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Pediatric acute lymphoblastic leukemia (ALL) is the most common subtype of childhood
leukemia, which is characterized by the abnormal proliferation and accumulation of
immature lymphoid cell in the bone marrow. Although the long-term survival rate for
pediatric ALL has made significant progress over years with the development of
contemporary therapeutic regimens, patients are still suffered from relapse, leading to
an unsatisfactory outcome. Since the immune system played an important role in the
progression and relapse of ALL, immunotherapy including bispecific T-cell engagers and
chimeric antigen receptor T cells has been demonstrated to be capable of enhancing the
immune response in pediatric patients with refractory or relapsed B-cell ALL, and
improving the cure rate of the disease and patients’ quality of life, thus receiving the
authorization for market. Nevertheless, the resistance and toxicities associated with the
current immunotherapy remains a huge challenge. Novel therapeutic options to overcome
the above disadvantages should be further explored. In this review, we will thoroughly
discuss the emerging immunotherapeutics for the treatment of pediatric ALL, as well as
side-effects and new development.

Keywords: pediatric ALL, T-cell engagers, CAR T cell therapy, macrophage-based immunotherapy, NK cell-
based immunotherapy
INTRODUCTION

Acute lymphoblastic leukemia (ALL), characterized by the abnormal clonal proliferation of the early
lymphoid stem cells or progenitor cells and the depletion of the normal hematopoietic cells in the
marrow, is the most prevalent subtype of leukemia with a rapidly growing incidence worldwide (1–
5). Although ALL occurs in both adults and children, children represent up to 80% of cases (6).
Currently, improved long-term survival rates have increased to more than 90% in pediatric ALL
thanks to the contemporary therapeutic regimens (7, 8). However, approximately 20% of the
patients remain refractory to primary therapy or suffer from relapse after initial complete remission
(CR), leading to a poor prognosis (9, 10). Therefore, the exploration of novel therapeutic approaches
for pediatric refractory/relapse (R/R) ALL are urgently needed and will eventually benefit
this population.
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Until now, accumulating evidence has suggested that tumor
microenvironment (TME) contributes to the cancer
development and progression (11–13). As key members in
TME, immune cells consisting of T cells, macrophages, and
natural killer cells (NKs) have reduced activity and poise in an
immunosuppressive state. Activating the immune system to
recognize and eradicate cancer cells rather than remove or
directly attack the cancer cells, termed immunotherapy, has
been proposed as an alternative to conventional cancer
treatment and widely explored over the last decade (14, 15). In
particular, immunotherapy promoted rapid development for the
treatment of the hematologic malignancies (16–18). The
approval for market of blinatumomab, a bispecific CD3/CD19
T-cell engager, and tisagenlecleucel, a CAR T cell therapy, has
demonstrated dramatic progress in the treatment of pediatric R/
R B-cell precursor ALL (R/R BCP ALL). Combination or
r ep l acement o f conven t iona l chemotherapy wi th
immunotherapy to further improve the cure rates and life
quality of pediatric patients with ALL has become the priority
issue for the moment (19–21). Generally, pediatric cancers are
not smaller versions of adult cancers (6, 22). The progress and
development in pediatric cancers lags behind adult patients (23).
Herein, we aim to provide a comprehensive overview of the
emerging immunotherapeutic approaches in pediatric ALL, thus
guiding the development of novel therapeutic options. The
preclinical research and ongoing clinical trials in this field will
be extensively summarized in this review (Table 1). Due to T-cell
ALL accounts for merely 15% of the pediatric ALL patients and
has a different immunophenotype from B-cell ALL,
immunotherapy for pediatric T-cell ALL is outside the scope of
this article.
T CELL-BASED IMMUNOTHERAPY

T cells have become an ideal weapon and attracted great research
enthusiasm in cancer immunotherapy due to its capacity for
antigen-directed cytotoxicity (45–47). Over the last decade,
various T cell-based immunotherapeutic approaches, including
blocking programmed cell death-1 (PD-1)/programmed cell
death-ligand 1 (PD-L1) axis, bispecific/trispecific T-cell
engagers, and chimeric antigen receptor (CAR) T cells have
revolutionized the field of cancer therapeutics. The following
context will highlight the T cell-based immunotherapeutic
strategies available to attenuate pediatric B-cell ALL (Figure 1).

