoA) to a lysine residue on the histone tail constitutes histone
acetylation, and the process is mediated by the histone
acetyltransferases (HATs) (39, 78, 86, 98, 99) (Table 1).
Histone acetylation can promote transcriptional activity by

neutralizing differences in charge between the positively
charged histones and the negatively charged DNA. The relaxed
chromatin can promote transcriptional activity (39, 86)
(Figure 1). Histone deacetylases (HDACs) can reverse the
acetylation process by hydrolyzing the acetyl group on the
lysine residue, compacting the chromatin into
heterochromatin, and repressing transcriptional activity of the
DNA (78, 86, 99, 100).

3.2.2 Histone Methylation

The transfer of methyl groups from S-adenosylmethionine
(SAM) to lysine or arginine residues on the histone tail
constitutes histone methylation (101-105), and the
methylation process is mediated by histone methyltransferases
(HMTs) (86, 104, 128, 130) (Table 1). The impact of histone
methylation on DNA transcription is less predictable than
histone acetylation, and it varies by methylation site (lysine
versus arginine), number of methylations (mono-, di-, or tri-
methylation) and pattern of methylation (symmetric versus
asymmetric) (101, 103, 104, 128). Trimethylation of histone
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TABLE 1 | Epigenetic properties and effects on gene transcription.

Epigenetic Mark

DNA methylation

DNA de-methylation
Histone acetylation

Histone de-acetylation

Histone methylation

Histone de-methylation

Histone phosphorylation

Epigenetic Properties

CpG methylated at cystosine (46)

DNMT catalyzes 5-methylcytosine (91)
Attached proteins alter chromatin (92)
Transcription factors denied access (94)
RNAP unable to copy DNA (39, 92)
Cytosine demethylation by TETs (96, 97)
Lysine on histone tail acetylated (39, 86)
Acetyl group from acetyl-CoA (98, 99)
HATs mediate acetyl group transfer (78)
Histone-DNA charges less (86)

Chromatin structure relaxed (39, 86)
HDACs hydrolyze acetyl group (86)
Heterochromatin formed (100)

Methyl groups from SAM (101-105)
Added to lysine or arginine (101, 103, 105)
HMTs catalyze methyl transfer (86, 104)
No effect on charge of histone tail (86)
Recruited molecules affect gene (106—-110)
HDMTs remove methyl groups (104, 112)
Counterbalances HMTs (86)

Phosphates from ATP by kinases (113)
Affects serine, threonine, tyrosine (113)
Adds negative charge to histone (113)
Compacts or relaxes chromatin (114, 115)
Reversed by phosphatases (113)

Epigenetic Effects on Transcription

Transcriptional activity repressed (39)

Transcriptional activity increased (39)
Transcriptional activity increased (86)

Transcriptional activity repressed (86)

Unpredictable transcriptional effect (86)
Varies by site, number, pattern (86, 101)
H3K4me3 activates transcription (111)
H3K9me3 silences transcription (106)

Unpredictable transcriptional effect (86)
Responds to changing conditions (86)
Variable, context-related effects (114)
DNA damage response (114, 116, 117)
Interacts with acetylated residues (114)

ATP, adenosine triphosphate; CpG, cytosine-phosphate-guanine dinucleotide; DNA, deoxyribonucleic acid; DNMTs, DNA methyltransferases, H3K4me3, trimethylation of histone H3 at
lysine 4; H3K9me3, trimethylation of H3 at lysine 9; HATS, histone acetyltransferases; HDACs, histone deacetylases; HDMTs, histone demethylases; HMTs, histone methyltransferases;

RNAP, RNA polymerase; SAM, S-adenosylmethionine; TETS, ten-eleven translocation enzymes. Numbers in parentheses are references.

H3 at lysine 4 (H3K4me3) is the start site of transcription for
most active genes (111, 128, 131, 132) (Figure 1), whereas
trimethylation of H3 at lysine 9 (H3K9me3) is associated with
heterochromatin and gene silencing (106, 128, 132).

Histone methylation does not affect the charge of the histone
tail, and the impact of histone methylation on transcriptional
activity relates mainly to the effects of molecules recruited to the
methylated state and the sequence of adjacent amino acids (86,
107). Lysine methylation attracts diverse proteins mainly with
chromo-domains that can modify chromatin structure and affect
DNA transcription (108-110). Histone demethylases (HDMTs)
can reverse the methylated PTM by removing methyl groups
from the histone tails (86, 104, 112). The balance between HMT's
and HDMTs is another homeostatic mechanism by which the
genome can respond to changing conditions.

3.2.3 Histone Phosphorylation
Histone phosphorylation is a dynamic process affecting serine,
threonine, and tyrosine residues in the N-terminal tail of the core
histones (113) (Table 1). Kinases transfer phosphate groups
from adenosine triphosphate (ATP) to the amino acid residues.
Phosphorylation adds a negative charge to the histone, and the
change in charge can remodel the chromatin. The
phosphorylation process can be reversed by phosphatases that
catalyze the hydrolysis and removal of the phosphate group
(113) (Figure 1).

Histone phosphorylation occurs rapidly after DNA damage,
and it is involved in the DNA damage response (DDR) (114, 116,
117) (Table 1). Phosphorylated histone residues are also

associated with gene expression, including proto-oncogenes
(133-135), and they can interrelate with histone residues that
are acetylated to activate DNA transcription (114, 136, 137)
(Figure 1). Phosphorylation of serine 10 at histone H3
(H3S10ph) activates DNA transcription by triggering
acetylation of lysine 16 at histone 4 (H4Kl6ac) (138). The
crosstalk between histone PTMs recruits bromo-domain-
containing protein 4 (BRD4) to the nucleosome where it can
bind to the acetylated lysine residue and promote DNA
transcription (138-140).

The phosphorylation of histone is a rapidly changing
process that can have contradictory effects depending on
the context of the microenvironment (114). Histone
phosphorylation is associated with chromatin compaction
during mitosis and meiosis, but it can also be associated with
chromatin relaxation under other circumstances (114, 115, 141).
Therapeutic efforts to modulate histone phosphorylation
must recognize the dynamic, interactive, labile, and context-
dependent nature of the PTM.

