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Biting the hand that feeds:
Metabolic determinants of cell
fate during infection

Isabella Fraschilla1 and Charles L. Evavold2*

1Program in Immunology, Harvard Medical School, Boston, MA, United States, 2Ragon Institute of
MGH, MIT and Harvard, Cambridge, MA, United States
Metabolic shifts can occur in cells of the innate immune system in response to

microbial infection. Whether these metabolic shifts benefit host defense and

propagation of an immune response appears to be context dependent. In an

arms race, host-adapted microbes and mammalian cells vie for control of

biosynthetic machinery, organelles, and metabolites. Herein, we discuss the

intersection of host metabolism and cell-intrinsic immunity with implications

for cell fate during infection. Sensation ofmicrobial ligands in isolation results in

host metabolic shifts that imbues normal innate immune function, such as

cytokine secretion. However, living microbes have an arsenal of effectors and

strategies to subvert cell-intrinsic immune responses by manipulating host

metabolism. Consequently, host metabolism is monitored as an indicator of

invasion or manipulation by a pathogen, primarily through the actions of guard

proteins and inflammasome pathways. In this review, we frame initiation of

cell-intrinsic immunity in the context of host metabolism to include a

physiologic “Goldilocks zone” of allowable shifts with guard circuits

monitoring wide perturbations away from this zone for the initiation of

innate immune responses. Through comparison of studies with purified

microbial ligands, dead microbes, and live pathogens we may begin to

understand how shifts in metabolism determine the outcome of host-

pathogen interactions.

KEYWORDS

pathogenesis, cell-intrinsic immunity, inflammasome, inflammation, guard theory,
metabolism, host-pathogen arms race, cell fate decisions
Introduction

Survival of microbes and host organisms during infection depends on the acquisition

of limited basic nutrients. Through catabolic and anabolic cellular chemistries that are

broadly termed metabolism, host cells and microbes can generate energy equivalents,

biosynthetic intermediates, macromolecules, and signaling moieties. From an

evolutionary standpoint, plasticity in metabolic inputs and outputs can be viewed as
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beneficial to host and microbial fitness. For example, certain

pathogenic strains of bacteria have evolved unique metabolic

enzymes to outcompete their commensal counterparts for

nutrients and colonize the intestinal lumen (1). While host

and pathogens are under evolutionary pressure to develop

immune strategies and virulence effectors to counter each

other (2), metabolic pathways are also likely under selective

pressure in this arms race. For microbes, metabolic

manipulation is required for replication, dissemination, and

subversion of the immune response (3). On the host side,

metabolic shifts can be induced to modulate cell-intrinsic and

tissue-level host defense (4, 5). Beyond direct detection of

microbial ligands, host metabolic pathways are also monitored

as a central node in pathogen detection, as extreme metabolic

perturbations are a sign of infection and danger to the host (6–

8). Despite the essentiality of bacterial metabolism for

competitive niche occupancy (1), metabolite-responsive gene

programs, particularly those that control virulence factors,

remain unexplored in many pathogens. Bioinformatics-based

mapping of enzymes encoded by bacterial genomes and

consideration of the metabolic signals present at sites of

infection can inform immunologists on previously

underappreciated aspects of pathogenesis and the infective life

cycle of host-adapted microorganisms.

First formulated to describe plant innate immune responses,

the guard protein model of cell-intrinsic immunity posits that

pathogens can be detected through indirectly monitoring for host

manipulation by microbes (7, 9). This defense strategy can be

accomplished by monitoring key cellular pathways to check the

activity of a component of a given pathway. Examples of processes

that are monitored by innate immune pathways for indication of

pathogen invasion include organelle and cytoskeleton

homeostasis, canonical signal transduction pathways, and

metabolic pathways (7). One facet of innate immune cell fate

involves epigenetic states recently termed “trained immunity” that

encapsulates the intersection between pattern recognition receptor

signaling, metabolic rewiring, and epigenetic adaptations to

stimuli that we consider beyond the scope of this review and

have been expertly discussed elsewhere (10–13). In this review, we

will focus on innate immune monitoring of host metabolic

pathways. While pattern recognition receptors (PRRs) can

directly sense microbial products to mediate transcriptional and

post-translational induction of cell-intrinsic immunity (6), we will

consider how direct detection of pathogen associated molecular

patterns (PAMPs) or damage associated molecular patterns

(DAMPs) may influence host metabolism (independent of

transcriptional and translation activities within the cell).

Alternatively, guard circuits monitor for patterns of

pathogenesis as might be ascertained through cellular readouts

of metabolic pathway activity, such as accumulation or depletion

of metabolites. While our current understanding of metabolic

monitoring derives from experiments using select pathogens, we

hypothesize that this feature of innate immunity is generalizable to
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other microbial infections that subvert host metabolism during

pathogenesis. We take a particular interest in metabolic shifts

associated with classically and alternatively activated macrophage

cell fates in dictating pathogen replication and host defense. We

also consider metabolic monitoring from the perspective of

inflammasome signaling as a prototypical cell-intrinsic defense

program. As primarily cytosolic signaling complexes,

inflammasomes mediate cell-intrinsic immunity through various

means with hallmarks including inflammatory caspase activation,

cleavage and release of IL-1b, and membrane pore formation and

cellular lysis mediated by gasdermin D (GSDMD) pores (13–15).

As inflammasome activation can have drastic consequences for

cellular viability and is highly inflammatory locally and

systemically, we suggest that a Goldilocks zone permits

physiologic shifts in metabolic pathways and metabolites that

accompany adaptation to environmental nutrients and stressors.