Bispecific CD3/CD19 T Cell Engagers
Bispecific antibodies are designated to recognize and bind two
distinct epitopes or antigens simultaneously, which have
demonstrated great therapeutic potential toward cancer
immunotherapy and are in rapid clinical development (48, 49).
Blinatumomab, which is comprised of two different single-chain
variable fragment regions (scFv) linked via a glycine-serine linker
(50), triggers a cytotoxic immune response and shows significant
cytotoxic activity at ultra-low concentrations, through binding
specifically to antigen CD19 that is overexpressed on the surface
Frontiers in Immunology | www.frontiersin.org 2
of B-cell ALL lymphocytes and antigen CD3 on the surface of T cells
(51–53). As the benchmarking case, blinatumomab conveyed good
efficiency and safety in a phase I/II study (NCT01471782), which
demonstrated that blinatumomab was maximumly tolerated at 15
mg/m2/day in 49 children with R/R BCP-ALL, 39% of whom
achieved CR with single-agent blinatumomab treatment (24, 25).
In the subsequent multi-center, expanded access study (RIALTO
trial, NCT02187354), 63% of children had CR and the MRD
negativity was obtained in 83% of responders after the first two
cycles of blinatumomab treatment, further confirming the efficiency
of blinatumomab (26, 27). Accordingly, blinatumomab was
approved to treat R/R B-cell ALL in children by the US Food and
Drug Administration (FDA) in 2018. Recently, two randomized
trials (NCT02393859 and NCT02101853) exemplify the advantages
of blinatumomab as post reinduction consolidation treatment vs
chemotherapy before allogeneic hematopoietic stem cell transplant
(alloHSCT), resulting in superior in eradicating MRD (28, 29).
Therefore, blinatumomab gained accelerated approval by FDA to
treat BCP ALL with MRD greater than or equal to 0.1% after the
first or second CR. Moreover, a phase II study (NCT02807883) has
proved the feasibility of blinatumomab maintenance following
alloHSCT for patients with B-cell ALL at high-risk for relapse,
with the 1-year overall survival (OS), progression-free survival
(PFS), and nonrelapse mortality (NRM) rates of 85%, 71%, and
0%, respectively (30). In addition, to incorporate blinatumomab as
part of upfront treatment for pediatric B-cell ALL, several trials are
currently ongoing (NCT03643276 and NCT03914625) (31). Of
note, the main toxicities including cytokine release syndrome
(CRS) and neurotoxicity are tolerable under blinatumomab
therapy (54, 55).

Although blinatumomab has obtained an authorization for
treating pediatric R/R BCP ALL and eliminating the MRD,
several disadvantages, such as the short half-life caused by the low
molecular weight, leading to the need to continuous intravenous
infusion, limited wide clinical application (56). Besides,
blinatumomab resistance caused by the loss of CD19 expression
and lineage switch in BCP ALL remains a significant problem (57,
58). For example, in a phase I/II study, four patients harboring
CD19 negative B-cell ALL relapsed after prior blinatumomab-
induced hematologic remission and one patient with CD19-
negative had disease progression (57). In the future, screening
tumor markers to predict CD19-negative relapse should be paid
more attention. What’s more, overexpression of checkpoint
molecules including T-cell immunoglobulin and mucin domain 3
(TIM-3) on T cells and PD-L1 on tumor cells represented an
additional potential escape mechanism from immunosurveillance
(30, 59, 60). Adding immune checkpoint inhibitors to
blinatumomab treatment thus overcoming resistance may be
feasible (60) and are under clinical investigation (NCT03160079,
NCT03512405 and NCT04546399).

Bispecific CD3/CD20 T-Cell Engagers
In addition to CD19, other antigens on the surface of leukemic
blasts are currently under active research and development. CD20 is
a signature B cell differentiation antigen and its overexpression is
identified as an inferior prognosis marker associated with a worse
event-free survival (EFS) in childhood BCP ALL according to the
June 2022 | Volume 13 | Article 921894
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TABLE 1 | Emerging immunotherapeutic approaches for pediatric B-cell ALL.

Interventions Target Patients
number

Patients
group

Indications Study phase Clinical Trial
number

Ref.

T cell engagers

Blinatumomab CD3/CD19 93 Up to 17
years

R/R BCP ALL Phase I/II NCT01471782 (24,
25)

Blinatumomab CD3/CD19 110 28 days to 18
years

R/R BCP ALL Expanded
access study

NCT02187354 (26,
27)

Blinatumomab CD3/CD19 111 Up to 17
years

High-risk first relapse BCP ALL Phase III NCT02393859 (28)

Blinatumomab CD3/CD19 670 1 to 30 years Relapsed B-cell ALL Phase III NCT02101853 (29)

Blinatumomab CD3/CD19 23 1 to 70 years Maintenance for patients with B-cell ALL
after alloHSCT

Phase II NCT02807883 (30)

Blinatumomab CD3/CD19 5000 Up to 18
years

ALL Phase III NCT03643276 (31)

CMG1A46 CD3/CD19/
CD20

165 18 years and
older

B-cell NHL and/or ALL Phase I/II NCT05348889 /

CAR T-cell therapy (corresponding costimulatory domain)

Tisagenlecleucel (4-1BB) CD19 30 5 to 20 years R/R CD19 positive B-cell ALL Phase I/IIa NCT01626495 (32)

Tisagenlecleucel (4-1BB) CD19 75 Up to 25
years

R/R B-cell ALL Phase II NCT02435849 (33)

Brexucabtagene autoleucel
(CD28)

CD19 125 18 years and
older

R/R BCP ALL Phase I/II NCT02614066 (34–
36)

Brexucabtagene autoleucel
(CD28)

CD19 116 Up to 21
years

R/R BCP ALL and R/R B-cell NHL Phase I/II NCT02625480 /

CD19CAR T cells (4-1BB) CD19 167 1 to 26 years
old

R/R CD19 positive leukemia Phase I/II NCT02028455 /

CD19CAR T cells (4-1BB) CD19 35 Up to 21
years

R/R CD19 positive ALL Phase I/II NCT03573700 /

CD19CAR T cells (CD28 with
or without 4-1BB)