4 EPIGENETIC MODULATION OF
GENE TRANSLATION

MiRNAs are a subgroup of non-coding RNAs that by definition
do not encode protein (142) (Table 2). They constitute a
functional minority of non-coding RNAs (143), and they are
members of a class that includes small interfering RNAs
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TABLE 2 | Epigenetic Properties and Effects of Micro-Ribonucleic Acids.

miRNA Properties

Non-coding RNA (142-146)
eSmall (21-25 nt) (48, 50)
*Derived from genome (48)
*Present in organelles (147)
Girculatory component (149)
e\/esicular transport (150, 151)
Diverse cell origins (153)

©>500 in humans (154)
eMultiple cell origins (153)
*One targets many genes (155)
eMany target same gene (156)
Complex biogenesis (149, 162)
eNuclear origin (149)
eEnzymatic processing (163)
eExported to cytoplasm (164)
eProcessed in RISC (51)
eGuide strand selected (165)
e|ncorporated into RLC (165)
eNon-canonical pathways (166-168)

miRNA Actions

Prevents mRNA translation (48)
Regulates cell processes (148)

Cell-to-cell communication (149)
May affect other cell function (152)
Critical physiological effects (157)
Context-cell dependent (157, 158)
Affects protein-encoding genes (50)
Specific for certain cell lines (159)

Guide strand seeks mRNA (155)
Binds 3’ UTR of mRNA (51, 155)

miRNA Effects

Maintains cell homeostasis (147)
Responds to changing context (147)

Correlates with inflammation (70)

Variable disease specificity (153)

Many are disease-irrelevant (153)

May have distinctive patterns (70)
Associated with diseases (71, 160, 161)

Depends on complementarity (169)
Promotes mRNA degradation (169)
Represses mRNA translation (149)
Gene silencing (169)

mRNA, messenger ribonucleic acid; miRNA, micro-ribonucleic acid; nt, nucleotides; RNA, ribonucleic acid; RISC, RNA-induced silencing complex; RLC, RISC-loading complex; 3’ UTR, 3’
untranslated region of mRNA. Numbers in parentheses are references.

(siRNAs) (144) and Piwi-interacting RNAs (piRNAs) (145, 146).
MiRNAs are small (21-25 nucleotides), natural, genomic
products that have multiple functions within their cell of origin
(48, 50). They are present in the nucleus, nucleolus, and

mitochondria where they can influence the intracellular
processes of DNA transcription, repair, and splicing (147, 148,
170, 171). They can also silence the expression of genes that
encode protein by preventing the translation of mRNA into a
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FIGURE 2 | Biogenesis and gene silencing action of micro-ribonucleic acids (miRNAs). MiRNAs are derived from the cell genome and processed within the nucleus
by the ribonuclease Ill enzyme, Drosha, into pre-cursor miRNA. The precursor miRNA is transported to the cytoplasm by exportin 5 and processed further by the
ribonuclease Il enzyme, Dicer, to a miRNA duplex. The duplex is processed in a RNA-induced silencing complex (RISC), and the strand with less stable 5" end is
selected as the guide strand. The guide strand probes for complementary base pairs (bold lines) in the 3’ untranslated region (3'UTR) of messenger RNA (mMRNA).
The degree of complementarity between the guide strand and the mRNA determines if the mRNA will undergo cleavage by endonucleases (perfect complementarity)
or translational repression (near perfect complementarity). Either fate induces post-transcriptional gene silencing. MiRNAs can leave the cell and enter the circulation
by forming a plasma membrane-derived microvesicle or an endosomal-derived exosome.
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protein product (48, 50, 51) (Figure 2). MiRNAs are key
epigenetic agents that act primarily outside the chromatin to
degrade mRNA within the cytoplasm or otherwise repress
its translation.

MiRNAs can enter the circulation within vesicles that develop
from the endosomal compartment (exosomes) or separate from
the plasma membrane (microvesicles, apoptotic bodies) (150,
151) (Figure 2). Circulating miRNAs have the potential to
engage in cell-to-cell communication and affect the function
of other cells, albeit their role in this capacity remains obscure
(149, 152) (Table 2). Despite this limitation, circulating levels
of miRNAs have been measured and correlated with
the inflammatory activity of diverse diseases, including
autoimmune hepatitis (70).

The number of miRNAs in humans has been estimated by a
manually curated miRNA database as over 500 (154) (Table 2).
Multiple miRNAs can regulate the expression of a single gene,
and a single miRNA can influence multiple genes (155, 156).
Diverse cell types produce miRNAs, and tissue and disease
specificity can be difficult to demonstrate (153). Critical
physiological and pathological effects have been ascribed to
single miRNA-mRNA interactions that are context-dependent
(157, 158), and certain miRNAs have been highly specific for
individual cell lines (159). Preferential expression of particular
miRNAs has been recognized in diverse diseases, including
chronic liver disease (70, 71, 160, 161).

4.1 Biogenesis and Regulatory Actions
of MiRNAs
MiRNAs originate in the nucleus as double-stranded RNA
molecules that are encoded by the genome as primary miRNAs
(149, 162) (Table 2). The primary miRNAs are then modified in
the nucleus by a microprocessor complex containing the
ribonuclease III enzyme, Drosha, to precursor miRNAs (149,
163, 172, 173) (Figure 2). The precursor miRNAs are exported to
the cytoplasm by exportin 5 where the ribonuclease II enzyme,
Dicer, modifies the precursor molecules further to form mature
miRNA duplexes (164, 174). The duplexes are processed in a
RNA-induced silencing complex (RISC) within the cytoplasm
(51), and the strand with the less stable 5° end is selected for
incorporation in the RISC-loading complex (RLC) as the guide
strand (165). The other strand (passenger strand) is degraded by
endonucleases (175).

The guide strand probes for complementary base pairs in the
3’ untranslated region (3° UTR) of mRNAs in the cytoplasm
(Figure 2). The “seed region” that identifies complementarity in
the mRNA may consist of only 2-7 bases (51, 155). Near perfect
complementarity between the miRNA and the mRNA triggers
degradation of the mRNA by endonucleases and complete gene
silencing (169) (Table 2). More commonly, the complementarity
is less complete, and the miRNA mainly disrupts the translation
of mRNA without triggering its degradation (translational
repression) (51, 149). MiRNAs can also develop along non-
canonical pathways that do not involve Drosha or Dicer
(166-168). The biological functions of these miRNAs are
uncertain in humans.

5 TRANSGENERATIONAL INHERITANCE
OF EPIGENETIC MARKS

The DNA sequence and the epigenome are replicated during cell
mitosis (25, 27), and DNA methylation (176), histone PTMs (38),
and miRNAs (177) can be transmitted in the germline of
mammals. Extensive re-programming of the epigenetic
information occurs during gametogenesis and after fertilization,
and transgenerational inheritance requires re-assembly or
reconstruction of the epigenetic marks. DNA methylation and
histone modifications can be re-assembled after mitosis
(replicative transmission) or the epigenetic changes can be
reconstructed in the germline by another inherited signal
(reconstructive transmission) (28). Non-coding RNAs are
templates that are pivotal to the reconstructive process, and they
can be transmitted to the next generation in oocytes and sperm
(28, 178, 179). Transgenerational inheritance requires proof that
the original epigenetic signal is successfully transmitted and that
heritability extends beyond the second generation.

