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Vasculitis is an autoimmune disease of unknown etiology that causes inflammation of the
blood vessels. Large vessel vasculitis is classified as either giant cell arteritis (GCA), which
occurs exclusively in the elderly, or Takayasu arteritis (TAK), which mainly affects young
women. Various cell types are involved in the pathogenesis of large vessel vasculitis.
Among these, dendritic cells located between the adventitia and the media initiate the
inflammatory cascade as antigen-presenting cells, followed by activation of macrophages
and T cells contributing to vessel wall destruction. In both diseases, naive CD4+ T cells are
polarized to differentiate into Th1 or Th17 cells, whereas differentiation into regulatory T
cells, which suppress vascular inflammation, is inhibited. Skewed T cell differentiation is
the result of aberrant intracellular signaling, such as the mechanistic target of rapamycin
(mTOR) or the Janus kinase signal transducer and activator of transcription (JAK-STAT)
pathways. It has also become clear that tissue niches in the vasculature fuel activated T
cells and maintain tissue-resident memory T cells. In this review, we outline the most
recent understanding of the pathophysiology of large vessel vasculitis. Then, we provide a
summary of skewed T cell differentiation in the vasculature and peripheral blood. Finally,
new therapeutic strategies for correcting skewed T cell differentiation as well as aberrant
intracellular signaling are discussed.
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INTRODUCTION

Vasculitis is an autoimmune disorder that causes inflammation of blood vessels and multiple organ
damage. Large vessel vasculitis (LVV) primarily affects the aorta and its major branches and can be
divided into two disease categories: giant cell arteritis (GCA) and Takayasu’s arteritis (TAK) (1).
GCA is common in individuals over 50 years of age, especially in their 60s to 80s (2). Symptoms
related to GCA include fever, headache, jaw claudication, and visual disturbances (3). Polymyalgia
rheumatica is often accompanied by extravascular manifestations (4). In contrast, TAK is common
in patients under 50 years of age, especially in Asian women in their 20s to 40s (5). TAK results in
fever, general malaise, pulselessness, renovascular hypertension, and aortic regurgitation (6).
Ulcerative colitis and erythema nodosum are well-known extravascular manifestations (7, 8).

The pathological findings of these two diseases are indistinguishable and the pathological
hallmark of these diseases is chronic granulomatous inflammation, which primarily involves
activated CD4+ T cells and macrophages (9) (Figure 1). Cytokines released from activated CD4+

T cells are the main triggers of macrophage activation (10). In addition, genome-wide
association studies (GWAS) have revealed that human leukocyte antigens are critically involved
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in the pathomechanisms of both GCA and TAK (11, 12). These
findings suggest that antigen presentation to T cells, particularly
CD4+ T cells, plays a central role in the development of LVV.

Recent studies have revealed remarkable heterogeneity in CD4+

T cells, leading to the discovery of T helper 1 (Th1), Th2, Th9,
Th17, Th22, and T follicular helper (Tfh) cells, as well as
regulatory T cell subsets (13, 14). Each T cell subset plays a
unique role by expressing specific transcription factors and
cytokines. Technological advances at the single-cell level have
allowed further subdivision of these subsets and have led to the
discovery of novel T cell subsets. Accordingly, several T helper cell
subsets have been identified in LVV (15, 16). Moreover, aberrant
cellular signaling pathways in activated T cells and new T cell
subsets, such as tissue-resident memory T cells, have been
identified in LVV (17).

In this mini-review, we first outline the current knowledge
regarding the immunopathogenesis of LVV, followed by a
discussion of the roles of each T cell subset, newly discovered
T cell subsets, and aberrant signaling pathways in T cells. Finally,
we provide future therapeutic perspectives for LVV based on
targeting of T cells.
THE UPDATED IMMUNOPATHOGENESIS
OF GCA