CD19 64 Up to 75
years

Advanced B-cell NHL, ALL, and CLL Phase I NCT01853631 /

CD19CAR T cells (4-1BB) CD19 27 Up to 29
years

B-cell ALL Phase II NCT04276870 /

CD19CAR T cells (4-1BB) CD19 121 Up to 25
years

R/R B-cell ALL and B-cell NHL Phase I/II NCT03743246 /

CD19CAR T cells (CD28 or 4-
1BB)

CD19 50 3 years and
older

B-cell malignancy Phase I/II NCT02782351 /

CD19CAR T cells (CD28) CD19 23 Up to 26
Years

Relapsed B-cell ALL Phase I NCT01860937 /

CD19CAR T cells (not
reported)

CD19 54 3 to 70 years R/R ALL Phase I/II NCT03016377 /

CD19CAR T cells (CD28) CD19 53 1 to 30 years B-cell leukemia or lymphoma Phase I NCT01593696 (37,
38)

CD22CAR T cells(4-1BB) CD22 208 3 to 39 years R/R CD22 positive B-cell malignancies Phase I NCT02315612 (39)

CD22-CAR T cells (4-1BB) CD22 5 18 years and
older

R/R B-cell ALL Phase I NCT02588456 (40)

CD22-CAR T cells (4-1BB) CD22 15 1 to 24 years R/R B-cell ALL Phase I NCT02650414 /

CD22CAR T cells (4-1BB) CD22 34 1 to 55 years R/R B-cell ALL Observational
study

ChiCTR-OIC-
17013523

(41)

AUTO3 (OX40 and 4-1BB) CD19/CD22 23 1 to 24 years R/R B-cell ALL Phase I/II NCT03289455 (42)

CD19 and CD22 bispecific
CAR T cells (4-1BB)

CD19/CD22 87 3 to 39 years Recurrent or refractory CD19/CD22
positive B-cell malignancies

Phase I NCT03448393 /

CTA101 (4-1BB) CD19 72 3 to 70 years R/R CD19 positive B-cell ALL and NHL Early Phase I NCT04227015 /

CD19CAR T cells and
CD22CAR T cells (4-1BB)

CD19 and
CD22

20 1 to 16 years R/R B-cell ALL Phase I ChiCTR-OIB-
17013670

(43)

CD19 CAR T cells (4-1BB) CD19 32 Up to 24
Years

high risk, relapsed CD19 positive ALL
and Burkitt Lymphoma

Phase I NCT02443831 (44)

CD19 CAR T cells (4-1BB) CD19 20 1 to 70 years 20 Phase I ChiCTR1900024456

Combination therapy

Pembrolizumab PD-1 12 Adults MRD positive ALL Phase II NCT02767934 (107)

Blinatumomab with
pembrolizumab

PD-1, CD3/
CD19

24 18 years and
older

R/R B-cell ALL Phase I/II NCT03160079 /

(Continued)
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Pediatric Oncology Group treatment protocols (61). Also, CD20
expression was significantly up-regulated in pediatric B-cell
leukemias during induction treatment (62), rendering it an
appealing target for immunotherapy. Currently, several promising
bispecific antibodies of anti-CD3/CD20, such as glofitamab,
mosunetuzumab, REGN1979, and epcoritamab, may be of
interest for future studies in B-cell Non-Hodgkin Lymphoma
Frontiers in Immunology | www.frontiersin.org 4
(NHL) (63, 64). However, further investigation is warranted to
evaluate this strategy in pediatrics with B-cell ALL.

Trispecific CD3/CD19/CD20
T-Cell Engagers
A-2019, a novel trispecific CD3/CD19/CD20 T-cell engagers
possessing the anti-CD19 and anti-CD20 scFvs, was designed
TABLE 1 | Continued

Interventions Target Patients
number

Patients
group

Indications Study phase Clinical Trial
number

Ref.

