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Cerebral cavernous malformation (CCM) is a type of vascular anomaly that arises due to
the dyshomeostasis of brain capillary networks. In the past two decades, many advances
have been made in this research field. Notably, as a more reasonable current view, the
CCM lesions should be attributed to the results of a great number of additional events
related to the homeostasis disorder of the endothelial cell. Indeed, one of the most
fascinating concerns in the research field is the inflammatory perturbation in the immune
microenvironment, which would affect the disease progression as well as the patients’
outcomes. In this work, we focused on this topic, and underlined the immune-related
factors’ contribution to the CCM pathologic progression.

Keywords: cerebral cavernous malformations, vascular anomalies, endothelial cell homeostasis, inflammation,
immune microenvironment
GENERAL DESCRIPTION OF CEREBRAL CAVERNOUS
MALFORMATION (CCM)

Cerebral cavernous malformation (CCM) is a type of vascular anomaly that arises due to the defects
of brain capillary networks in the central nervous system (CNS). Familial or sporadic gene
mutations are widely accepted as the molecular basis of CCM (1–3). Tightly packed by the
fragile vessel walls, these lesions exist dynamically. The weakness of tight junction connection and
the endothelial proliferation are considered to be the main pathologies (4–6). As a consequence,
flowing blood is prone to leak into the surrounding tissue through these abnormal structures.
Rupture and acute bleeding can be more serious results combined with a range of complications (7–
10). Evidence has described that familial and sporadic CCM patients suffered annual rupture risks of
4.3-6.5% and 0.4-3.1%, respectively, which occurred in the cerebral parenchyma, although rarely
resulted in subarachnoid hemorrhage (11). Meanwhile, hemorrhagic stroke is the primary cause of
disability in patients. All CCMs are thought to harbor occult bleeding, as MRI revealed that CCMs
were often accompanied by hemosiderin halo signals (11–14). Moreover, although different clinical
studies documented various annual symptomatic hemorrhage rates, natural history studies have
org June 2022 | Volume 13 | Article 9222811
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identified that, both in familial and sporadic patients, past
hemorrhage history is a significant risk factor for rebleeding
and subsequent poor sequalae (12–16).

Although it is unlikely to become impossibly huge in the
short-term, like tumors, this benign vascular disease could cause
a series of neurological symptoms, including seizures, which is
one of the most common reasons for hospital visit, non-specific
headaches, and even neurological sensory and motor function
deficits (17, 18). Once these symptoms appear, the life quality of
patients can be greatly affected (7, 9, 15, 18).

For decades, progressive understanding of this vascular
anomaly’s pathogenesis has been reported from clinical and
basic research (19). Notably, the current view of the CCMs
should be regarded as the results of the intersection of
numerous factors, such as immune, hemodynamics, and
angiogenesis, which formed a complex network of the disease
pathology (20). Thus, we reviewed the major breakthroughs in
this field in recent years and focused on the potential
mechanisms between immune and the whole disease process,
involving occurrence, progression, and complications, aiming to
provide promising ideas for the exploration of clinical trials and
therapeutic targets.
GENETIC MUTATIONS ARE THE
MOLECULAR BASIS

To date, it is widely accepted that the initial triggers of both
familial and sporadic CCM formation have been attributed to
genetic mutations. Benefited from advances in multidisciplinary
development and technological innovation, mutated genes can
be more comprehensively supplemented. In line with this, the
signaling pathways’ regulation from the molecular level could
also be summarized in a more detailed state.