Vascular inflammation begins with antigen recognition in
vascular dendritic cells (vasDCs) (18, 19). Essentially every
Frontiers in Immunology | www.frontiersin.org 2
artery contains vasDCs, which allow for early detection of
foreign antigens. Proliferation of T cells with the shared T cell
receptor is confirmed in distinct vascular lesions of GCA (20),
which indicates that T cells undergo clonal expansion after
recognizing certain antigens. Herpes zoster virus and others
have been proposed as antigens (21), but this has not yet been
verified. VasDCs express unique Toll-like receptor patterns in
each artery (22). In non-inflamed temporal arteritis, the vasDCs
are immature and located at the media-adventitia border (23).
Once activated, vasDCs expand and express costimulatory
molecules such as CD80 and CD86. They also produce excess
chemokines and cytokines, which prime naive CD4+ T cells and
facilitate monocyte migration (24, 25). A recent study
demonstrated that defective expression of programmed death
ligand 1 in vasDCs also contributes to the maintenance of T cell
activation (26, 27). Monocytes then differentiate into tissue
macrophages, which are activated by cytokines, particularly
interferon (IFN)-g, released by activated T cells. Activated
macrophages in turn start to produce large amounts of
cytokines (e.g., IL-6) (28), chemokines (29, 30), proteolytic
enzymes (e.g., matrix metalloprotease) (31, 32), and various
growth factors, such as vascular endothelial growth factors
(VEGF), fibroblast growth factor, and platelet-derived growth
factor (33). These growth factors act on endothelial cells (ECs)
and vascular smooth muscle cells (VSMCs), transforming them
into myofibroblasts, and accelerate intimal hyperplasia and
adventitial neoangiogenesis (34–36). Thus, the conventional
inflammatory cascade in GCA includes three major players:
FIGURE 1 | Histology of giant cell arteritis. (A) Histological findings of a temporal artery biopsy from an 82-year-old woman with giant cell arteritis (hematoxylin and eosin
staining, x40), showing intense cellular infiltration in the adventitia and luminal narrowing due to intimal hyperplasia. (B) High-power image of the biopsy (hematoxylin and
eosin staining, x100). The red arrow indicates multinucleated giant cells. (C) CD4 staining of the biopsy (anti-CD4 staining, x100), showing accumulation of CD4+ T cells in
the adventitia. (D) CD8 staining of the biopsy (Anti-CD8 staining, x100), showing slight accumulation of CD8+ T cells in the adventitia.
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vasDCs, CD4+ T cells, and macrophages. However, several new
cell populations have emerged in the pathomechanisms of GCA.

First, neutrophils are not only important mediators of host
defenses against pathogens but also contribute to many
autoimmune diseases through neutrophil extracellular traps
(NETs) (37). Until recently, the role of neutrophils has been
underestimated because of the rarity of vascular lesions in GCA;
however, mapping of immune cell populations from GCA
patients has shown that immature neutrophils generate high
levels of reactive oxygen species and enhance protein oxidation,
leading to endothelial barrier dysfunction in vascular lesions
(38). These findings link the function of immature neutrophils to
disease mechanisms.

Second, intimal hyperplasia is thought to be caused by
transformation and expansion of ECs and VSMCs into
myofibroblasts. Recently, however, it has been proposed that
fibroblasts located in the adventitia start to produce a smooth
muscle actin and collagen by an unknown trigger, phenotypically
change into myofibroblasts, and migrate toward the intimal layer
(39). As fibroblasts are also abundant in the vascular lesions of
TAK (40), these cells could be therapeutically targeted in LVV.
VASCULITOGENIC T CELLS IN GCA

Th1 Cells
Analysis of the T cell population in vascular tissues and the
circulatory system suggests polyclonal T cell activation (41–43)
(Figure 2). Among these, Th1 cells appear to be the dominant
cell population and are highly enriched in vascular tissues and
the circulatory system in GCA (15, 44). Naive CD4+ T cells are
induced to express transcription factor T-bet and differentiate
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into Th1 cells in the presence of IL-12 (13), which is abundant in
GCA-affected arteries (45). IFN-g released by Th1 cells not only
stimulates macrophages and provides protective immunity
against intracellular pathogens but also affects ECs, VSMCs,
and fibroblasts. Although IFN-g impairs the proliferation and
survival of ECs in the tumor microenvironment (46, 47), it
promotes angiogenesis via VEGF produced by tissue
macrophages in GCA (10). IFN-g induces VSCM proliferation
in atherosclerosis (48). The direct effect on fibroblasts residing in
blood vessels is unknown. However, upon stimulation with IFN-
g, synovial fibroblasts upregulate MHC class II expression and
increase IL-6 production (49). Thus, IFN-g derived from Th1
cells is implicated in several pathogenic events in GCA.

Th17 Cells
Compared to Th1 cells, all other functional T cell lineages occur
at much lower frequencies (42), although Th17 cell numbers are
increased in GCA (15). Naive CD4+ T cells express the master
transcription factor RORgt and differentiate into Th17 cells in
the presence of IL-6 and transforming growth factor b, which are
abundant in the vascular lesions (50, 51). IL-23 appears to
function in the expansion and maturation of Th17 cells at a
late stage (13). Th17 cells produce IL-17, IL-21, and IL-22, and
the IL-17 family includes six isoforms (IL-17A to IL-17F) (52).
IL-17A not only provides host defense against extracellular
pathogens, including bacteria, fungi, and mycobacteria but also
participates in autoimmunity (53, 54). IL-17A acts on ECs,
resulting in the secretion of proinflammatory cytokines, such
as IL-6 and chemokines (55). IL-17 is also involved in the
proinflammatory response of VSMCs, inducing the release of
cytokines such as IL-6 and granulocyte–macrophage colony-
stimulating factor (GM-CSF) (56).
B