Blinatumomab with
pembrolizumab

PD-1, CD3/
CD19

36 18 years and
older

recurrent or refractory ALL Phase I/II NCT03512405 /

Blinatumomab with nivolumab PD-1, CD3/
CD19

550 1 to 30 years first relapsed B-cell ALL Phase II NCT04546399 /

Blinatumomab with
chemotherapy

CD3/CD19 6720 1 to 31 years Newly diagnosed B-cell lymphoblastic
leukemia

Phase III NCT03914625 /

Other emerging therapeutic approaches

TTTI-621 CD47 260 18 years and
older

Hematologic malignancies and solid
tumors

Phase I NCT02663518 /

CAR NK cells CD19 14 Up to 18
years

B-cell ALL Phase I NCT00995137 /

CAR NK cells CD19 20 Up to 80
years

B-cell ALL Phase I NCT01974479 /

TAA-T Tumor
neoantigens

90 6 months to
80 Years

R/R hematopoietic malignancies, AML
and MDS

Phase I NCT02203903 /

BAFF-R-CAR T Cells BAFF-R 37 18 years and
older

R/R B-cell ALL Phase I NCT04690595 /
June 2022
 | Volume 13 | Article
 92189
PD-1, programmed cell death-1; MRD, minimal residual disease; R/R, refractory/relapse; BCP ALL, B-cell precursor ALL; NHL, Non-Hodgkin Lymphoma; BAFFR, B-cell activating factor
receptor; “/” represents that the detail information about the clinical information could be found in ClinicalTrials.gov or http://www.chictr.org.cn/.
FIGURE 1 | Current immunotherapeutic strategies in pediatric Acute Lymphoblastic Leukemia (ALL). T-cell engagers, CAR T cell therapy, macrophages-based
immunotherapy, NK cell-based immunotherapy and other emerging immunotherapies are in development for pediatric B-cell ALL. SIRPa, signal regulatory protein
alpha; NKp46/CD16A/CD19-NKCE, a NK cell engager with CD16A on the surface of NKs binding NKp46 and CD19 on the surface of B-cell ALL cells.
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by Wang lab (65). It mediated autologous B cell depletion ex vivo
by inducing the activation and proliferation of T cells, and the
production and release of cytokines (65). Furthermore, A-2019
bound to CD19 with a lower affinity compared with
blinatumomab (1.06 × 10-8 mol/L vs. 1.49 × 10-9 mol/L,
respectively), which potentially reduce the off-target effect on
mural cells, thus lowering the risk of neurotoxicity (66). Plus, a
general decrease in overall cytokine including IL-6 and IFN-g
induced by A-2019 was observed in preclinical study, reducing
the risk of CRS. In short, trispecific T-cell engagers targeting
CD3/CD19/CD20 represents a novel strategy for not only
preventing and treating CD19 negative relapse, but also has the
potential for the treatment of CD20 positive and/or CD19
positive B-cell ALL. In a more recent preclinical study,
CMG1A46, another CD3/CD19/CD20 T-cell engager generated
from Chimagen’s TRIAD platform, displayed superior potency
and safety in comparation with CD3/CD20 bispecific T-cell
engagers (67). The phase I/II clinical trial is undergoing to
evaluate the safety and efficacy of CMG1A46 in adult patients
with advanced CD19 and/or CD20 positive B-cell NHL or
ALL (NCT05348889).

CAR T Cell Therapy
CAR T cells that commonly consists of an antigen-binding
domain and costimulatory signaling domain such as CD28
and/or 4-1BB (68, 69), is a revolutionary and promising
immunotherapy approach in cancer treatment (70). Antigen
markers on B-cell ALL cells surface such as CD19 and CD22
can be specifically recognized by CAR that is independent from
the major histocompatibility complex receptor, thus activating T
cells to kill tumor cells.

CD19 Targeting CAR T Cell Therapy
Tisagenlecleucel, also named CTL019, is autologous T cells
engineered ex vivo with a CAR containing a 4-1BB domain
(71). In 2012, two children diagnosed with R/R B-cell ALL were
infused with tisagenlecleucel and both achieved CR, although
one patient had a CD19 negative relapse (72, 73). These
encouraging data brought a hope of this therapy for the
treatment of R/R B-cell ALL. Subsequently, a trial was
expanded to 30 patients with the age of 5 to 22 years with R/R
B-cell ALL in a phase I/IIa study (NCT01626495), which
demonstrated a 90% rate of CR at the first month, an EFS rate
of 67% and overall survival (OS) rate of 78% at 6 months after the
single infusion of tisagenlecleucel (32). An international phase II
study using tisagenlecleucel in pediatric and young adult patients
with R/R B-cell ALL showed a CR rate of 81% at 3 months, EFS
rate of 73%, and OS rate of 90% at 6 months (NCT02435849)
(33). Given the unprecedented successes in clinical trials,
tisagenlecleucel was commercially approved by the FDA and
was indicated for R/R B-cell ALL patients up to 25 years old
in 2017.

Brexucabtagene autoleucel, also named KTE-X19, is another
CD19CAR T cell therapy with a CD28 costimulatory subunit
generated from peripheral blood monocular cells by removing
CD19 positive malignant cells to avoid T cell exhaustion, and has
received FDA approval for mantle cell lymphoma (74). Based on
Frontiers in Immunology | www.frontiersin.org 5
the data from the pivotal phase I/II clinical trial (ZUMA-3,
NCT02614066), brexucabtagene autoleucel was successfully
manufactured and administered as a single infusion in 55 adult
patients with R/R BCP ALL (34–36). Ultimately, 31 (56%)
patients achieved CR and 8 (15%) patients achieved CR with
incomplete haematological recovery, 38 (97%) of whom had
MRD negativity. Due to the striking efficacy of brexucabtagene
autoleucel in R/R BCP ALL adult patients, study to evaluate
brexucabtagene autoleucel in pediatric and young adult patients
with BCP ALL is ongoing (ZUMA-4, NCT02625480) and the
results will be anticipated. Furthermore, several other CD19CAR
T cell therapies are undergoing clinical research (Table 1)
(75–77).

Although CD19CAR T cell therapy has shown great success
for pediatric B-cell ALL, some patients displayed no response
and a great part of patients suffered from relapse with poor
outcomes (NCT01593696) (37, 38). Unfortunately, even a
secondary infusion of CD19CAR T cells can’t prevent CD 19-
positive relapse, which may be partly due to immune-mediated
clearance of CAR T cells (78, 79). Antigen loss caused by
mutations or alternate splice variants of CD19 have been
elucidated as the major resistance mechanism to CD19CAR T
cell immunotherapy, which is widely acknowledged as an urgent
problem to be solved (80, 81). Therefore, new therapeutic
approaches are required for R/R B-cell ALL patients who have
failed previous CD19CAR T cell therapy.