When pathogens manipulate metabolic outputs for their own

purposes, these deviations from the Goldilocks zone may be

sensed by guard pathways that initiate host defense strategies,

including but not limited to cell-intrinsic immune responses via

inflammasomes (Figure 1).
Monitoring host metabolism as an
innate immune strategy

Here, our first example of a host guarding circuit involves

the metabolic enzyme hexokinase, which normally acts as

commitment step for host glucose metabol ism by

phosphorylating cytosolic pools of glucose to glucose-6-

phosphate (16). Seminal work demonstrated that hexokinase 2

(HK2) also recognizes N-acetyl glucosamine (NAG) sugars

derived from the degradation of Gram-positive bacterial

peptidoglycan (PGN) (17). However, this microbial

recognition inactivates HK2, ultimately resulting in the

activation of the protein NLRP3, which then seeds the

assembly of the NLRP3 inflammasome (Figure 2). Treatment

of macrophages with chemical inhibitors of HK2, such as 2-DG,

were able to recapitulate NLRP3 inflammasome activation (17).

Inflammasome activation in murine bone marrow derived

macrophages (BMDMs) infected with mutant strains of

Staphylococcus aureus with highly labile peptidoglycan (PGN)

also stimulates inflammasome activity as seen by the induction

of GSDMD pore formation and IL-1b secretion that notably

does not proceed to pyroptotic lysis in a process termed

hyperactivation (17–19). Moreover, stimulation of BMDMs

with particulate PGN from various gram-positive bacteria and

direct transfection of purified NAG sugars results in NLRP3

inflammasome activation and phagocyte hyperactivation.

Therefore, we posit that HK acts as a guardee within a

metabolic guard pathway where an undiscovered intermediate

or NLRP3 itself is the guard that activates a cell-intrinsic
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immune response. As glycolysis and productive HK activity have

also been demonstrated to be necessary for NLRP3

inflammasome activity in other contexts (20), more work is

needed to uncover if inflammasomes or other innate immune

pathways survey perturbations from homeostasis whereby guard

proteins are also relatively more active. Analogous paradoxical

control of inflammasome signaling has recently been noted

regarding the role of electron transport chain (ETC) inhibition

in prevention of NLRP3 inflammasome activation that could be

rescued by maintenance of ATP levels through orthogonal

means (21), whereas seminal work suggests that inhibition of

the ETC at complex I and III promote ROS production and

NLRP3 activation (22). ROS may also act at the stage of

transcriptional priming of inflammasome components

including the receptor NLRP3 (23). The observation that

inhibition or activation of the same metabolic pathway can

activate inflammasomes suggests that hexokinase-mediated

metabolism is subject to innate immune surveillance for

deviation from a Goldilocks zone.

Other microbial ligands, such as bacterial cell wall

lipopolysaccharides (LPS) from Gram-negative bacteria, can

s t imu l a t e inflammasome ac t i v a t i on and c e l l u l a r

hyperactivation in human monocytes (24). Whether monocyte

hyperactivation via LPS-treatment depends on deviation from a

metabolic Goldilocks zone is currently unknown, but recent

work has determined that treatment of monocytes with several

concurrent PAMPs, including LPS, can shift normally

hyperactive monocytes towards a pyroptotic phenotype likely

through increased activity of the pore forming protein GSDMD
Frontiers in Immunology 03
and increased generation of reactive oxygen species (ROS)

metabolites (25). Recent work determined that the Ragulator-

Rag-mTORC1 metabolic axis can promote pyroptosis

specifically at the stage of GSDMD oligomerization (26).

Ragulator-Rag appears to control a portion of cellular ROS

production in macrophages that may be indicative of a

necessary byproduct of host metabolic activities, such as

respiration (26–29). Bolstering a causal relationship between

GSDMD oligomerization and ROS metabolites, further

investigation demonstrated that bacterial LPS or fungal

b-glucans can induce ROS in parallel to the Ragulator-Rag

pathway to promote GSDMD pore formation and pyroptosis

(30). These recent data and former studies suggest that diverse

sources of ROS metabolites can feed into the inflammasome

pathway at various stages to promote or inhibit inflammasome

activities (22, 23, 26, 30–32) (Figure 2). As ROS production often

coincides with mitochondrial dysfunction or microbial infection,

monitoring of cellular redox state and sensation of ROS

metabolites by innate immune guard proteins may

contextualize danger to the host. Moreover, host-derived

DAMPs that may indicate immune- or pathogen-induced

tissue damage can induce cellular hyperactivation in human

and mouse dendritic cells and mouse macrophages (19, 33, 34).

ROS metabolites can react with other molecules, such as

lipids within cellular and microbial membranes, in addition to its

signaling or damaging roles towards biological macromolecules,

such as proteins and nucleic acid polymers (35–38). Indeed,

oxidation of host lipids that contain double bonds in their acyl

chains results in generation of bioactive metabolites that are
FIGURE 1

A Goldilocks zone of physiologic shifts in metabolic activity with guard circuits surveying wide perturbations. (A) Low concentration of a
monitored metabolite or metabolic activity can lead to increased cell-intrinsic immunity through inflammasome activation in the case of low
hexokinase (HK) activity or IFN production and ISG expression in low cholesterol biosynthesis. (B) Physiological range of host-adaptive changes
in metabolite concentration and metabolic activity does not preclude cell-intrinsic immunity through orthogonal inflammasome activation such
as monitoring for direct microbial ligands. (C) High concentration of a monitored metabolite or metabolic activity can lead to increased cell-
intrinsic immunity through inflammasome activation in the case of high hexokinase (HK) activity or cholesterol accumulation. (D) A Goldilocks
zone of allowed host-adaptive changes in metabolite concentration and metabolic activity without incurring cell-intrinsic immune responses
such as inflammasome activation.
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FIGURE 2