A

FIGURE 2 | The imbalance between vasculitogenic T cells and vasculoprotective T cells in giant cell arteritis. (A) In non-inflamed arteries, vasculitogenic T cells and
vasculoprotective T cells are well balanced in the blood, and both cell types are rare in the vasculature. (B) In giant cell arteritis (GCA), this balance is perturbed, and
vasculitogenic T cells accumulate, while the number of vasculoprotective T cells decreases in the tissue and the blood. Vasculitogenic T cells include T helper 1 (Th1)
cells, Th17 cells, IL-21-producing T cells, granulocyte macrophage-colony stimulating factor (GM-CSF)-producing T cells, tissue-resident memory T (Trm) cells, Th9
cells, and Th22 cells. On the other hand, vasculoprotective T cells include CD4+ regulatory T cells and CD8+ regulatory T cells.
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What is the molecular basis for the increase in Th1 and Th17
cells in GCA? A recent study revealed that the VEGF-NOTCH1
axis plays a role in skewed T cell polarization (57). VEGF is
primarily derived from tissue macrophages and is enriched in
GCA plasma (58). The innermost ECs of the vasa vasorum
respond to VEGF and upregulate the expression of NOTCH1
ligand, which in turn stimulates NOTCH1 receptor expressed on
GCA CD4+ T cells. This NOTCH1 ligand-NOTCH1 interaction
induces activation of the mechanistic target of rapamycin
(mTOR), shifting T cell differentiation toward Th1 and Th17
cells (57). mTOR is a serine/threonine protein kinase that
constitutes the catalytic subunit of two distinct complexes:
mTOR complex 1 (mTORC1) and mTORC2 (59). The mTOR
pathway integrates a diverse set of environmental factors to
direct cellular growth and is implicated in metabolic disorders,
neurodegeneration, cancer, and aging (60). Recent studies have
shown that mTORC1 regulates the differentiation of T helper
cells and is involved in Th1 and Th17 development (61). Thus,
the VEGF-NOTCH1-mTORC1 axis contributes to skewed T
cell differentiation.

IL-21-Producing CD4+ T Cells
The number of IL-21-producing CD4+ T cells is also increased in
vascular lesions and in the blood (44). IL-21-producing CD4+ T
cells account for approximately 2.5% of the peripheral blood cells
in healthy individuals, whereas this proportion increases to
approximately 8% in patients with GCA, which cannot be
explained by the frequency of Th17 cells. IL-21 is the main
cytokine produced by Tfh cells, which help B cells to secrete IgG
antibodies, but the Tfh-B cell signature is not upregulated in
GCA (62). Thus, the cellular origin of IL-21 remains unclear.
However, since IL-21 is able to shift T cell differentiation toward
Th1 and Th17 phenotypes and decrease the number of
regulatory T cells (Tregs) (44), this cytokine could be a
therapeutic target for GCA.

GM-CSF-Producing T Cells and Other T
Helper Cells
Recently, GM-CSF has emerged as a key cytokine in the
pathogenesis of GCA (63–65). GM-CSF and GM-CSF
receptors are highly expressed in GCA-affected arteries.
Although Th1 and Th17 cells are the major sources of GM-
CSF in the joints with rheumatoid arthritis (RA) (66, 67), GM-
CSF is produced by endothelial cells, macrophages, and T cells in
vascular lesions of GCA. In ex vivo cultured arteries, anti-GM-
CSF receptor antibodies have shown promise, decreasing T cell
and macrophage numbers as well as proinflammatory cytokine
expression (63). Other T helper cell subsets, such as Th9 and
Th22 cells, are also implicated in the amplification of vascular
inflammation (68, 69), although their precise role is still unclear.

Tissue-Resident Memory T Cells
The results of a study that enrolled patients with GCA confirmed
by temporal artery biopsy (TAB) and prospectively performed a
second TAB from the contralateral side to the first TAB showed
residual inflammation in approximately half of the patients even
after one year of treatment (70). The pathological analysis
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showing that T cells were the main residual cells prompted us
to investigate tissue-resident memory T (Trm) cells. A subset of
effector T cells resides in lymphoid and non-lymphoid tissues
without recirculation through the blood and gives rise to Trm
cells (71, 72). A key feature of Trm cells is their ability to be
retained in barrier tissues for prolonged periods of time and their
rapid response when encountering the same antigen (73). Trm
cells are characterized by the expression of C-type lectin CD69
and integrin CD103 (74). In our mouse model of LVV,
approximately 10% of the CD4+ T cells infiltrating the vascular
tissue expressed CD103. Interestingly, tissue residency of Trm
cells requires signals from the JAK-STAT pathway and CD28
stimulation from tissue niches (17, 75). Further characterization
of these Trm cells may lead to the development of therapeutic
strategies to specifically eliminate them.
VASCULOPROTECTIVE T CELLS IN GCA