The transmitted epigenetic changes may reflect environmental
adaptations made by the parent and transmitted to the offspring
through the germline (28, 35, 180, 181). The offspring of male mice
who have been fed a low-protein diet inherit epigenetic marks that
affect the peroxisome proliferator-activated receptor alpha (PPARA)
gene which regulates lipid and cholesterol metabolism (180). The
heritable epigenetic changes may also re-program responses to
disease (182). Two generations of offspring from male rats with a
history of liver fibrosis have inherited a resistance to hepatic fibrosis
manifested by impaired differentiation of hepatic myofibroblasts,
increased expression of the anti-fibrotic peroxisome proliferator-
activated receptor-gamma (PPAR-y) protein, and decreased
production of the pro-fibrotic transforming growth factor beta 1
(TGF-B1) cytokine (182).

The demonstration of heritable epigenetic marks has been
difficult to establish in humans because of confounding genetic,
cultural, and environmental factors (37, 183), and heritability has
been eliminated from the definition of epigenetics (22).
Epigenetic changes within an individual may be acquired by
external pressures (diet, lifestyle, toxic exposures) (184-187) or
by intrinsic instability of the epigenome through successive cell
divisions (“epigenetic drift”) (188-192). Shared changes in the
somatic epigenome of individuals in the same environment does
not connote heritability unless expressed in the germline (sperm
or egg) (25). Furthermore, the epigenetic marks in individuals
with genetic identity cannot be assumed to be inherited.
Genetically identical monozygotic twins may acquire epigenetic
changes that are distributed throughout the genome and related
to the commonality or diversity of their environment (187).

Family studies assessing discordant and concordant phenotypes
have demonstrated the complexity of distinguishing inherited and
acquired determinants. Fatty liver occurs in 17% of siblings and 37%
of parents of overweight children (193). The severity of hepatic
steatosis in the family members strongly correlates with body mass
index (BMI) (193). Complete hereditability for fatty liver is evident
after adjustments for age, gender, race, and BMI, but the phenotypic
expression of the inherited risk probably relates to family attitudes
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about diet and exercise (193). Similarly, heritable miRNAs for
NAFLD (miR-331-3p and miR-30c) have been demonstrated in
monozygotic and dizygotic twins, but most of the 21 miRNAs that
have distinguished the twins with and without NAFLD have not
been inherited (194). Although transgenerational inheritance of
epigenetic marks has been demonstrated in experimental models
(28, 180, 182) and humans (26, 37, 194), its impact on the
occurrence of an individual disease is unsettled (35). Large
longitudinal studies over several generations are necessary to
establish the heritability of epigenetic changes in particular
human diseases, and they would require concurrent analyses of
the genome and epigenome (37, 183, 195).

6 EPIGENETIC CHANGES IN
AUTOIMMUNE HEPATITIS

Investigations of the epigenetic changes in patients with
autoimmune hepatitis have been limited, and they have
focused mainly on DNA methylation patterns in circulating
and liver-infiltrating lymphocytes (21) and on the profile of
circulating miRNAs (70).

6.1 DNA Methylation Patterns

Most genes in the circulating CD4" and CD19" T lymphocytes of
untreated patients with autoimmune hepatitis have been hypo-
methylated, and this pattern has contrasted with the hyper-
methylated pattern in PBC (21) (Table 3). The predominant
hypo-methylated pattern has also been recognized in liver-
infiltrating, periportal lymphocytes, and it has been reversible

after glucocorticoid-induced, laboratory remission (21). The shift
in the pre-treatment pattern of DNA hypo-methylation to the
post-treatment pattern of DNA hyper-methylation has occurred
in most genes, and it suggests that DNA hypo-methylation
promotes disease activity by broadly enhancing the
transcriptional activity of multiple genes. The cues that trigger
the hypo-methylated state, the hypo-methylated genes that
account for active disease, and the glucocorticoid actions that
shift the methylation status and achieve remission are unclear.

6.2 MiRNA Profiles

Circulating levels of miR-21 and miR-122 have been increased in
untreated patients with type 1 autoimmune hepatitis (70, 71, 196),
and miR-155 has been increased in hepatic tissue (71, 196, 199)
(Table 3). The serum miR-21 and miR-122 levels have correlated
with serum alanine aminotransferase (ALT) levels, and the serum
miR-21 level has correlated with the histological grade of liver
inflammation (70). The histological expression of miR-21 in liver
tissue has also correlated with serum ALT levels (196).

In contrast, the serum levels of both miR-21 and miR-122 have
correlated inversely with the stage of hepatic fibrosis (70), and
reduced hepatic concentrations of miR-122 have been associated
with cirrhosis (196) (Table 3). MiR-122 markedly attenuates the
expression of the gene for prolyl-4-hydroxylase subunit alpha-1
(P4HAI) in hepatic stellate cells (197), thereby preventing the
hydroxylation and maturation of stable collagen (198). The
findings in autoimmune hepatitis suggest that serum miR-21
and miR-122 levels are biomarkers of inflammatory activity
(206) and that a pathological deficiency of miR-122 may
promote hepatic fibrosis by de-repressing P4AHAI (196, 197).

TABLE 3 | Epigenetic marks in autoimmune hepatitis and other autoimmune liver diseases.

Autoimmune Liver Disease

Autoimmune hepatitis

Serum miR-21 and miR-122 increased (70, 71)
Hepatic miR-122 reduced in cirrhosis (196)
Circulating miR-155 levels low (199)

miR-155 increased in liver tissue (199)
PBC Preferential silencing of X chromosome (200)

Epigenetic Marks

Hypo-methylated genes in CD4* T cells (21)
Mainly in periportal lymphocytes (21)
Shifts to hyper-methylated with steroids (21)

Epigenetic Effects

Contrasts with PBC (21)

May increase gene transcription (21)
May promote disease activity (21)
Reversible with steroid treatment (21)
Correlates with inflammation (70)
Inversely correlates with fibrosis (70)
Deficiency promotes fibrosis (196)
miR-122 inhibits P4HAT in HSCs (197)
Deficiency favors collagen formation (198)
Contrasts with ALD and NASH (199)
May indicate autoimmune process (199)
Affects female predisposition (200, 201)

Excessive silencing Y chromosome (201)

De-methylation of gene for CXCR3 (59)

H4 acetylation of pro-inflammatory genes (202)
Hypo-methylation of gene for CD40L (203)
miR-122, miR-141, miR-26 panel (160)

Affects hepatic migration of T cells (59)
Influences inflammatory activity (202)
Promotes B cells, IgM production (203)
High diagnostic accuracy for PBC (160)