Genetic Mutations and CCM Pathogenesis
CCM diseases can be broadly divided into sporadic and familial
diseases. Sporadic CCMs, which accounted for the majority (80~
85%), usually presented as isolated lesions. Familial CCMs
(15~20%) were followed by an autosomal dominant
inheritance pattern and usually presented with multiple lesions
(1, 19, 21, 22). The loss of function (LOF) mutations of CCM1
(KRIT1, Krev interaction trapped protein 1) (23–27), CCM2
(MGC6407, encoding a protein named malcavernin) (28–33),
and CCM3 (PDCD10, Programmed cell death protein 10) (34–
36) have been thought to be the culprits of familial CCM. Once
the LOF germline mutation occurs and leads to endothelial cell
dysfunction, it may cause the occurrence of CCMs. Recently, the
‘two-hit’ hypothesis in CCM pathophysiology has been strongly
suggested to explain some clinical phenomena. Accordingly, the
‘first hit’ could be conceptualized as germline or somatic
mutation causing one allele loss in all cells. And the ‘second
hit’ could be the other allele’s somatic mutation occurring in just
some cells, which can happen at an indeterminate point and
trigger the initiation of the lesions. However, accumulated
Frontiers in Immunology | www.frontiersin.org 2
evidence in animal models clearly demonstrated that the
homozygous deletion of a CCM gene is not sufficient to cause
CCM disease, leading us to think that additional determinants
are required for the lesion occurrence, including immunologic
and inflammatory events.

In one of our recent works, we first revealed the novel somatic
activation mutations, also called gain of function (GOF)
mutation, in the MAP3K3 and PIK3CA genes in most sporadic
CMs (cavernous malformations) (1). Through whole-exon
sequencing (WES) and ddPCR (droplet digital PCR) detection,
we identified a total of 73 sporadic patients with somatic
missense variants in MAP3K3 (NM_002401.3, c.1323C>G,
p.Ile441Met) and PIK3CA (NM_006218.2, in exon 7:
c.1258T>C,p.Cys420Arg; in exon 9: c.1624G>A, p.Glu542Lys,
c . 1 6 3 3 G > A , p . G l u 5 4 5 L y s ; a n d i n e x o n 2 0 :
c.3140A>Gp.His1047Arg) in our 81 patients’ cohort(90.1%).
Interestingly, superposition mutations of both MAP3K3 and
PIK3CA were also found in 14 (19.2%) of the 73 sporadic
patients. These results have also been demonstrated in recently
published studies (21, 37), which undoubtedly opened a new
chapter for the CCM research field. However, considering the
nature of sporadic CM single lesions and its non-genetic
tendency, and the low mutation detection rate in previous
studies, the existence of other undiscovered somatic mutations
cannot be ruled out.

Molecular Pathology and Signaling
Pathway Mechanism
In general, the pathological features would reveal the essence of
disease, including abnormality of endothelial cell tight junctions,
proliferation of glia and endothelial cells, and even the alteration
in the cytoskeleton and cell volume (4, 22, 35). Typically, CCM
lesions are mulberula-like clusters of enlarged endovascular
lumens. Surrounded by segmental layered basal membrane and
gliotic tissue, there is little or no infiltration into the brain
parenchyma (Figure 1). An impaired endothelial barrier would
facilitate the infiltration of immune cells, which would
potentially accelerate the lesion’s progression by further
stimulating angiogenesis and gliogenesis (20).

Molecular signaling pathways might be the focus of non-
surgical management studies, because once the pharmacological
interventions work, they may be tied to these molecular targets
(19, 38). Thorough summaries about signaling pathways have
been made in recent works, and the classic pathways and various
upstream inputs and downstream effectors implicated in CCM
signaling have also been involved (19). This shall not be repeated
in too much detail in this work, but several points should be
noted. Firstly, since the signaling pathways converged in a large
network, changes in any one molecule can affect the entire
architecture. Thus, a better understanding of CCM
pathomechanism would be based on a comprehensive
perspective, instead of the one - sided tip. Secondly, distinct
mutation-related molecular pathways may feature differently in
the pathological process (19). Generally, MEKK3 (mitogen-
activated protein kinase kinase kinase 3) activation might be
one of the core targets, which could help to explain why both the
June 2022 | Volume 13 | Article 922281
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LOF mutation in CCM genes and the GOF mutation inMAP3K3
are sufficient to initiate CCM formation (32, 39–41).