Guard circuits sense metabolic perturbations and activate inflammasome pathways. (A) Inhibition of glycolysis via hexokinase 2 (HK2) recognition of
bacterial N-acetyl glucosamine (NAG) or activation of glycolysis via increased hexokinase 1 (HK1) activity result in NLRP3 inflammasome activation.
(B) Increased production of reactive oxygen species (ROS) metabolites activates the NLRP3 inflammasome, such as through the generation of
oxidized lipids, and directly promotes gasdermin D (GSDMD) pore formation. (C) Alterations to homeostatic cholesterol levels can result in
lysosomal or mitochondrial dysfunction that results in inflammasome activation or type I interferon (IFN) production.
Frontiers in Immunology frontiersin.org04

https://doi.org/10.3389/fimmu.2022.923024
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fraschilla and Evavold 10.3389/fimmu.2022.923024
sensed by the innate immune system and can also serve as

alternative metabolic inputs for fueling cellular metabolism (39–

42). One such example is oxidation of lipids in low density

lipoprotein (LDL) particles in atherosclerosis or oxidation of

phospholipids found in host cell membranes during neutrophil

responses to damage or pathogen infection in the lung (39, 40,

43–45). These lipids, when exposed to ROS, can generate an

amalgam of bioactive oxidized lipids termed oxidized PAPC

(oxPAPC) (33, 39, 40). Thus, oxidized lipids are indicative of

host metabolic dysfunction and damage to host cells as occurs in

organismal metabolic disorders or during an immune response

against invading pathogens (43–45) (Figure 2). Some studies

have determined that oxPAPC can serve as a competitive

inhibitor for innate immune signaling pathways as they are

structurally similar to bacterial LPS. In certain contexts, oxPAPC

can buffer the activities of bacterial LPS during activation of pro-

inflammatory transcription downstream of TLR4 signaling or

pyroptosis downstream of caspase-11 inflammasome activation

(46–49). Recent work has also determined that oxPAPC can lead

to dendritic cell hyperactivation through sub-lytic GSDMD pore

formation and secretion of bioactive IL-1b without pyroptotic

lysis (19, 33, 34, 50). Moreover, macrophages can also become

hyperactivated by treatment with a microbial PAMP followed by

subsequent treatment with the bioactive constituents of

oxPAPC, namely PGPC and POVPC (19, 51). Cells that have

been hyperactivated in response to oxidized lipids also display

unique metabolic features including maintenance of

mitochondrial activities and differential energy usage through

glutaminolysis (41). Furthermore, ROS may intersect with the

NLRP3 inflammasome activation through the oxidation of

newly generated mitochondrial DNA in a process that may

suggest oxidized DNA can serve as a ligand for NLRP3 (52–54).

Calcium (Ca) flux is a known determinant of mitochondrial ROS

production (55). Recent work also suggests that Ca mediates the

release of oxidized mitochondrial DNA through mitochondrial

permeability transition pores and the oligomerization of VDAC

channels to control NLRP3 activation (56). These examples

demonstrate host inflammasomes survey for signs of metabolic

dysfunction and pathogen invasion by monitoring metabolic

pathways, organelles, or damage-associated metabolites and

secondary messengers.
Amino acid availability and
protein synthesis

Host cells monitor amino acid availability through two

major metabolic arms, the Ragulator-Rag-mTORC1 axis and

eIF2a- and GCN2-mediated monitoring of translation and

tRNA charged status (57, 58). Amino acid depletion may thus

serve as a conserved contextual signal of pathogenic invasion as

microbes, such as bacteria, may utilize amino acids as energy
Frontiers in Immunology 05
sources and building blocks for their own proteins and cell wall

macromolecules (3). Moreover, viruses must take over host

translation machinery for generation of viral polypeptides and

new viral particles during replication (59). As translational

output is related to amino acid availability, we also consider

translation and protein synthesis as a potential indicator of

pathogen manipulation that can intersect with cell-intrinsic

immunity (58, 60).

mTORC1 is a major complex involved in broad metabolic

regulation of the host cell as a switch whose kinase activity

determines anabolic and catabolic processes through specific

substrate recruitment (61). mTORC1 phosphorylates the

anabolic targets 4E-BP1 and S6 kinase 1 to promote host

translation (61). ULK1 and TFEB are catabolic regulators

whose functions are repressed by mTORC1 (57). mTORC1

phosphorylation of ULK1 can directly repress autophagic

activity (57, 61). Moreover, TFEB is the master transcriptional

regulator of genes involved in lysosome biogenesis and

autophagy (62, 63). Phosphorylation of TFEB by mTORC1

retains TFEB in the cytosol through interaction with 14-3-3

proteins (64, 65). When mTORC1 activity is diminished, such as

during some pathogen infections or other nutrient depleted

settings, TFEB is unleashed to translocate to the nucleus to

transcriptionally activate autophagy and lysosome-dependent

degradative processes to recycle host macromolecules and

nutrients (63, 66). Amino acid availability is monitored by

regulators of mTORC1, such as the lysosomal transporter

SLC38A9, the vacuolar ATPase (v-ATPase that tethers

Ragulator-Rag to the lysosome), and Ragulator-Rag (57, 61).