PSC

Down-regulation of miR-223 and miR-21 (204)
H3K4me3 of CDKN2A (63, 205)

H3K27ac of BCL2-like 1 (64)

Signals histological progression (204)
Increases cholangiocyte senescence (63)
Possible disease progression (63)
Increases anti-apoptotic BCL-xL (64)
Promotes survival of senescent cells (64)

ALD, alcoholic liver disease; BCL2-like 1, B-cell lymphoma 2-like 1 gene; BCL-xL, B-cell lymphoma-extra large; CD40L, CD40 ligand; CDKNZ2A, cyclin-dependent kinase inhibitor 2A gene;
CXCR3, C-X-C chemokine receptor 3; H3K4me3; trimethylation of H3 at lysine 4; H3K27ac, acetylation of H3 at lysine 27, H4, histone 4; HSCs, hepatic stellate cells; IgM, immunoglobulin
M; NASH, non-alcoholic steatohepatitis; P4HA1, prolyl-4-hydroxylase subunit alpha-1 gene, PBC, primary biliary cholangitis; PSC, primary sclerosing cholangitis. Numbers in parentheses

are references.
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Circulating levels of miR-155 have been significantly lower in
patients with autoimmune hepatitis regardless of glucocorticoid
therapy than in normal individuals (199) (Table 3). In contrast,
miR-155 concentrations in liver tissue from patients with
autoimmune hepatitis have been 7.6 + 5.6-fold higher than in
liver tissue obtained from normal control subjects (P< 0.01) and
significantly higher than in liver tissue from patients with
alcoholic liver disease or non-alcoholic steatohepatitis (NASH)
(199). The findings suggest that the hepatic expression of miR-
155 in autoimmune hepatitis is particularly associated with
immune-mediated liver injury. This possibility is supported by
the implication of miR-155 in the pathogenesis of other
autoimmune diseases (207). The discrepancy between serum
and tissue levels may reflect active mobilization of miR-155
from the circulation to the liver.

6.3 Familial Occurrence

The heritability of autoimmune hepatitis through epigenetic
traits is unexplored. The familial occurrence of autoimmune
hepatitis in Sweden has been mainly among siblings (208, 209)
and spouses (208). Among 6269 patients with autoimmune
hepatitis in a Swedish database, only siblings have had a
significantly increased risk [standardized incidence ratio (SIR),
3.83, 95% confidence interval (CI), 2.09-6.45] (208).
Furthermore, the risk for autoimmune hepatitis has been
greater among spouses than among siblings (SIR for husbands,
5.91, 95% CI, 2.53-11.7; SIR for wives, 6.07 (95% CI, 2.59-12.02)
(208). The risk of autoimmune hepatitis among siblings and
spouses in Sweden suggests that epigenetic changes induced by
environmental factors may be contributory.

The SIR of autoimmune hepatitis among first-degree relatives
has been 4.9 (95% confidence interval [CI], 1.8-10.7) in a Danish
database, and the 10-year cumulative risk of autoimmune
hepatitis in this group has been 0.10% (95% CI, 0.04-0.23)
(210). Among second-degree relatives, there has been no
increased risk, whereas among monozygotic twins, the
concordance rate for autoimmune hepatitis has been 8.7%
(95% CI, 1.1-28) (210). In the composite experience of 32
medical centers in the Netherlands, familial occurrence has
been recognized in 0.3% of 564 patients with autoimmune
hepatitis, and the disease has occurred in monozygotic twins,
the mother of a patient, and the cousin of another patient (211).
In each of these experiences, the overall risk of autoimmune
hepatitis in family members has been low; heritability has rarely
extended beyond the first generation; shared environmental
exposures have not been assessed; and the contribution of
shared genetic factors has not been evaluated. Differences in
the community occurrence of autoimmune hepatitis might also
be valuable in assessing non-genetic factors for the disease.

7 EPIGENETIC CHANGES IN OTHER
AUTOIMMUNE LIVER DISEASES

Histone modifications, DNA methylation status, and miRNAs in
blood and liver tissue have been evaluated in experimental
models and patients with diverse autoimmune and non-

autoimmune liver diseases (19, 39, 86). The investigations have
been driven by efforts to catalogue the disease-associated findings
and identify associations with pivotal pathogenic mechanisms.
Key insights have been derived from studies of PBC (212-214)
and PSC (63, 64, 212), and they may prompt and direct future
investigations of autoimmune hepatitis (19, 21, 70). The
epigenetic changes have not been evaluated for disease-
specificity nor have they been fully translated into
clinical phenotypes.

7.1 Epigenetic Findings in PBC

The epigenetic changes described in PBC have been discovered
mainly by assessing factors influencing its clinical phenotype
(212-214). The importance of epigenetic changes has been
demonstrated in monozygotic twins concordant (215) and
discordant (216) for PBC, and the female predisposition for
PBC has guided investigations of the epigenetic influence on the
X-chromosome. A preferential, parent-specific, silencing of the X
chromosome has been described in women with PBC (200), and
an excessive epigenetic silencing of alleles of the Y chromosome
has been demonstrated in men with PBC (201). Furthermore, an
aberrant DNA methylation pattern of the promoter region of
CXCR3 on the X chromosome of CD4", CD8", and CD14" T
cells may affect their differentiation and hepatic migration (59)
(Table 3). The acetylation of histone 4 in the promoter region of
diverse pro-inflammatory genes can enhance their expression in
PBC (202), and DNA hypo-methylation of the gene expressing
the CD40 ligand (CD40L, also called CD154) in CD4" T cells
may promote B cell maturation and immunoglobulin class
switching. The epigenetic effect may contribute to the
increased serum levels of immunoglobulin M (IgM) in
PBC (203).

A panel of miRNAs, including miR-122-5p, miR-141-3p, and
miR-26b-5p, has had high diagnostic accuracy for PBC and a
sensitivity that has exceeded that of the serum alkaline
phosphatase level (160) (Table 3). Step-down expression of
miR-223-3p and miR-21-5p in peripheral blood B cells has
signaled histological progression of PBC from stage I to stage
III (204), and decreased levels of the molecules involved in the
biogenesis of miRNAs (prolyl 4-hydroxylase subunit alpha 1 and
Argonaute 2) have suggested a widespread disruption of the
homeostatic network in a murine model of PBC (61). This
hypothesis has been supported by experimental evidence that
non-selective stimulation of miRNA biogenesis with enoxacin
can up-regulate miRNA production in CD8" T cells, decrease T
cell proliferation, and reduce interferon-gamma (IFN-7)
production (61).