CD22 Targeting CAR T Cell Therapy
CD22 represents an alternative target with a high expression
level on most B-cell ALL cells, while has restricted expression on
normal B cells, especially in the absence of CD19 expression (82–
84). Recently, a phase I dose escalation study of CD22CAR T
cells with a 4-1BB costimulatory domain in pediatric and young
adults with recurrent or refractory CD22 positive B cell
malignancies was conducted sponsored by National Cancer
Institute (NCT02315612). The results showed that 70.2% of
the patients achieved CR and 87.5% of whom were MRD
negative (39, 85). However, an CD22CAR possessing the
similar structure with the above mentioned CD22CAR but the
heavy and light chains were connected by a standard 20-
aminoacid linker instead of a short 5-amino acid sequence,
proved surprisingly poor response in pediatric and adult
patients with B-cell ALL (NCT02588456) (40). By performing
detailed interrogation responsible for the entirely different
findings from the two independent clinical trials, mechanisms
that short scFv linker and tonic signaling enhanced the
antileukemic function of 4-1BB-based CAR T cells induced the
phenomena (40). Based on this work, the pilot study
(NCT02650414) was amended to determine the feasibility and
safety of a single dose administered CD22CAR T cells expressing
4-1BB costimulatory domains in pediatric R/R B-cell ALL
patients (40). Moreover, Pan and his colleges constructed an
CD22CAR with a 4-1BB costimulatory domain and initiated a
clinical trial, which demonstrated a CR rate of 80% on day 30
after infusion in 34 R/R B-cell ALL pediatric and adult patients
who have mostly failed from first CD19CAR T cell therapy
(ChiCTR-OIC-17013523) (41). However, most patients relapsed
June 2022 | Volume 13 | Article 921894
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with a diminished CD22 site density on B-cell ALL cells (85),
which raised the question that single target therapy permit the
occurrence of resistant variants. Combinatory or tandem CARs,
which contain two or more antigen-recognition moieties, may
prevent from relapse due to escape variants but need further
validation (86, 87).

Dual CD19 and CD22 Targeting CAR T Cell Therapy
The downregulation or loss of pre-designed antigen on ALL cells
leads to the failure of CD19CAR T or CD22CAR T cell
monotherapy. Therefore, a dual CD19 and CD22 antigen
targeting CAR T cell therapy such as CD19/CD22 bispecific
CAR T cell therapy and sequential CD19CAR T and CD19CAR
T cell therapy, appears to be a strategy to prevent the escape
mechanism given that B cells are unlikely to downregulate both
CD19 and CD22 simultaneously in a single cell.

AUTO3 is a representative CD19/CD22 bispecific CAR T cell
therapy, which is designed and developed through transduction of
autologous T cells expressing two CARs targeting CD19 and CD22
by Autolus Therapeutics. A multi-center, phase I/II study has been
completed to explore the safety and efficacy in pediatric and young
adult patients with B-cell ALL (AMELIA trial, NCT03289455) (42).
In the phase I dose-escalation study, dose-limiting toxicities, severe
CRS, and neurotoxicity were not reported, which demonstrated a
favorable safety profile for clinical application. 13 of 15 patients
achieved CR or CR with incomplete bone marrow recovery after
AUTO3 infusion for one month. The OS and EFS rates were 60%
and 32%, respectively. Consequently, FDA has granted orphan drug
designation of AUTO3 for ALL treatment. Nevertheless,
unavailability of long-term persistence of AUTO3 in patients
resulted in disease relapse. Hence, prolongation of CAR T cell
persistence are needed to fully fulfill the therapeutic potential of dual
targeting CAR T cell in B-cell ALL. Another phase I trial
(NCT03448393) sponsored by National Cancer Institute to
evaluate the safety and efficiency of dual CD19/CD22 targeting
CAR T cell therapy is undergoing.

CTA101, also called CRISPR-edited allogeneic off-the-shelf
CD19/CD22 bispecific CAR T cells, was composed of scFV
targeting CD19 and CD22, 4-1BB costimulatory domain, and
CRISPR/Cas9-disrupted TRAC region to avoid host immune-
mediated rejection (88). The phase I cl inical tr ial
(NCT04227015) to evaluate the safety and efficiency of a single
dose of CTA101 in R/R B-cell ALL patients aged from 3 to 70
years is ongoing.

In addition to CD19/CD22 bispecific CAR T cells, sequential
infusion of CD19CAR T and CD22CAR T cells are investigated
in a phase I trial in pediatric patients with R/R B-cell ALL
(ChiCTR-OIB-17013670). 17 of the 20 patients remained CR at
the study end point and only 2 patients relapsed caused by loss of
CD19, indicating that the risk of relapse associated with antigen
escape was greatly reduced (43).