Moreover, Ragulator-Rag is a specific regulator of TFEB

as itdirectly recruits TFEB to mTORC1 for repressive

phosphorylation under amino acid replete contexts (67, 68).

Beyond monitoring of cytosolic and lysosomal stores of free

amino acids by Sestrins, CASTOR proteins, and Ragulator-Rag

to control mTORC1 activity, amino acid availability can also be

monitored indirectly by the kinase GCN2 (57, 58, 61). When

uncharged tRNAs accumulate, GCN2 binds to uncharged

tRNAs to phosphorylate the translation regulator eIF2a to

shut down translation (58).

Pathogen infection can be sensed through perturbations of

amino acid availability (69). In the context of bacterial infection,

amino acids can be consumed or mislocalized within the host

through the action of microbial effectors and metabolism (7, 69).

Intracellular bacteria may deplete or mislocalize amino acid

pools via perforation of endomembranes, such as the lysosome

(3, 69). Amino acid depletion can inactivate the Ragulator-Rag-

mTORC1 axis and thus promote autophagy directly through

ULK1 and the transcriptional activity of TFEB (57, 61).

Autophagy of bacteria, also termed xenophagy, is a host

defense strategy to capture cytosol invading bacteria and target

them for ultimate degradation in lysosomes (69). Consistent

with a pathway of membrane perforation, amino acid depletion

(or potentially mislocalization) and activation of host protective
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xenophagy, membrane damaging effectors like the Listeria

monocytogenes pore forming toxin LLO can activate

xenophagy (70). Moreover, membrane perforation and

delivery of bacterial effectors through syringe-like secretion

systems, such as the Type III secretion systems of Shigella

flexneri and Salmonella enterica serovar Typhimurium, also

trigger xenophagy (71). Bacteria-induced endomembrane

damage and delivery of effectors can also activate the GCN2

arm of amino acid monitoring (71, 72). Viral infection can also

be detected through modulation of amino acid availability, as the

eIF2alpha kinases GCN2 and protein kinase R (PKR) are

required for the induction of autophagy in response to

infection with herpes simplex virus 1 (HSV-1) (73).

Highlighting an evolutionary host defense pressure, HSV-1

encodes a virulence product that antagonizes autophagy

induction (73). Human immunodeficiency virus (HIV) can

also manipulate the GCN2 pathway to suppress host

translation in favor of viral replication early in infection (74).

This may suggest that GCN2 and PKR control of translation and

autophagy may antagonize viral infections more generally.

A careful mechanistic examination into how membrane

permeability might lead to depletion of amino acids is needed.

Experiments utilizing lysomotrophic damaging peptides such as L-

leucyl-L-leucine methyl ester (LLOMe) have also demonstrated that

an organelle homeostasis and endomembrane monitoring system

exists (75, 76). This system employs ESCRT-III machinery

presumably for membrane repair or degradation of damaged

membrane sections through multivesicular body production

analogous to membrane repair activities that occur at the plasma

membrane (76, 77). For a larger magnitude of membrane or

organelle damage, a galectin-Ragulator-Rag dependent

mechanism is activated (75, 76). Endomembrane damage may

lead to long-term depletion of amino acids through inhibited

catabolism. We speculate that a burst of amino acids may also

have evolved a sensor as an indication of danger or damage to the

host. Whether amino acid monitoring pathways such as Ragulator-

Rag can respond to increases in amino acid concentration beyond

physiological levels is currently unknown. The Ragulator-Rag

pathway can also respond to mitochondrial dysfunction

presumably to activate mitophagy of damaged mitochondria (78).

Therefore, Ragulator-Rag may serve as a master regulator of

endomembranes and organelle homeostasis through integration

of host metabolic state and amino acid pools.

As suggested by study of pathogen activation or evolved

subversion of GCN2 and Ragulator-Rag-mTORC1, protein

translation and dysfunction may serve as a contextual cue of

pathogen invasion or manipulation of the host (60, 69). We will

consider the monitoring of the unfolded protein response (UPR)

and endoplasmic reticulum (ER) stress as a host defense strategy (7,

60). Several intracellular bacteria utilize ER-derived compartments

for replication such as Legionella pneumophila (3, 79, 80).

Moreover, viruses often remodel ER and mitochondrial

membrane sites as replication sites for production of new viral
Frontiers in Immunology 06
particles (3, 59). Legionella encodes a type IV secretion system to

remodel the ER compartment for its replicative needs (81, 82).

Consequently, UPR can become activated after bacterial and viral

infection (83–85). Legionella also encodes type IV secretion system

delivered effectors that appear to limit host translation that may

suggest subversion of ER stress (81, 82, 86). Recent work provides

direct evidence that inhibition of host translation using vesicular

stomatitis virus infection and chemical inhibitors as models can

activate cell-intrinsic immunity through caspase-3 and GSDME

dependent pyroptosis. In this pathway, labile members of the BCL2

family with high constitutive turnover act as a guard circuit to

monitor changes in translation output and initiate cell death (87).