7.2 Epigenetic Findings in PSC

The epigenetic factors contributing to the progression of PSC
have focused mainly on factors influencing the phenotype of the
cholangiocytes. Senescent cholangiocytes, defined as cells that
have been irreversibly arrested in the G1 or G2 phase of the cell
cycle (217, 218), are abundant in the liver of patients with PSC
(205) (Table 3). The cholangiocytes exhibit features of a
senescence-associated secretory phenotype (SASP) that is
characterized by the hypersecretion of pro-inflammatory
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cytokines, chemokines and growth factors (205, 219). The cyclin-
dependent kinase inhibitor 2A (CDKN2A) gene has been
associated with cholangiocyte senescence (205), and histone
methylation (H3K4me3) increases its transcriptional activity
and the possibility of disease progression (63). Histone
acetylation (H3K27ac) of the promoter of the B-cell lymphoma
2-like 1 gene (BCL2-like 1) increases expression of the anti-
apoptotic protein, B-cell lymphoma-extra large (BCL-xL). This
epigenetic change may promote the resistance of senescent
cholangiocytes to apoptosis and prolong their survival (64).
Both sites of histone modification have been proposed as
potential therapeutic targets (63, 64).

The studies in PBC and PSC affirm the strong association of
epigenetic modifications in immune-mediated chronic liver
disease, and they suggest that the epigenetic modifications
can impact on the clinical phenotype, reflect disease-
specificity, aid in diagnosis, and direct future therapeutic
interventions. They also identify key areas in autoimmune
hepatitis that have been unassessed or under-evaluated.
Investigations of the epigenetic effects on the X and Y
chromosomes, familial predisposition, and heritability of
autoimmune hepatitis are wanting.

8 EPIGENETIC FINDINGS IN NON-
AUTOIMMUNE LIVER DISEASES

Studies in alcoholic liver disease (54, 55) and non-alcoholic fatty
liver disease (NAFLD) (220-229) have emphasized the
pervasive, interactive, and composite effects of epigenetic
modifications in each disease. They have also indicated the
needs to associate changes in disease expression to clinically
relevant features and to explore the heritable and adaptive

nature of the epigenetic modifications. These insights are
foundational for future studies in autoimmune hepatitis since
they may clarify the mechanisms of occurrence, recurrence
and progression.

8.1 Epigenetic Findings in Alcoholic

Liver Disease

A plethora of epigenetic changes involving DNA methylation,
histone modification, and circulating miRNA levels have been
described in experimental models and patients with alcoholic
liver disease and alcoholic steatohepatitis (54, 55). Epigenetic
modifications have been demonstrated in genes that may
influence the metabolism of ethanol (230-234), the activity of
enzymes that mediate histone acetylation (HATS, sirtuins) (55,
235), the vigor of the inflammatory response (236), and the
generation of hepatic fibrosis (224, 237) (Table 4). Furthermore,
increased circulating levels of several miRNAs have been
described that may be biomarkers of alcohol-related liver
injury (miR-155) (55, 238, 241, 242), indicators of a disrupted
intestinal mucosal barrier (miR-212) (239), or mediators of lipid
and cholesterol metabolism (miR-122) (240). The abundance of
epigenetic changes and interactions has indicated a complexity
that must be edited for clinical relevance. A similar complexity of
epigenetic interactions can be anticipated in autoimmune
hepatitis, and future investigations must be directed by the
pivotal clinical needs to understand and control the severity,
progression, and recurrence of the disease.

8.2 Epigenetic Findings in NAFLD
Hypermethylation of CpG99 in the regulatory region of the

patatin-like phospholipase domain-containing protein 3
(PNPLA3) gene and hypomethylation of CpG26 in the
regulatory region of the parvin beta 1 (PARVBI) gene have

TABLE 4 | Epigenetic marks in non-autoimmune liver diseases.

Non-Autoimmune Liver Disease

Epigenetic Marks

Epigenetic Effects

Alcoholic liver disease DNA methylation changes (54, 55)
Histone PTMs (54, 55)

Multiple genes affected (54, 55)

Increased circulating miR-155 (238)
Increased circulating miR-212 (239)
Increased circulating miR-122 (240)
Hyper-methylated PNPLAS3 (220)
Hypo-methylated PARVB1 (220)
Variably DNA methylated genes (224)
Histone acetylation of TNFA (225)
Histone acetylation of FASN (226)

NAFLD

Increased circulating miR-122, miR-34a, and miR-16 (227)

High serum miR-122 levels (228)
Low liver miR-122 levels (228, 229)

mir-331-3p and miR-30c strongly associated with each other (194)

Present in twins with NAFLD (194)
May be heritable (194)

Modulation of ethanol metabolism (234)
Mediation of inflammation (236)

Progression of liver fibrosis (224, 237)

Activity of histone acetylation (55, 235)
Biomarker of alcohol injury (55, 241, 242)
Denotes disrupted intestinal barrier (239)
Mediates lipid metabolism (240)

Hepatic steatosis and inflammation (221, 222)
Hepatic fibrosis, steatosis, activity score (223)
Severe hepatic fibrosis (224)

Increased inflammation (225)

Up-regulated lipogenesis in hepatocytes (226)
miR-122, miR-34a associated with lipid levels,
fibrosis stage, and inflammation (227)
Increased serum ALT activity (228)
Associated with NASH (228, 229)

Lipid and metabolic pathways (194)

ALT, alanine aminotransferase; DNA, deoxyribonucleic acid; FASN, fatty acid synthase gene; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; PARVB1,
parvin beta 1 gene; PNPLAS, patatin-like phospholipase domain-containing protein 3 gene; PTMs, post-translational modifications, TNFA, tumor necrosis factor alpha gene. Numbers in

parentheses are references.
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been associated with advanced hepatic fibrosis in patients with
NAFLD (220) (Table 4). The rs738409 (G-allele) polymorphism
of PNPLAS has been associated with hepatic steatosis and
inflammation in patients with NAFLD (221, 222), and the
PARVB variant has been associated with steatosis grade,
NAFLD activity score, and hepatic fibrosis (223). Differential
methylation of CpG sites within other genes known to affect
hepatic fibrosis have also distinguished patients with severe
fibrosis (224).

Histone acetylation of the pro-inflammatory genes, tumor
necrosis factor alpha (TNFA) and monocyte chemotactic protein 1
(MCPI; also called CD2) have been up-regulated in a murine
model of obesity (225), and the histone acetylation of the gene
stimulating transcription of fatty acid synthase (FASN) has been
associated with de novo lipogenesis in human hepatocytes (226)
(Table 4). Serum levels of miR-122, miR-34a and miR-16 have
also been increased in patients with NAFLD compared to
patients with chronic hepatitis C, and the serum levels of miR-
122 and miR-34a have correlated with biochemical tests and
histological assessments of fibrosis stage and inflammatory
activity (227).