Strategies to Reduce Toxicities of CAR
T Cell Therapy
Despite the huge clinical success, CAR T cell therapy-related
severe toxicities such as CRS, cannot be neglected and are
remained to be resolved (33, 89, 90). For example, around 50%
Frontiers in Immunology | www.frontiersin.org 6
of children and young adult patients treated with tisagenlecleucel
for R/R B-cell ALL had ≥ Grade 3 CRS (33, 91), 24% of adult
patients infused with brexucabtagene autoleucel had ≥ Grade 3
CRS (36), while lower incidence of ≥ Grade 3 CRS, 8.6% and
2.9% respectively, was observed after CD22-CART cell treatment
(39, 41). Moreover, no ≥ Grade 3 CRS was observed in pediatric
patients with R/R B-cell ALL receiving AUTO3, which is in
concordance with the modest elevation of cytokines production
(42). Finally, extensive studies to ameliorate CAR T cell related
toxicities are ongoing, such as altering CAR structure, modifying
CAR transduced T cells, and inserting CAR “off-switches” (70,
92, 93). Optimizing CAR binding affinity by developing a new
CD19 scFV with a lower affinity than FMC63 could be a useful
approach to enhance CAR T cell expansion and persistence, and
alleviate toxicity in the pediatric R/R B-cell ALL as illustrated in
the CARPALL clinical trial (NCT02443831) (44).

Strategies to Increase the Efficacy of CAR
T Cell Therapy
Besides reducing toxicities of CAR T cell therapy, attempts have
been made to increase the efficacy of CAR T cell therapy. As
mentioned above, targeting two or more antigens by dual CD19
and CD22 targeting CAR T cells or sequential infusion of
CD19CAR T and CD22CAR T cells broadened the spectrum
of targets, decreased the risk of antigen negative relapse and
enhanced the potential therapeutic efficiency. Moreover,
tisagenlecleucel and other CAR T cell therapies for pediatric B-
cell ALL were commonly composed of the costimulatory
domains with CD28 and/or 4-1BB (Table 1), which were the
second and third generation CARs (94). CAR T cells were further
optimized to secrete cytokines or express cytokine receptors to
generate the fourth and fifth generation CARs. In a relapsed
patient with B-cell ALL after treatment with CD19CAR and
CD22CAR T cell therapy, autologous murine CD19CAR T cells
expressing membrane-bound IL-15 achieved CR for five months
(95). CD19CAR T cells encoded with interleukin 2 receptor b-
chain and a STAT3-binding tyrosine-X-X-glutamine motif in the
cytoplasmic domain showed grater antitumor effects and
superior duration than CAR T cells without this structure (96).
Besides, upregulation of TIM-3 increased the risk of relapse in
pediatric B-cell ALL (97). Hence, TIM-3-CD28 fusion proteins
were combined with the first and second CD19CAR T cells to
enhance the proliferation capacity of T cells and improve the
functionality of conventional CAR T cells by turning inhibition
into activation of T cells (98, 99). Relapse due to the short
persistence of CAR T cells and resistance to same murine CAR T
cell therapy were attributed to immunogenicity caused by
murine scFv (37, 38). 68% of the pediatric and adult patients
after failure of murine CD19CAR T cell therapy achieved CR
treated with 4-1BB based humanized CD19 CAR-T cells (ChiCT
R1900 024456) (100). In brief, various strategies have been
developed to increase the efficacy of CAR T cell therapy and
warranted to be applied in the treatment of pediatric B-cell ALL.

Combination Therapy
Numerous studies have demonstrated that immune responses by
maintaining negative regulatory pathways via PD-1/PD-L1 axis
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played a significant role in the immune escape, thus leading to
growth and spread of malignant tumors (101, 102). In this
regard, blocking PD-1/PD-L1 pathway has aroused great
success as an effective therapeutic approach in a variety of
cancers. Significantly, there is a high expression level of PD-1
on the surface of T cells in B-cell ALL pediatric patients, which is
associated with an inferior prognosis (103). Inspired by the
encouraging therapeutic outcomes of blocking the PD-1/PD-L1
pathway in the treatment of solid tumors, researchers nowadays
have tried to integrate PD-1/PD-L1 inhibitors into the treatment
course of hematological malignancy (104, 105). Pembrolizumab
is a humanized anti-PD-1 monoclonal antibody with a wide
range of indications (106). However, the phase II study of single-
agent pembrolizumab in treating minimal residual disease
(MRD) in adults with ALL was terminated due to lack of
efficacy despite good tolerability (NCT02767934) (107).
Immunosuppression due to chemotherapy prior treatment and
relatively low mutational rate may lead to the treatment failure of
targeting PD-1/PD-L1 pathway (107). That said, monotherapy
by blocking PD-1/PD-L1 signaling pathway seems not a viable
therapeutic method for the treatment of ALL. Nevertheless,
combinatory treatment of immune checkpoint inhibitors
including pembrolizumab and nivolumab with blinatumomab
for B-cell ALL in adults and pediatrics are undergoing clinical
trials (NCT03160079 and NCT03512405 and NCT04546399),
which may prove the potential advantage of anti PD-1 antibody
as an adjunct or rescue strategy. Besides immune checkpoint
inhibitors, blinatumomab in combination of with chemotherapy
in patients with newly diagnosed B-lymphoblastic leukemia aged
365 days to 31 years are being investigated (NCT03914625).