HSV-1 has evolved mechanisms to subvert the activation of

caspase-3 and subsequent GSDME-mediated pyroptosis through

the action of the protein ICP27 (87). Prior studies also suggest that

ER stress can induce secretion of cleaved IL-1b and pyroptosis

through diverse mechanisms (88, 89). Downregulation of host

translation may further subvert immune responses at large that

require de novo translation of pro-inflammatory cytokines or cell-

intrinsic defense proteins, but this translation shutdown may come

with the cost of induction of cell-intrinsic immune programs such

as pyroptosis in certain contexts.
Cholesterol and innate immunity

Monitoring of central host metabolites or biosynthetic

pathways could serve as a strategy to detect invasion or

manipulation of the host by pathogenic microbes. A prime

example of internal monitoring of host metabolite deviation for

activation of innate immune responses is the monitoring of

cholesterol content and biosynthesis (90). Most microbes are

not thought to generate their own cholesterol though some can

incorporate cholesterol into viral envelopes or bacterial cellular

membranes (3, 59, 91). Moreover, cholesterol is thought to be

consumed by some species of bacteria, such as Mycobacterium

tuberculosis (92–94). Cholesterol is a major component of host cell

membranes and as such microbes have evolved ways to utilize the

presence of cholesterol for targeting of toxins, microbial entry into

the cell, and as fuel sources (90, 91). Necessarily, the host has also

evolved mechanisms to modulate the abundance and location of

cholesterol stores to decrease susceptibility to intoxication and

infection (90). As with other examples provided above,

monitoring of cellular cholesterol may represent an example of

a Goldilocks guarding circuit as distinct cell-intrinsic immune

responses are triggered by diminished cholesterol biosynthesis as

well as cholesterol overload (Figure 2).

Host cholesterol is derived from exogenous sources through

extracellular uptake or de novo biosynthesis (95). Cholesterol

found within extracellular low-density lipoprotein (LDL) can be

internalized by host cells through the action of endocytosis

downstream of the LDL receptor (LDLR) (95). Once

cholesterol is in the lysosome, it can be imported into cellular
frontiersin.org
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membrane pools via NPC1 and NPC2 (96). Alternatively,

cholesterol can be synthesized within host cells through the

action of genes under the transcriptional control of the master

regulator SREBP2 (97). Notably, LDLR is also under

transcriptional control of SREBP2 (95). In addition to being

incorporated into host membranes, cholesterol can be stored

within lipid droplets within cells or secreted from cells through

efflux pathways whereby the intracellular concentration of

cholesterol is adaptively maintained in a Goldilocks zone (95).

During organismal metabolic dysfunction, cholesterol can

accumulate to high concentrations and form cholesterol crystals

that damage lysosomes (98). Lysosomal damage in response to

cholesterol accumulation results in activation of the NLRP3

inflammasome, secretion of bioactive IL-1b, and pyroptotic cell

death (98). An inflammasome seeded by the protein AIM2, which

binds directly to cytosolic DNA, can be activated in response to

mitochondrial DNA (mtDNA) (99). Type I interferons (IFNs)

and production of the metabolite 25-hydroxycholesterol (25-HC)

can inhibit cholesterol synthesis and limit AIM2 inflammasome

activation likely through restraining cholesterol driven

mitochondrial dysfunction (99, 100). While these studies

demonstrate that type I IFNs can restrain AIM2 activation likely

at the level of endogenous host-derived ligands such as

mitochondrial DNA, AIM2 is an IFN stimulated gene (ISG)

and thus transcriptionally induced by type I IFN signaling that

can promote sensation of pathogenic DNA from bacteria and

viruses in the host cytosol (101–103). Further work suggests that

diminished cholesterol biosynthesis can also result in a cell-

intrinsic immune response through the production of type I

IFN and subsequent ISGs (104, 105) (Figure 2). As the

implicated cGAS-STING IFN-inducing pathway also involves

sensing of cytosolic DNA, mitochondrial dysfunction and

release of mitochondrial DNA may be a common trigger of cell-

intrinsic immune pathways downstream of inhibition of

cholesterol biosynthesis or cholesterol accumulation (99, 104).

Thus, innate immune pathways have evolved mechanisms to

survey both accumulation of cholesterol and inhibition of

cholesterol biosynthesis.

Host signaling from the plasma membrane is dependent on

cholesterol content as cholesterol promotes the formation of

signaling competent lipid rafts (106). Certain PRRs and cytokine

receptors likely require cholesterol-dependent lipid rafts for

efficient signal transduction in response to microbial infection

and inflammation (106, 107). However, cholesterol presence in

the plasma membrane can also be detrimental to the host

response as it serves as a ligand for bacterial pore-forming

toxins known as cholesterol-dependent cytolysins (CDCs) (90,

105). Moreover, some bacteria and viruses utilize cholesterol or

related receptors, such as LDLR, for entry into the host (3, 59,

91). Thus, the regulation of production, import, storage, and

export of cholesterol are likely under innate immune control to

prevent infection (90). If pathogens or host metabolic

dysfunction perturb these cholesterol control pathways beyond
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the Goldilocks zone of normal physiological concentrations, cell

intrinsic immune responses are activated (Figure 1).
PAMP and cytokine induced
alteration of host metabolism
for defense

Macrophages have plasticity in terms of functional

polarization states with common prototypical cell states being

defined as pro-inflammatory for M1-like macrophages or

homeostatic and tolerogenic for M2-like macrophages (108).

While this paradigm was defined with in vitro polarizations,

tissue-resident macrophages or recruited macrophages likely

adopt a wider breadth of functional states along a continuum

in vivo (109). However, these classifications are useful for

describing the intersection of PAMP- or cytokine-induced

changes to host metabolism, and their potential effects on host

defense or microbial replication (108).