However, unlike CCM complex or MAP3K3 mutation, the
PIK3CA mutation has been shown to be associated with the
proliferation of lesions. PIK3CA mutation was previously
reported for venous and lymphatic malformations (42, 43),
and PI3K/Akt/mTOR pathway is a critical downstream target
which exacerbates the lesion growth (4, 44). Strong synergy was
observed when both CCM complex LOF mutations and PIK3CA
GOF mutations co-existed (4). Thirdly, inflammatory signal is
one of the major inputs in endothelial cells that affected CCM
disease pathogenesis. As TLR4 (toll-like receptor 4) receptors
and downstreamMEKK3-KLF2/4 signaling activated, the growth
of CCM lesions in the brain were observed to accelerate (45).
These unexpected findings have reminded us that non-genetic
factors involved in the immune responses and inflammatory
contexts could also play important roles in regulating these
molecular networks (45, 46).
Correlations Between Genotypes and
Phenotypes
Different genotypes of mutations may be important factors
leading to different clinical phenotypes. In familial CCMs,
different mutated genes are thought to be associated with
several clinical features. It was reported that there is a certain
correlation between KRIT1 mutation and cutaneous venous
malformations (47–50). Individuals with CCM2 mutations
were more likely to be asymptomatic and have fewer lesions
(51–53). Meanwhile, due to the significant roles of PDCD10 in
the maintenance of homeostasis of a wide range of cells, the loss
Frontiers in Immunology | www.frontiersin.org 3
of gut epithelial PDCD10 may result in disruption of the colonic
mucosal barrier, thus these individuals may be more aggressively
affected by CCM diseases (54–57). In the somatic mutations,
different genotypes or loci may also be associated with specific
clinical phenotypes. For example, our preliminary results
suggested that PIK3CA mutations may be associated with a
higher risk of significant bleeding. Although the exact
differences are not yet known, the revealing of the relationship
between different mutation genotypes and clinical manifestations
is an extremely interesting study, which may even guide the
search for different therapeutic targets.

Strikingly, although advanced insights into the innovative
knowledge of the CCM genes’ pathophysiological functions are
emerging, the highly unpredictable clinical behaviors in
individual patients still present a major challenge in clinical
and basic research. Accumulated evidence clearly illustrated that,
at least in a few cases, gene mutations alone are not sufficient to
trigger CCM onset and progression (58–60). Moreover, it is also
important that the highly variable severity of clinical symptoms
is common, even among familial patients who carried the same
genetic mutation. It has been found that in monozygotic twins
who suffered the same germline mutation, exact similarity of the
disease onset and clinical severity could be observed, in contrast
to the different clinical severity of non-twin siblings in wide
intrafamily (61). Notably, sometimes many suffered individuals
could be clinically asymptomatic for a long time or even for their
entire life. Once symptoms appear, there could be disastrous
consequences, and the healthy quality of life could be seriously
affected. Thus, what the initiator from the existence of lesions to
the appearance of clinical symptoms is, and what causes the same
initial encounter but different clinical outcomes, are interesting
FIGURE 1 | Genetic mutation might be the initial motivation, and the inflammatory perturbation in the immune microenvironment may drive the progression of the
disease. (A) On the macro level, our bodies are constantly exposed to an antigenic environment, which could be one of the synergistic agents leading to CCM
formation. (B) On the micro level, CCM lesions exist in the immune microenvironment. The immune microenvironment characterized by inflammation may aggravate
the development of the typical pathology, meanwhile, repeated microbleeds could also exacerbate the inflammatory infiltration of this pathological background.
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issues that we are trying to solve. The perspectives from the
immune and inflammatory events described in the next part may
point out a new direction for our thinking.
IMMUNE AND INFLAMMATORY
MECHANISMS FOR CCM FORMATION