Serum levels of miR-122 have also been 7.2-fold higher in
patients with non-alcoholic steatohepatitis (NASH) than in
healthy control subjects and 3.1-fold higher in patients with
NASH than in patients with simple steatosis (228) (Table 4).
Hepatic expression of miR-122 has been down-regulated in NASH
compared to patients with simple steatosis (228) or normal liver
(229), and the hepatic expression of miR-122 has been mostly near
lipid-laden hepatocytes (228). The physiological significance of
miR-122 in the development of NASH has been postulated, but
not evident in all investigations (243) or validated as a pivotal
pathogenic factor (194).

Studies of monozygotic and dizygotic twins have
demonstrated that discordance for NAFLD has been associated
with 21 miRNAs, including miR-122 (P=0.002) and miR-34a
(P=0.04) (194) (Table 4). MiR-331-3p (P=0.0007) and miR-30c
(P=0.011) have been preferentially expressed in the twins with
NAFLD, and the strong correlation of miR-331-3p and miR-30c
with each other (R=0.90, P=2.2 x 10'°) has suggested their
shared involvement in NAFLD (194). This hypothesis has been
supported by evidence that the seven gene targets shared by miR-
331-3p and miR-30c have included genes affecting lipid and
metabolic pathways (194).

The multiplicity of epigenetic changes associated with
NAFLD may reflect differences in environmental cues
(lifestyle, diet, age-related exposures, surgeries) (184, 187,
193) and transgenerational inheritance of gene modifiers (25,
38, 194). The profiling of the epigenome of sperm from lean
and obese men has disclosed marked differences in the
expression of small non-coding RNA and DNA methylation
patterns which may have reflected inherited and acquired
changes (184) (Table 4). The rapid remodeling of DNA
methylation in the sperm of morbidly obese men who have
undergone bariatric surgery has indicated the dynamic
plasticity of epigenetic changes under environmental pressure
(184). The challenge has been to identify the key factor or

combination of factors that can be moderated in a particular
clinical situation. The plasticity of the epigenetic changes
in response to environmental cues or therapeutic intervention
and the expression of these epigenetic responses in the
germline are key features that warrant investigation in
autoimmune hepatitis.

9 EPIGENETIC MANIPULATIONS

Therapeutic manipulation of disease-associated epigenetic
changes is possible by interventions that affect the enzymes
that modify the chromatin structure, the targets recognized by
circulating miRNAs, and the environmental factors that
promote instability of the epigenome (39, 86, 244).
Interventions that affect enzymatic modulation of the
chromatin structure have been directed at DNA methylation
(245), histone methylation (246, 247), and histone acetylation
(248-250). Interventions that affect target recognition by pivotal
miRNAs have involved engineered molecules that mask the
chosen gene product or substitute a decoy (251-256).
Interventions that stabilize the epigenome have included risk-
reduction, lifestyle modifications (19, 34, 257) and dietary
supplementation with S-adenosylmethionine (258, 259),
methyl group donors (260, 261), vitamin C (122), or vitamin
D (262-267). The major concerns have been the lack of target
selectivity and the uncertain risk of deleterious off-target
consequences (19, 43).

9.1 Therapeutic Modulation of

Chromatin Structure

DNMT inhibitors, HDAC inhibitors, HDAC activators, and
HMT inhibitors have been the principal interventions directed
at the enzymatic bases for disease-associated epigenetic changes
in chromatin. These interventions have been studied mainly in
experimental models of liver disease and patients with
malignancy (39, 86, 244) (Table 5).

9.1.1 DNA Methyltransferase Inhibition

DNA hyper-methylation has been a strong feature of
hepatocellular carcinoma (HCC), and guadecitabine (also
called SGI-110) is a DNMT inhibitor. Guadecitabine has
sensitized HCC cells to oxaliplatin by inhibiting signaling
pathways that have promoted HCC growth in mice (245).

9.1.2 Histone Deacetylase Inhibition

HDAC:s have been highly expressed in patients with HCC related
to chronic hepatitis B virus infection, and they have been a
prognostic biomarker associated with tumor growth and reduced
survival (268). HDAC inhibition has suppressed proliferation of
HCC cells in vitro (268), and the pan-HDCA inhibitor,
panobinostat, has been effective in experimental models of
HCC when combined with sorafenib (249). HDAC inhibitors
have been well-tolerated in clinical protocols, and trials have
been extended to non-tumorous diseases, including
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TABLE 5 | Therapeutic manipulations of epigenome.

Enzymes Rationale

DNMT inhibitors
HDAC inhibitors

HDAC activators

HMT inhibitors

DNA hyper-methylation in HCC (245)
HDAGCs high in HBV-related HCC (268)
HDAC inhibitors tolerated in trials (269)
Deficient sirtuin 1 in NAFLD model (270)
Resveratrol activates sirtuin 1 (271-274)
EZH2 catalyzes histone methylation (275)
H3K27me3 represses PPARG (276)

Experimental and Clinical Experience

Guadecitabine limits HCC in mice (245)
HDAC inhibitors limit HCC in vitro (268)
Panobinostat effective in HCC model (249)
Resveratrol limits rodent NAFLD (272)
Resveratrol no effect in humans (250)
DZNep inhibits liver fibrosis in mice (247)

PPARG inhibition increases fibrosis (277)

miRNA targets
Anti-sense oligonucleotides
Preserves mRNA (71, 279)

Limits miRNA binding to mRNA (278)

Clinical trials in diverse diseases (280-282)

Experimental models (254-256)

Decoy mRNA targets Decoy mRNA binds miRNA (254-256)
“Sponge effect” depletes miRNA (255)
Drugs General miRNA deficiency possible (61)

Enoxacin down-regulated CTLs in murine PBC (61)

Drugs can enhance miRNA biogenesis (61)

Supplements

SAM Methyl groups improve methylation (259)
Dietary methyl groups helped in rats (261)

Vitamin C Supports activity of TET enzymes (122)

Vitamin D Limits transcription of TGF-B, TIMP (266)

Less demethylase activity in cell lines (258)
Preserved DNA methylation (259)
De-methylated DNA in mouse cells (122)
Prevents experimental fibrosis (262-265)

CTLs, cytotoxic CD8* T cells; DNA, deoxyribonucleic acid; DNMT, DNA methyitransferase; DZNep, 3-deazaneplanocin A; EZH2, enhancer of zeste homolog 2; HBV, hepatitis B virus;
HCC, hepatocellular carcinoma; HDAC, histone deacetylases; HMT, histone methyltransferase; mRNA, messenger ribonucleic acid; miRNA, micro-ribonucleic acid; NAFLD, non-alcoholic
fatty liver disease; PPARG, peroxisome proliferator-activated receptor gamma gene; PBC, primary biliary cholangitis; SAM, S-adenosylmethionine;, TGF-f3, transforming growth factor-
beta; TET, ten-eleven translocation enzyme; TIMP, tissue inhibitors of metalloproteinases. Numbers in parentheses are references.

neurodegenerative diseases and inflammatory disorders
(269) (Table 5).