As stated above, many host-adapted microbes have evolved

mechanisms to interact with host cell lipids and sterols such as

cholesterol (90, 91). For example, CDCs can intoxicate cells and

damage membranes potentially leading to cell death of innate

immune cells (90, 105). PRRs and cytokine receptors are thought

to impact plasma membrane cholesterol content through

distinct mechanisms. TLR2, TLR7, and TLR9 signaling

through MyD88 in myeloid cells can increase cholesterol

import and biosynthesis (105). This process of cholesterol

import occurs through activation of the protein Akt and

mTORC2, which can synergize with SREBP2 (105, 110). As

described above, transcriptional activity of SREBP2 results in

increased cholesterol uptake and biosynthesis (95, 97). PRRs that

stimulate the production of type I IFNs can also modulate

cholesterol localization and production (90). Type I IFN

signals through IFNAR1 and IFNAR2 to recruited kinases

Tyk2 and Jak1/2 to activate the transcription factors STAT1

and STAT2 (111). STAT1/2 heterodimers can downregulate

genes involved in cholesterol biosynthesis and cholesterol

import, while also allowing for removal of cholesterol from

cellular membranes through upregulation of the enzyme

cholesterol 25-hydroxylase (Ch25h) (111–113). Ch25h can

produce the metabolite 25-HC from cholesterol (90). 25-HC

mediates several events that result in decreased cholesterol

content of cellular membranes by activating the ER resident

enzymes ACAT1 and ACAT2 to esterify cholesterol for storage

in lipid droplets (90, 95, 97). 25-HC also can inhibit the activity

of SREBP2 thus downregulating cholesterol synthesis and

uptake (90, 97). Type I and type II IFN signaling on host cells

can result in cholesterol esterification and relocation from

cellular membranes that is protective in the context of CDC

treatment (105). Moreover, 25-HC treatment alone can result in

depletion of cholesterol from host cell membranes that results in
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inhibition of viral entry (112, 113). While alteration of

cholesterol homeostasis is a conspicuous outcome of IFN

signaling, IFNs can also reprogram host cell metabolism in

other pleiotropic ways including increased fatty acid oxidation,

oxidative phosphorylation, and expression of ISGs that may

impact cell-intrinsic immunity and pathogenesis (114, 115).

Further considering a canonical M1-like cell state through the

LPS-TLR4 axis in macrophages has uncovered metabolic shifts that

can promote inflammation, restrict essential cofactors or nutrients,

and deliver potentially toxic molecules to microbial replication sites.

The enzyme NOS2 is regulated by the transcription factor NF-kB
that is commonly activated downstream of pro-inflammatory

cytokine receptors and many families of PRRs including TLRs

(116). NOS2 can produce reactive nitrogen species (RNS),

specifically NO radicals, from the amino acid arginine (108, 116)

(Figure 3). Conversely, M2 polarized macrophages express arginase

that may act to further limit anti-microbial NO production by

limiting arginine levels (108). M2 macrophages are polarized

through cytokines such as IL-4. M2 macrophages have metabolic

shifts towards fatty acid oxidation and oxidative phosphorylation

(108). Some pathogens, including Salmonella, replicate better in M2

macrophages that may depend on these metabolic shifts and

glucose metabolism (117, 118). Salmonella appears able to induce

or enrich for M2-like macrophages in part through action of the

effector SteE (119–121). Sensing of microbial invasion by several
Frontiers in Immunology 08
mechanisms can also induce the production of ROS, such as

superoxide and hydrogen peroxide. Downstream of TLR

engagement, a TRAF6 dependent mechanism can activate ROS

production from phagosome-proximal mitochondria (122).

Moreover, NADPH oxidase, which sits within the phagosome

membrane, can produce anti-microbial ROS downstream of

phagocytosis or BAI1 sensing of bacterial LPS (123, 124)

(Figure 3). After phagocytosis, the phagosome resident v-ATPase

can also lower intra-luminal pH that can have direct and indirect

anti-microbial activity, such as through combination with ROS to

generate hypochlorous acid (125) (Figure 3). Finally, M1 polarized

macrophages also express the metabolic and host defense protein

Irg1 (126). M1 polarized macrophages have a break in the TCA

cycle as described above through conversion of arginine into

citrulline and NO, but also have an additional break in the TCA

cycle that results from type I IFN responses and subsequent

repression of IDH1 (127–130). IDH1 repression can lead to

accumulation of citrate within activated macrophages (129, 130).

As TCA cycle intermediates accumulate due to a defective TCA

cycle, IRG1 can utilize aconitate to produce itaconate (126, 129,

130). Itaconate can further lead to accumulation of succinate as it

acts as an inhibitor of SDH (131). Itaconate has been described to

have direct anti-bacterial activities and was recently shown to be

directly delivered to pathogen containing phagosomes by RAB32

(132) (Figure 3). Itaconate can also post-translationally modify
FIGURE 3

Host-adapted delivery of potentially toxic metabolites for control of intracellular pathogens. Sensation of PAMPs, cytokines, and IFNs can
promote cell-intrinsic immune responses such as generation of antimicrobial metabolites. Upregulation of NOS2 can produce NO radicals from
the amino acid Arginine. TLR driven mitochondrial ROS (mtROS) or phagocytosis- and BAI1-induced NADPH oxidase production of ROS. ROS
can cooperate with low pH environment created by pumping H+ ions into the vesicle lumen via the action of v-ATPase to form hydrogen
peroxide and hypochlorous acid. Accumulation of TCA intermediates based on break in the TCA cycle in activated macrophages allows for Irg1
production of anti-microbial itaconate that can be delivered to a pathogen-containing phagosome via RAB32.
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inflammasome related proteins, such as NLRP3 and murine