Other Emerging T-Cell
Based Immunotherapies
Donor-derived tumor associated antigen-specific T cells termed
TAA-T (108), reported by Kinoshita and colleges, is capable of
targeting three overexpressed and immunogenic tumor
associated antigens WT1, PRAME and survivn in most
hematologic malignancies (109–111). A phase I clinical is
currently ongoing at Children’s National and Johns Hopkins
Hospitals and Johns Hopkins University to evaluate the safety of
TAA-T for the treatment of very high-risk hematopoietic
malignancies (NCT02203903). Preliminary results showed that
none of the included acute myeloid leukemia (AML) and ALL
patients developed CRS or neurotoxicity, and only one patient
developed grade 3 graft-versus-host disease (GVHD), which
demonstrated the good safety of TAA-T (108). Moreover,
persist remissions were observed in high-risk and relapsed
patients (108). Later phase of the study is required to
determine long-term clinical disease outcomes.

Adoptive cell therapy using T-cell receptor (TCR)-engineered
T cells represents another novel and potential strategy for cancer
treatment (112–114). ET190L1-AbTCR is one of TCR-T cell
therapies generated by replacing the a and b chains of the TCR
in the antigen recognition domain with an anti-CD19 antibody-
derived Fab fragment (115). Compared with the clinically
commonly used CD19CAR T cells with a CD28 or 4-1BB
Frontiers in Immunology | www.frontiersin.org 7
costimulatory subunit, ET190L1-AbTCR activated cytotoxic T-
cell responses, but showed less cytokine release in xenograft
mouse models of primary B-cell ALL.

B-cell activating factor receptor (BAFF-R) is a B-lineage marker
expressed almost exclusively on B cells (116, 117), making it an ideal
target for immunotherapy. BAFF-R-CAR T cells with a 4-1BB
costimulatory signaling domain demonstrated therapeutic effects
against CD19 negative B-cell ALL in vitro and in vivo (117), and
are currently undergoing clinical trials for the treatment of adult ALL
(NCT04690595). Moreover, dual CD19/BAFF-R CAR T cells were
developed and exhibited anti-ALL activity in vivo, supporting clinical
translation of BAFF-R/CD19 dual CAR T cells to treat ALL (118).
MACROPHAGE-BASED IMMUNOTHERAPY

Targeting CD47/SIRPa Pathway
Macrophages are important components ofmononuclear phagocytic
system, and generates a “don’t eat me” signal to suppresses
phagocytosis by expressing a signal regulatory protein alpha
(SIRPa) that interacts with CD47 (CD47/SIRPa axis), thus
contributing to the development and progression of most cancers
(119–121). Therefore, the CD47/SIRPa axis has been identified as an
essential and promising immune checkpoint in the homeostatic
clearance by macrophages. Generally, CD47 is overexpressed on the
surface of B-cell ALL cells and recognized as an inferior prognosis
marker associated with worse outcomes in pediatric ALL patients,
such as treatment failure and even death (122, 123). Additionally, the
anti-CD47 antibody and anti-SIRPa antibody both increased
phagocytosis of ALL cells in vitro, suggesting that blockade of the
CD47/SIRPa signaling enhanced phagocytosis (123). In vivo, anti-
CD47 antibody inhibited tumor engraftment and induced remission
in ALL engrafted mice (123). These data provided pre-clinical
evidence for disrupting CD47/SIRPa signaling as a potential
therapy for ALL.

TTI-621 is a novel soluble fusion protein composed of human
SIRPa and IgG1, and exerts its effect by blocking CD47/SIRPa
pathway (124) (Figure 1). Recently, a phase Ia/Ib dose escalation
and expansion trial of TTI-621 in R/R hematologic malignancies
and selected solid tumors is ongoing (NCT02663518). TTI-621
was well-tolerated in the dose escalation phase. The expansion
phase conducted in R/R NHL patients has been completed and
demonstrated a sound efficacy. The evaluation of clinical efficacy
and safety of TTI-621 in ALL patients is still ongoing.

Additionally, several strategies have been proposed and are being
intensively explored, for example, anti-CD47 antibody (124–128),
anti-SIRPa antibody (129), bi-specific antibodies to CD47 or SIRPa
or other molecules (129), SIRPa-related fusion proteins (130), and
others (131), to improve therapeutic efficacy during targeting CD47/
SIRPa pathway while overcome on-target/off-tumor effects (132,
133). A large number of clinical trials related to cutting off the
CD47/SIRPa pathway are currently undergoing at various stages,
which are centered on solid tumors and hematological malignancies
such as NHL and AML (132). The research on blocking the CD47/
SIRPa pathway in pediatric ALL is lagging behind and is
undergoing preclinical study.
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Notably, targeting CD47 induced hematotoxicity including
anemia and thrombocytopenia due to the off-target effect on the
blocking of CD47 expressed on surface of platelets and erythrocytes
(134). Designing and developing SIRPa fusion proteins could
diminish the hematotoxicity, thereby safeguarding the clinical
safety. For example, TTI-621 exhibited minimal impact on
human erythrocytes, resulting in a lower incidence of anemia
than that reported in a phase I study of combinatory treatment of
humanized anti-CD47 antibody and rituximab (13% vs 41%) (124,
135). Moreover, thrombocytopenia associated with TTI-621 was
transient and reversible, and no bleeding events were observed in
the clinical trials (136).