9.1.3 Histone Deacetylase Activation

Sirtuin 1 (SIRT1) promotes the deacetylation of histones and
regulates glucose and fat metabolism (270, 283). Deficient
hepatic expression of SIRT1 has been accompanied by
metabolic dysfunction in a murine model (270). The
polyphenol, resveratrol, activates the deacetylase, SIRT1 (248,
284, 285), and it has improved the survival of mice on a high
calorie diet (286) (Table 5). Resveratrol has also protected
rodents from diet-induced steatohepatitis through a variety of
signaling pathways (271-274). Resveratrol has not had a
therapeutic benefit in overweight and obese men with
established NAFLD (250), and the role of HDAC activation as
a protective or therapeutic intervention for NAFLD remains
unclear in humans.

9.1.4 Histone Methyltransferase Inhibition
Epigenetic modifications of chromatin have been implicated in
the trans-differentiation of hepatic stellate cells into
myofibroblasts (39), and the enzymes that regulate the
methylation of DNA (287, 288) and histone (246) have been
prime therapeutic targets (247, 277). Hepatic fibrosis is regulated
by a series of epigenetic relays that include down-regulation of
miR-132, binding of the methyl-CpG binding protein 2 (MeCP2)
to the 5° end of the PPAR-y-producing gene (PPARG), and
activation of the enhancer of zeste homolog 2 (EZH2)
(277) (Table 5).

EZH2 is an epigenetic regulator that represses gene
transcription by catalyzing the trimethylation of histone 3 at

lysine 27 (H3K27me3) (275, 289, 290). The formation of
H3K27me3 in the 3’ exon of PPARG represses the anti-fibrotic
effect of this gene (276) and promotes hepatic fibrosis (277)
(Table 5). Therapeutic disruption of the pro-fibrotic epigenetic
pathway is possible at multiple sites, but the pivotal epigenetic
step for myofibroblast differentiation is trimethylation of PPARG
at H3K27 (276). 3-Deazaneplanocin A (DZNep) is a pan-
inhibitor of histone methyltransferase, and its use in a murine
model of toxin-induced liver injury has inhibited the histological
progression of hepatic fibrosis (247).

9.2 Therapeutic Modulation of MiRNAs
MiRNAs are prime targets for therapeutic manipulation
because circulating miRNA levels have distinguished certain
diseases and the gene silencing action of miRNAs can disrupt
pivotal homeostatic pathways that regulate immune and
inflammatory responses (40, 42, 43). The principal method of
targeting miRNAs in experimental models and patients in
clinical trials has been the use of anti-sense oligonucleotides
(antimirs) (71, 278, 279) (Table 5). These molecules are
engineered to block the binding of a selected miRNA to its
targeted mRNA, and they prevent the miRNA from silencing
the gene product. The binding affinity, stability, and potency of
antimirs can be enhanced by diverse modifications of the core
molecule. The modified molecules have been designated
antagomirs (252, 253, 291). Anti-sense obligonucleotides have
been evaluated in clinical treatment trials for Alport syndrome
(280), chronic hepatitis C (281), and chronic lymphocytic
leukemia (282).

RNA transcripts have also been designed to mimic the
selected natural mRNA and protect it from degradation or
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translational repression by miRNAs. The decoy mRNA binds
with the natural miRNA and prevents it from silencing the
natural mRNA (254-256) (Table 5). Drugs have also been used
to non-selectively stimulate the biogenesis of miRNAs (61).
Widespread deficiency of miRNAs may allow the expression of
genes that promote disease activity, and drug-induced, non-
selective stimulation of miRNA biogenesis may silence the
expression of these deleterious genes (61). These interventions
await rigorous preclinical evaluations and clarification of their
safety profile (43).

9.3 Therapeutic Modulation of
Environmental Factors and Use of

Dietary Supplements

Multiple environmental factors have been associated with
diverse epigenetic changes, and lifestyle modifications may
reduce the risk of disease-provoking epigenetic changes (19,
34, 58, 257, 292, 293) (Table 5). Medications (procainamide,
hydralazine, and 5-azacytidine) (294-297), pollutants (tobacco
smoke, aerosolized contaminants, and heavy metals) (298-301),
and infection (302) have been associated with changes in DNA
methylation that may affect gene expression. Furthermore,
environmentally-induced epigenetic changes have been
associated with the occurrence or progression of diverse
immune-mediated diseases (rheumatoid arthritis, PBC, and
SLE) (72, 298, 303-305). Epigenetic changes that are
potentially deleterious and heritable have also been associated
with nutritional deficiencies, stress, ultraviolet light, radiation,
and trauma (19, 34, 257). Lifestyle modifications that avoid
excessive, high risk exposures may protect against deleterious
epigenetic effects, but their efficacy has been difficult
to establish.

Dietary supplements have also been described in
experimental animals that enhance the supply of methyl
groups (S-adenosylmethionine, diverse methyl donors)
(258-261), activate the TET enzymes that de-methylate DNA
(vitamin C) (122), and alter the transcription of mRNAs that
promote hepatic fibrosis (vitamin D) (262-267) (Table 5). S-
adenosylmethionine has inhibited demethylase activity and
preserved DNA methylation in cell lines (258, 259). Dietary
supplementation with methyl groups has promoted DNA hyper-
methylation and prevented transgenerational amplification of
obesity in a mouse model (260). It has also modified the
methylation profile of the gene expressing fatty acid synthase
and reduced hepatic triglyceride accumulation in rats fed a high
fat, high sucrose diet (261). Vitamin C has supported the activity
of TET enzymes, and it has promoted the de-methylation of
DNA in the embryonic stem cells of mice (122). 1, 25-
dihydroxyvitamin D has repressed the transcription of mRNAs
for TGF-P and tissue inhibitors of metalloproteinases (TIMP). It
has also up-regulated the transcription of metalloproteinases and
prevented progressive hepatic fibrosis (262-267). These
promising pre-clinical experiences await validation in
randomized clinical trials that define their utility in specific
diseases (259).

10 EPIGENETIC PROSPECTS IN
AUTOIMMUNE HEPATITIS

Findings that have already been made in diverse autoimmune
(63, 64, 212-214) and non-autoimmune (220, 223-226, 232)
liver diseases support the prospect that multiple, clinically-
relevant, epigenetic marks will be identified in autoimmune
hepatitis. They also support the prospect that pivotal genes
affecting critical pathogenic pathways will be recognized and
that interventions will be assessed to modify an aberrant gene
expression or pattern (247, 250, 260, 261, 271, 281). The success
of these projections in changing the management of autoimmune
hepatitis will depend on proofs of causality, confident
identification of critical gene expressions or patterns, and
precise editing of the epigenetic landscape.