GSDMD, further highlighting that metabolites control cell-

intrinsic immune responses and functional cell fate decisions

through diverse mechanisms (133, 134).
Microbe manipulation of the host

Virus and bacteria are expert metabolic engineers who aim

to shift host metabolism towards favorable conditions for

microbial replication (3, 59). While listing all the effectors and

pathogens that can promote metabolic rewiring is beyond the

conceptual aims of this section, we mention common and broad

metabolic nodes that many microbes seem to prefer and have

evolved mechanisms to induce within cells. Viral infections

likely have different metabolic needs depending on the

infective life cycle of the virus. For example, during lytic

replication of certain viruses there is a need for increased

supply of nucleotides, amino acids, and fatty acids for quick

replication (59). Conversely, during latent viral infections there

is less demand on nutrients and an emphasis on infection of

naturally long-lived cells, such as neurons, or viral strategies to

prolong cell viability in the case of oncogenic viruses (3, 59).

Bacteria also manipulate their hosts to promote metabolism that

benefits replicative needs (3, 91).

A major axis that is targeted by viruses and bacteria alike is

the mTOR pathway as we have already discussed with specific

inputs such as amino acid availability and control of mTORC1

activity (57, 61). Promoting the PI3K and Akt arms of mTOR

activation maintains translation and cell growth while inhibiting

apoptotic cell death (61). Moreover, upregulation of glucose

uptake can promote mTOR activity (61). AMPK senses host

energetic state by surrogate through monitoring AMP levels.

AMPK negatively regulates mTORC1 in response to high AMP

to ATP ratios (61). Thus, modulation of AMPK activities is also

a strategy that viruses and bacteria can use to promote pro-

microbe metabolic shifts (3, 59). Many pattern recognition

receptor and cytokine receptor pathways can activate

mTORC1 and mTORC2 which promotes production of

conventionally secreted pro-inflammatory cytokines and IFNs.

For example, innate immune responses to HSV-1 infection

require mTORC2 and mTORC1 downstream of TLR3

signaling for optimal IFN production and viral suppression

(135). As discussed above, autophagy may directly and

indirectly inhibit viral and bacterial infective life cycles

through capture of microbes during xenophagy (69).

As mentioned above, oxidative phosphorylation and fatty

acid oxidation can naturally be promoted within IL-4 stimulated

(M2) macrophages (108). Consequently, several viruses and

bacterial pathogens replicate well within cells that have these

metabolic parameters likely because fatty acid oxidation results

in generation of acetyl-CoA (3). Acetyl-CoA, in cells with an

intact TCA cycle, can generate reducing equivalents such as
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NADH and FADH2 that promote oxidative phosphorylation

(108). Other specific metabolic alterations induced by microbes

exist that may represent tissue-niche or pathogen-specific needs

for replication or dissemination. More work is needed to

delineate host metabolic manipulation by microbial effectors

for the purposes of promoting cell survival during replication or

promoting different forms of cell death during dissemination. As

such, microbial gene regulation may change over the course of

the infective life cycle in response to metabolic cues that

represent tissue and cellular location or more broadly

metabolic status of the host.
Metabolite modulation of
virulence programs

After detection of invading pathogens, the host can

adaptively create harsh metabolic environments for microbial

clearance (Figure 3). However, prior to infection, host-derived

metabolites in the tissue microenvironment influence the ability

of microbes to enact virulence programs and further nutrient

acquisition (1). Here, we provide prototypical examples of how

nutrient availability controls bacterial virulence programs for

enteric microbes, but analogous circuits may exist in other

tissues and microbes. Moreover, recent work has suggested

that metabolic mutualism may be an alternative strategy to

host defense by promoting tolerance and outgrowth of less

virulent strains (136).

The aim of nutritional immunity is to restrict required

cofactors or metabolites to limit colonization and growth of

bacteria (137). Canonical nutritional immunity has largely

focused on regulation of essential transition metal ions

required for bacterial viability. We consider iron availability as

a prototypical example of host-evolved nutritional immunity but

suggest that nutritional immunity likely extends to energy

sources as well such as glucose, amino acids, and lipids.

Seminal studies of the iron sequestering activity of transferrin

provided the first conceptual example that host-related depletion

of iron could affect microbial replication or viability (138, 139).

Iron metabolism is now appreciated to include other

mechanisms of movement and storage that may depend on

the cellular or subcellular location of microbial infection. One

iron sequestering circuit involves the production of hepcidin

during infection or inflammation that depends on pro-

inflammatory cytokine signaling in the liver (140). Hepcidin

can subsequently induce internalization of the iron transporter

ferroportin (140). Lowering intracellular iron through the use of

hepcidin inhibitors or genetic deficiency for homeostatic iron

regulator protein (HFE) also augments intracellular growth of

Salmonella and blunted TLR4 signal transduction in

macrophages (141). In circulation, activated neutrophils can

produce lactoferrin, a related iron sequestering protein to
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transferrin (142). On the subcellular level, macrophages can

express the iron transporter NRAMP1 to restrict iron in the

lumen of vesicles, such as the phagosome, to limit access to

invading pathogens (143, 144). These strategies represent

systemic, tissue, and subcellular mechanisms by which the

host can adaptively modulate the concentration of iron that is

available to microbes.