The CCM lesions should be regarded as the results of a great
number of additional events. Indeed, inflammatory
perturbations associated with the immune microenvironment
might be one of the most fascinating concerns (62). Recent study
results allowed the identification of major consequences and
underlined the immune-related factors’ contribution to the CCM
pathologic progression. In this part, we mainly followed these
insights to draw the outline of the relationship between the
CCMs and related immune and inflammatory events.
The Influence of Microbiome Is an
Interesting Phenomenon
The microbiome has become a hot research topic in recent years,
and has been identified to be associated with many diseases.
However, the potential mechanisms through which it contributes
to disease pathogenesis are still unclear. The works of Kahn et al.
are particularly interesting and significant (45, 63). Firstly, the
resistance to CCM formation was observed accidentally in mouse
model of C57BL/6J background, which was previously identified
as having 100% CCM penetrance. Then they demonstrated that,
to stimulate the CCM formation, the bacterial microbiome is one
of the primary sources. Meanwhile, they also revealed that, even
the qualitative differences in the gut microbiome are small, they
could have marked effects on the process of CCM development
in animal models (45). Furthermore, the key role of TLR4in
regulat ing inflammatory pathways in the immune
microenvironment was highlighted. As their results suggested,
the CCM formation would be driven by the activation of TLR4
receptors in endothelial cells, and the gut bacterial microbiome
might be the leading actor (45). Given that the gut-brain axis
might be a potential target, therapeutic exploration is being
attempted. Obviously, the CCM formation could be inhibited
in mice group which received pharmacological TLR4 blocking
intervention. Similarly, the susceptibility could also be attenuated
in germ-free mice, as well as in antibiotic-treated mice (63). In
line with this, factors that affected the gut epithelial barrier
homeostasis, involving chemical and genetic disruptions, and
even colonic mucus alterations, can precipitate CCM
development. As they revealed, genetic depletion of PDCD10
could impair gut barrier homeostasis, then accelerating the CCM
formation (63). The interesting results of this study are
fascinating, inspiring further studies to be continued (64, 65).
In this light, it is reasonable to think that the effects of individual
microbiomes may help to explain clinical variability. To test this
hypothesis and determine whether the manipulation of gut
microbiome-host interactions is a viable therapeutic strategy,
Frontiers in Immunology | www.frontiersin.org 4
future studies are urgently needed. In addition, it is necessary to
reconsider whether strategies such as protection of
gastrointestinal mucosal and prevention of gastrointestinal
infection should be included in the clinical management of
CCM patients.
Cumulative Direct Evidence Established
the Role of Immunization
To identify what immune-related genetic modifiers would be
associated with disease progression and severity, excellent
research has been performed in recent decades. The Awad’s
Team made an outstanding contribution to this field. Firstly, the
exploration of the relationship between different gene expressions
and clinical manifestations laid the basis for the gene spectrum of
CCM research, which was also the origin of the discovery of
immune-related molecules (52, 66, 67). Then the concepts and
inflammation hypothesis in the pathogenesis of CCMs were first
proposed, with laboratory investigation results (58, 68). By
assessing the infiltrated immune cells and the immunoglobulin
isotypes predominant in CCM lesions, they systematically
described the immune responses in human CCMs. In addition,
the evidence of co-localized IgG and complement membrane
attack complexes in CCM lesions were reported (69). Then, the
in-situ B-cell clonal expansion was identified, indicating antigenic
stimulation in CCMs (69). Given that plasma cell-mediated
immunity might be one contributory factor to CCM lesion, the
evaluation of the effects of the immune response inhibition on the
CCM lesions’ formation and maturation were done (70). Evidence
suggested that B-cell depletion would have therapeutic benefits for
CCM disease. Meanwhile, these findings also remind us that these
biologics could be added into the list as potential therapeutic
agents (70).

Recent results take this research to a new level (71). By using
laser capture micro-dissection, plasma cells from CCM lesions
were obtained, and mAbs (monoclonal antibody) were
subsequently generated. Then antigens targeted by resident
plasma cells in CCMs were characterized via detailed
experiments and analysis (71). Despite the limitation of small
sample size and the uncertainty of whether the mAbs would react
with other antibodies, these data have given us a novel insight
into the immunopathogenesis of CCM. In another piece of
research, the infiltration of different subsets of leukocytes in
CCM was revealed (72). Through RNA-seq analysis, increased
inflammation-related genes were observed in the endothelial
cells from CCM mouse model (72). Notably, the cytokines
which perform the roles of inflammatory and immune cells’
recruitment, involving proinflammatory cytokines, chemokines,
and adhesion molecules, are closely related to the differentially
expressed genes. More importantly, neutrophils were found to
have infiltrated into the CCM lesions, in the way of neutrophil
extracellular traps formation (72). These findings were also
validated in clinical specimens, which undoubtedly opened up
new research ideas for researchers in this study field.