NK CELL-BASED IMMUNOTHERAPY

NKs derived from lymphocyte cell lineage were discovered to be
critical to the innate immunity (137). NKs are composed of two
subtypes, i.e., CD3-/CD56dim/CD16+ NKs and CD3-/CD56bright/
CD16- NKs (138). CD3-/CD56dim/CD16+ NKs display strong
cytotoxic activity on targeted cells by perforin and granzyme B in
peripheral blood, and CD3-/CD56bright/CD16- NKs produce and
release cytokines such as IFN-g and TNF-a in response cytokines
stimulation in lymphoid tissues (139, 140). Mounting studies
have demonstrated the innate lymphoid cells as the first line of
defense by exerting cytotoxicity against diverse tumor cell types
(141, 142), especially in the field of hematologic malignancies
(143). The presence of NK cells in bone marrow conferred a
better response to chemotherapy and prognosis, and has a high
chance of efficacy in pediatric patients with ALL (144, 145).
Hence, different artificial engagers have been equipped to
selectively redirect NK cells towards tumor cells. In vitro,
NKp46/CD16A/CD19-NKCE, a NK cell engager with CD16A
on the surface of NKs binding NKp46 and CD19 highly
expressed on the surface of B-cell ALL cells, enhanced the
activation of NKs and promoted NK cell-mediated lytic effects
against pediatric BCP ALL (Figure 1) (146).

Moreover, immunotherapy based on NKs displayed several
advantages (147, 148). As the important immune system
components, NKs exerted the cytotoxicity upon recognizing
specific patterns without prior antigen sensitization. CAR
modified NK cells (CAR NKs) are qualified for simultaneously
improving efficacy and controlling adverse effects including CRS,
neurotoxicity, and GVHD, which offer an alternative option to
CAR-T cells (149, 150). To date, two phase I studies to determine
the maximum tolerated dose of genetically modified
haploidentical NKs infusions targeting CD19 to treat B-cell
ALL have been completed in St. Jude Children’s Research
Hospital (NCT00995137 and NCT01974479). However, the
results have not been disclosed.

CONCLUSION AND
FUTURE PERSPECTIVES

Immunotherapy represents a novel and promising therapeutic
weapon against pediatric B-cell ALL. As alluded to above, T cell
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engagers and CAR T cell therapies were successful in treating
pediatric R/R B-cell ALL. Currently, blinatumomab has been
approved for treating R/R BCP ALL in pediatrics and is further
investigated in removing MRD as post-reinduction consolidation
treatment, which is believed to be more efficacious and less toxic
than chemotherapy. In addition, the approval of tisagenlecleucel, a
typical representative of CAR T cell therapies, provided us an
alteration when none was available for children and young adults
with R/R B-cell ALL, although a large proportion of patients
suffered relapse with poor outcomes. However, monotherapy by
immune checkpoint inhibitors targeting PD-1/PD-L1 pathway
achieved poor clinical efficiency. Immune check inhibitors
including anti-PD-1 and anti-CD47 antibodies as an adjunct
strategy in pediatric B-cell ALL required to be verified in the
further study and may be worth awaiting. Moreover, strategies
targeting CD47/SIRPa pathway and CAR-NKs demonstrated
potential for treating pediatric ALL and were evaluated in
clinical trials.

Since native macrophages are critical effectors and regulators
of the innate immune system, CAR macrophages can directly
target the desired cancer cells and has been developed to
phagocytose human solid tumor cells (151, 152). Nevertheless,
treatment of pediatric ALL by using this promising
immunotherapy is absent (153). Neoantigen, a new mutation-
derived protein in tumor cells, is a non-normal cellular product
and has proven to be a breakthrough for therapeutic immune
targets (154–157). Immunotherapy by harnessing neoepitope-
CD8+ T cells to recognize and respond to the neoantigens in
pediatric patients with ALL provided us an alternative treatment
option (158).

Despite all these advances, the resistance and toxicity should
be taken into consideration and further studies should focus on
the development of new agents guided to ameliorate some of the
toxicities and prevent the recurrence. Variable mechanisms
including the downregulation/loss of antigens and antigen
escape through lineage switch influence responses to
immunotherapy result in resistance or relapse. The relationship
between genetic and cytogenetic alterations and immunotherapy
responses are warranted to be further explored in the future.
Moreover, novel potential targets such as cell surface antigens,
kinases and signaling pathways should be consistently identified
and explored. On the other hand, blocking a single cell surface
antigen or pathway of B-cell ALL may lead to drug resistance. It
is anticipated that immunotherapy targeting multiple antigens
such as trispecific CD3/CD19/CD20 T-cell engagers and dual
CD19 and CD22 targeting CAR T cell therapy will not only
overcome the challenge of antigen modulation but also
dramatically enhance therapeutic efficacy.

To sum up, the successful outcome of immunotherapy from
clinical trials as described in our context has proved the effectiveness
of immunotherapy in the treatment of pediatric B-cell ALL and lead
to dramatic improvements in outcome for R/R subtype. We believe
that the integration and expansion of these therapeutics into
frontline therapy and the discovery of novel anti-multiple antigens
modifications will further augment efficacy and reduce toxicity, thus
improving long-term outcomes in pediatric B-cell ALL patients.
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