Salmonella can cause gastroenteritis or systemic

inflammation depending on host genotype and infection site

(1). As Salmonella often resides within the gastrointestinal tract,

host nutrient availability may control virulence programs. One

experimental method utilized in the laboratory to imbue

Salmonella with an invasive phenotype is anoxic and high salt

growth conditions (145, 146). Growth under these conditions

increases expression of the Salmonella pathogenicity island 1

(SPI-1) that encodes type 3 secretion system components and

corresponding injected effectors (145, 146). This circuit may

instruct the bacterium to upregulate an invasion phenotype

through virulence factors when environmental conditions in

the gut are suitable for infection. Notably, the host has evolved

strategies to sense virulence injection machinery and structurally

related motility machinery through the action of the NAIP :

NLRC4 inflammasome (6). Thus, host environmental and

nutrient status can influence bacterial virulence programs, but

the host has also evolved strategies to guard against these

required tissue invasion proteins, including the type III

secretion system and flagellin. Similarly, other microbes have

evolved distinct nutrient cues and virulence programs related to

their tissue nice and infective life cycle.

As introduced above, iron sequestration is another major

host defense strategy in nutritional immunity. Provocatively, a

recent report has described tolerance schemes may serve to limit

Citrobacter rodentium virulence in the context of enteric

infection in mice (136). By analyzing surviving mice after a

lethal dose 50 experiment, iron metabolism was identified as a

determinant of morbidity. Supplementation of iron during a

normally lethal dose 100 was able to confer protection from

lethality and reduce gut pathology. Specifically, iron

supplementation reduced expression of virulence genes in C.

rodentium through a microbe circuit dependent on glucose

availability (136). Thus, nutrient supplementation may also be

a strategy to reduce virulence of pathogenic bacteria as an

alternative to sterilizing host defense. This mutual metabolic

interaction and host tolerance scheme may be particularly useful

under conditions where nutritional restriction leads to

upregulation of virulence programs or host defense programs

lead to a high degree of collateral damage as could lead to

organismal demise. Selection of less virulent strains through

host-derived metabolites may provide a framework for

delineating commensalization of host-associated microbes.

Interspecies competition for nutrients can also cue

pathogens for increased virulence (1). A pathogenic strain of

Escherichia coli, known as Enterohemorrhagic E. coli (EHEC),
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activates expression of its enterocyte effacement pathogenicity

associated island in response to nutrient signals (147–149).

EHEC is primarily thought to be an extracellular pathogen

that interacts with an infected host cell through adherence and

modulation of nutrient trafficking and cytoskeletal elements

(150). The expression of adherence proteins, type III secretion

systems, and virulent effectors is upregulated under limiting

glucose conditions due to host nutritional immunity or in the

presence of interspecies competition for similar nutrient stores

(1). Providing the potentially pathogenic bacteria C. rodentium

with glucose led to selection of less virulent strains and increased

host survival in mouse models (136). This may suggest that

similar nutrient-focused therapies could be employed as

therapeutics during infection with other enteric pathogens

such as EHEC. Alternatively, EHEC can also upregulate this

virulence program in the presence of succinate (147). Recent

work now suggests that during the intracellular lifestyle of

Salmonella in infected macrophages, accumulation of succinate

can also regulate virulence programs encoded by SPI-2 (151).

These studies highlight the similarity in nutrient dependency or

sensitivity for expression of virulence programs in microbes.

These virulence circuits may have evolved even between different

tissue or cellular niche to indicate host defensive adaptations or

metabolic stress.
Future directions

In this review, we posit a Goldilocks zone model for host

surveillance of metabolic shifts whereby normal physiologic

shifts are tolerated to provide cells with metabolic flexibility to

carry out homeostatic functions. However, guard circuits and

cell-intrinsic immune programs are enacted when wide

perturbations occur in either direction of this Goldilocks zone.

We focused this discussion on a particular class of cell-intrinsic

immune pathways, namely the inflammasomes, but suggest that

other circuits exist to promote direct antimicrobial metabolite

production or restriction of host metabolites, such as transition

metals and cholesterol. Furthermore, different cell types may

have unique guard circuits and different allowable shifts in

metabolism that reflect the division of labor for that cell type

and the required metabolic plasticity for cellular functions and

cell states. More work is needed to discover other innate immune

surveillance of Goldilocks zones for specific metabolites or

metabolic pathway activities.

Consequently, host-adapted pathogens have also evolved

mechanisms to promote metabolic conditions that favor their

biosynthetic or dissemination needs. Creation of better cellular

models and investigation of metabolic status in ex vivo samples or

in vivo settings will be required to map certain metabolic

perturbations to pathogen needs. Moreover, there may exist

mechanisms whereby modulation of metabolic pathways or

specific metabolites can change functional cell fates for
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therapeutic benefit. We may discover avenues for metabolic

means of functional cellular reprogramming through

investigation of evolved effectors from pathogens. Moreover,

nutritional immunity can be expanded beyond the control of a

few select energy sources or transition metals to include

methodologies to change microbial virulence patterns in

response to environmental conditions. An attractive approach is

to model commensalization for therapeutic benefit through

supply or starvation of certain metabolites that control bacterial

virulence patterns. Bioinformatic analysis is beginning to map the

theoretical chemistries that microbial species can accomplish.

These analyses may uncover unknown dependencies on host- or

other microbe-derived nutrients that can be leveraged for next-

generation nutritional immune interventions.

Finally, delineation of microbe-induced metabolic shifts as

being beneficial to host defense or pro-microbe require

comparative analysis of model microbe sensing by the innate

immune system, namely through analysis of immunometabolism

downstream of purified microbial ligands. Through integration of

these pioneering studies with single or combinatorial ligands

and infection with live pathogenic or mutant strains of

microbes, we may map contributions of metabolic shifts for

host defense or inflammation compared to metabolic shifts that

promote pathogenesis.
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