Advances in sequencing techniques and multi-omics analysis
made it possible to access a more comprehensive understanding
June 2022 | Volume 13 | Article 922281
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of the genetics and modification molecules of CCM. By using
gene microarray technology, 78 abnormal expression genes
related to inflammatory response in CCM lesions were
observed, including 13 overexpressed immunoglobulin genes
(66). Compared with control samples, probe sets revealed an
up-regulation of 10 Ig genes and a distinct allele of the major
histocompatibility complex in CCM samples, providing potential
evidence for a characterized immune background in the CCM
lesions (66). Furthermore, polymorphisms in genes of the
immune-inflammatory response were also proven to be
correlated with the severity of CCM disease (59, 73). Though
further studies in larger sample sizes are needed, these
results primarily suggested that immune-related factors might
be potential predictors for phenotype variability and
disease severity.

The identification of the accumulated immunologic cells
could also contribute to the direct evidence. In a previous in
vitro study, the infiltration of macrophage inflammatory cells in
and around CCM lesions was reported, especially under the
reaction of acute hemorrhage (74). In mouse models,
macrophages were also proven in the CCM lesions by
histological analysis (75). Similarly , comprehensive
transcriptome analysis also provided strong support for the
evidence of immune microenvironment in CCM pathology.
Through the analysis of the immune microenvironment, it was
demonstrated that nearly 30% of the total cell number were
accounted by immune cells, and macrophages, NK cells,
monocytes, as well as B cells and T cells were all included (76–
78). Microglia, as resident immune cells of the central nervous
system, have also attracted much attention (79). The microglia
activation within the perilesional tissue were thought to mediate
hematoma resolution (80, 81). Meanwhile, microglia are also
thought to be involved in the pathological processes associated
with epilepsy (82, 83).

The other thing that could also link CCM to the immune
response is inflammatory susceptibility. Research in animal
models have revealed that the anti-inflammatory threshold was
decreased when the patient suffered CCM diseases (84). Thus,
there is reason to believe that an enhanced inflammatory response
could also be presented in CCM individuals. Or to put it another
way, patients with CCMs have an increased susceptibility to
inflammation. As low fluid shear stress could be one of the
characteristics of CCM lesions, it is reasonable to consider
whether these conditions could contribute to the increased
susceptibility to inflammation and immune responses (85).
Evidence from clinical blood samples is also suggestive. In a
clinical study, it was suggested that inflammatory factors in
plasma samples may be associated with clinical symptoms, such
as epilepsy, a common hospital admitted complaint (86).

Taken together, all these results suggested an intrinsic
immune response in CCMs. In addition, modifiers associated
with genetic and epigenetic aspects determined inter-individual
differences in susceptibility to stressful conditions. More detailed
mechanisms should be further characterized, and potential
therapeutic targets remain to be identified.
Frontiers in Immunology | www.frontiersin.org 5
IMMUNE AND INFLAMMATORY
MECHANISMS FOR COMPLICATIONS

Recurrent microbleeds, as we described previously, may be one
of the most common complications of CCM (11, 12, 16, 87–90).
Although the potential roles of the immune response in this
disease have not been illustrated clearly, the inflammatory
microenvironment following hemorrhagic events has been
noted (20, 58, 91). The thrombosis and leaky blood-brain
barrier would lead to the formation of a unique antigenic
milieu for CCM lesions. On the one hand, it may regulate
angiogenesis, leading to further progression of lesions. On the
other hand, the risk of rebleeding would be further increased.
Evidence from clinical samples and neuroimages defined the
immune microenvironment in the characteristic vascular
phenotype (58, 92, 93). Clearly, repeated hemorrhagic events
could be partially regarded as the ‘trigger’ of the immune
response. The defected blood brain barrier might be
responsible for repeated leakages, and segregated caverns at
various tissue stages were accumulated with chronic blood
deposition and degradation products (94). The typical
pathologic structures were fi l led with immune and
inflammatory factors. Consequently, the prognosis, whether
benign or malignant, is the result of immunological struggle.