10.1 Proofs of Causality

Progress toward targeted epigenetic management of autoimmune
hepatitis ideally requires proof of causality for each epigenetic
mark and a hierarchy of candidates based on measured
consequences. Methods that disrupt and restore the epigenetic
mark in experimental models or cell systems can establish and
quantify causality. The clustered, regularly interspaced, short
palindromic repeats (CRISPR) of base sequences in segmental
DNA and the CRISPR-associated protein 9 (Cas9) system consists
of a guide RNA that matches the DNA target site and an
endonuclease (Cas9) that performs site-specific DNA cleavage
(306, 307) (Table 6). This system has been re-purposed for
epigenetic editing by engineering a “deactivated” Cas9 protein
(dCas9) that lacks nuclease activity (309-312, 320, 321). The
CRISPR-dCas9 system can target specific DNA loci without
changing the DNA sequence, and dCas9 can deliver sequence-
specific motifs to a desired location in the epigenome (308). Site-
specific epigenetic editing that can block or restore gene expression
in experimental models or cell lines can prove causality and
develop a hierarchy of candidates for therapeutic targeting.

10.2 Identification of Critical Gene Targets

or Patterns

A distinctive profile of circulating miRNAs (70, 71, 196, 199) and
the hypo-methylation of multiple genes (21) have already been
described in autoimmune hepatitis. Future investigations must
identify the genes whose expressions are affected by these
miRNAs (miR-21, miR-122, and miR-155) and the hypo-
methylation (Table 6). The hypo-methylated forkhead box p3
(Foxp3) gene stabilizes the expression of Foxp3 on regulatory T
cells (Tregs) and maintains their integrity (319). Preservation of
this hypo-methylated state may constitute a mechanism by which
to achieve and maintain quiescent disease (322, 323). Hypo-
methylation may also stimulate genes with deleterious actions,
and treatments that hyper-methylate genes non-selectively may
compromise Treg function (322). Clarification of the genes
implicated in autoimmune hepatitis by the circulating miRNAs
and their hypo-methylated status will be essential in understanding
the complexity and interactivity of potential epigenetic targets.
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TABLE 6 | Epigenetic prospects in autoimmune hepatitis.

Epigenetic Prospects Rationale

Proofs of causality

Epigenetic marks lack proofs of causality (308)

Expectations

Prime therapeutic target(s) selected (308)

CRISPR-dCas9 allows epigenetic editing (309)
Site-specific editing can prove causality (308)

Hierarchy of targets possible (310-312)
miR-21 is cue to affected genes (70)

Identification of gene targets or patterns

miR-122 is cue to affected genes (70, 196)

miR-155 is cue to affected genes (199, 207)

Hypo-methylated genes already recognized (21)

Multiple genes can have composite effect (21)
Gene patterns can affect outcome (194)
CRISPR-dCas9 edits precisely (309-312, 320, 321)

Therapeutic epigenetic editing

Uncertain off-target effects (43)

Key gene prospects of miR-21 assessed:

* programmed cell death protein 4 (313)

® TNF-o-induced protein 8-like 2 (314)

Key gene prospects of miR-122 assessed:

® hypoxia inducible factor 1-c (315)

e prolyl-4-hydroxylase subunit o1 (197)
Key gene prospects for miR-155 assessed:

® suppressor of cytokine signaling (316)

e c-musculoaponeurotic fibrosarcoma (317)
e Src homology 2-containing inositol-5"-phosphatase 1 (318)
Key hypo-methylated prospect assessed:

e forkhead box p3 (Foxp3) (319)

Epigenetic network recognized (19)

Individual and multiple edits possible (312)
Elimination of non-selective enzymes (308)
Site-specific enzyme delivery (308, 312)
Correction of miRNA deficiencies
Modulation of miRNA gene expression
Homeostasis of stimulatory/inhibitory genes
Highly selective, precise edits (308, 312)
Rigorous safety assessments

Monitoring protocols

CRISPR, clustered, regularly interspaced, short palindromic repeats; dCas9, deactivated CRISPR-associated protein 9; miRNA, micro-ribonucleic acid; TNF, tumor necrosis factor.

Numbers in parentheses are references.

Additional characterization of the epigenome of autoimmune
hepatitis can be anticipated, and it may identify multiple up- and
down-regulated genes that have a composite effect. Multiple gene
expressions have distinguished patients with NAFLD (194), and
multiple hypo-methylated genes have been described in
autoimmune hepatitis (21). The multiplicity of implicated
genes may reveal a pattern that distinguishes autoimmune
hepatitis and influences its phenotype and outcome. The
pattern may also reveal a common basis for autoimmunity or
have disease-specificity.

10.3 Editing the Epigenetic Landscape

The CRISPR-dCas9 system promises to replace the use of
enzymes that non-selectively alter DNA methylation and
PTMs (309-312, 320, 321) (Table 6). It may also limit or
eliminate the need to target miRNAs with anti-sense
oligonucleotides (71, 252, 278, 279) or mRNA mimics (254-
256). HATs, acetyl groups, DNMTs, and TET enzymes can be
tethered to the dCas9 protein and delivered to the chosen
epigenetic site by the CRISPR-dCas9 system (312, 320). The
effectiveness of the CRISPR-dCas9 system in editing the
epigenome of autoimmune diseases is unknown, but future
investigations should evaluate its ability to edit multiple
epigenetic marks, restore homeostatic balance between
immune stimulatory and inhibitory genes, and modulate the
genes that generate particular miRNAs. The major safety
concern is the uncertainty of unintended off-target effects
(34, 43).

11 CONCLUSIONS

The epigenome is a largely unstudied domain in autoimmune
hepatitis, and its rigorous evaluation may yield results that
complement, complete, or change the current knowledge base.
The epigenome is dynamic, reactive, adaptable, reversible, and
potentially heritable. The epigenetic landscape could influence
the predisposition, phenotype, pathogenesis, and outcome of
autoimmune hepatitis, and it could reflect environmental factors
that can be modified or avoided. The epigenetic landscape could
also have diagnostic and prognostic implications that could help
direct management. Methods that allow highly selective editing
of the epigenome promise to expand treatment options by
modulating the expression of pivotal genes or the composite
effect of multiple genes. The key challenges are to determine the
pivotal epigenetic changes or patterns associated with
autoimmune hepatitis, understand the interactive network of
genes with opposing actions that promote the disease, and
develop interventions that restore homeostatic balance with
minimal risk of unintended off-target consequences.
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