The relationship between hemorrhagic events and
inflammatory responses has been well described in multiple
cerebrovascular anomalies, including aneurysm (95, 96),
cerebral arteriovenous malformation (97), cerebral amyloid
angiopathy (98, 99), and ischemic cerebrovascular disorders
(100, 101). Notably, acute brain hemorrhages may not have an
opportunity to lead a similar milieu with the longstanding
deposition of blood products, because it would be absorbed
over a normal length of time. The recurrent and chronic
bleeding might be a unique characterization of the CCM
lesion, and it is the long-term inflammatory cytokines that
may cause further damage to the blood-brain barrier. Anti-
inflammatory treatments seem to be working, by reducing
bleed rate and severity. However, it is not easy to know
whether the inflammation is prior to a hemorrhagic event or if
the inflammatory response is resulted from bleeding.
Interestingly, it is clear that innate inflammatory response
could be presented with CCM, and inflammatory cells could
also be found accumulating around the lesion. Thus, similar
attempts of local immunologic manipulation could be
encouraged to explore the novel therapeutic approaches
for CCMs.

The individual who suffered CCMs was also predisposed to a
lifetime risk of epilepsy. Even a single seizure may greatly
decrease health-related life quality (102, 103). The hemosiderin
deposition has been considered as one of the pathological
backgrounds. The lesion size and location, as well as
supratentorial mass effects, may be considered as risk factors.
However, for whatever reason, the existence of the immune
microenvironment is underpinned, and seizures are undoubtedly
the result of the BBB impairment, molecule accumulation, and
June 2022 | Volume 13 | Article 922281
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neuronal hyperexcitability (104). A very strong causal effect has
been reported in BBB damage and ictal activities’ generating and
sustaining. Distinct mechanisms, involving disequilibrium of
ionic concentrations (105–109), accumulation of serum
proteins (110–112), and metabolic mismatch of amino acids
(113–115), have been confirmed to induce neuronal
hyperexcitability during BBB dysfunction. In turn, seizures
may further exacerbate this vicious cycle of pathological
cascades. For example, given ISF (interstitial fluid) formation
and movement would be interfered with by damaged BBB during
seizures, the expulsion of waste substances that affect neuronal
electrophysiological activity would be impacted (116–118).
Therefore, it is plausible to assume that the characteristic
immune microenvironment of CCM may be the pathological
background of epileptic seizures, and repeated or persistent
seizures can worsen this milieu.

Some studies are even ahead of their time. Evidence from
inflammatory plasma biomarkers, which reflected the seizures
and hemorrhagic activities, were gradually reported (86, 119).
These results predictively implied the association between
inflammatory cytokines and subsequent clinical activities.
Meanwhile, several drugs were clinically tested via a
multivariate network (120–122). Although there are still
hurdles to overcome, these preclinical discoveries and
biomarker validations may contribute to future therapeutic
targets’ exploration.
PROSPECTS AND HYPOTHESIS FOR
FUTURE RESEARCH

Benefited from the convergence of multiple scientific and
medical advances, so much progress has been made in the
CCM research field in the past two decades. Germ line
mutations and/or somatic mutations are the causative factors,
which played major roles in endothelial homeostasis
disequilibrium events. However, the whole pathogenesis is a
continuum involving lesion development and growth. On the
macro level, our bodies are constantly exposed to an antigenic
environment. On the micro, CCM lesions also exist in the
immune microenvironment (Figure 1). Numerous factors
Frontiers in Immunology | www.frontiersin.org 6
involving the microbiome could affect the gut-brain axis
immune system, which would affect the overall immune
state of the body, diversifying the severity of the disease.
Meanwhile, polymorphic gene hubs, especially about the
inflammation-related genes, contributed to CCM development
and progression during the distinct phase. For CCM lesions,
acute and chronic bleeding are both the results and the
beginnings of a new vicious cycle in the context of the immune
microenvironment. Moreover, the CCM pathological context
itself is an immune response site. All the molecular activities
at the micro-immunological levels are closely related to
clinical outcomes.

To sum up, our work emphasized the importance of immune
factors as genetic modifiers, providing insights into the search for
new potential therapeutic targets. Strategies preventing
detrimental immune responses and enhancing beneficial
immune responses are being tested, and these efforts are highly
expected to make targeted and efficient clinical transformation.
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