Naturally occurring CD4+ Tregs, which express the transcription
factor FoxP3 in the nucleus and CD25 on the cell surface, are a
functionally distinct T cell subset actively engaged in the
maintenance of immunological tolerance (76). Since IL-6 and
IL-21 have been reported to inhibit Treg differentiation (44, 77)
and these cytokines are highly enriched in the plasma of patients
with GCA, the number of CD4+ Tregs is reduced in patients with
GCA compared to healthy controls (44). However, accumulating
evidence suggests that tocilizumab (TCZ), an IL-6 receptor
inhibitor, restores not only the number of CD4+ Tregs but also
the function of these cells (78–80). Accordingly, TCZ decreases
relapse and has a steroid-tapering effect on GCA (81).

While CD4+ Tregs are well recognized and established, their
CD8+ counterparts are still controversial in many regards,
including their phenotypic identity and mechanisms of
suppression (82); however, the immunosuppressive effects of
CD8+ Tregs have been proven in some experimental models such
as inflammatory bowel disease and graft-versus-host disease (83,
84). Compared with younger individuals, the number of CD8+

Tregs is reduced in the elderly, and these cells are significantly
reduced in number and function in GCA patients (85). The
functional defect of CD8+ Tregs is attributed to inadequate
release of exosomes containing NADPH oxidase 2 (NOX2),
which inhibits neighboring CD4+ T cell activation by blocking
the phosphorylation of ZAP-70, a proximal molecule directly
involved in T cell receptor signaling (85, 86).
VASCULITOGENIC AND
VASCULOPROTECTIVE T CELLS IN TAK

Similar to GCA, an increase in Th1 and Th17 cells has been
reported in TAK (16, 87). This increase may stem from
overactivation of the NOTCH1-mTOR pathway (88, 89) and/or
an increase in the number of CD4+ IL-21-producing T cells (89,
90). In parallel, a decrease in CD4+ Treg numbers has also been
documented (91). In contrast, unlike GCA, microarray analysis
June 2022 | Volume 13 | Article 923582
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has demonstrated that the Tfh signature that includes CXCR5 and
CCR6 is significantly increased in the blood and the aorta (62). Tfh
cells may be partly responsible for the elevated levels of IL-21 in
TAK. Moreover, it has been reported that CD8+ T cell infiltration
is more common in TAK than in GCA (92). Recent
immunophenotyping analysis using flow cytometry has added
another piece of evidence showing that circulating CD8+ T cells
were increased only during the active phase in TAK, but the
number of these cells in GCA was stable irrespective of the disease
activity (93). The contribution of CD8+ T cells to the
pathomechanisms of TAK may be greater than their
contribution in GCA.
DISCUSSION

CD4+ T cells undoubtedly play a central role in LVV
pathogenesis. Additionally, CD8+ T cells and natural killer cells
actively engage in the disease mechanism of TAK, making it
more complex than that of GCA (40). Indeed, abatacept (ABT),
which selectively inhibits T cell activation by blocking the co-
stimulatory signal, has been shown to improve the disease
activity of RA and reduce the relapse rate in patients with
GCA (94), but it failed to exhibit efficacy in TAK (95).
However, the high relapse rate even in the ABT treatment arm
in patients with GCA prompts us to explore better therapeutic
options for LVV.

Considering the disease mechanism, the VEGF-NOTCH1-
mTOR pathway as well as T cell polarizing cytokines, such as IL-
12, IL-23, and IL-21, could be therapeutic targets to correct
biased CD4+ T cell differentiation and suppress LVV. Anti-
VEGF antibody, an mTOR inhibitor, and an IL-12/IL-23
inhibitor (e.g., ustekinumab) are on the market. Ustekinumab
has been tested for GCA and TAK (96, 97), but the results
obtained to date are not encouraging (98, 99).

Other therapeutic options include inhibition of released
cytokines, including IL-17, GM-CSF, and IFN-g. The efficacy
and safety of anti-IL-17 and anti-GM-CSF receptor antibodies
against GCA are being actively pursued in clinical trials, and the
Frontiers in Immunology | www.frontiersin.org 5
results obtained to date appear promising (100, 101). Signaling
downstream of GM-CSF and IFN-g involves the JAK-STAT
pathway, and the efficacy of JAK inhibitors is widely
recognized in RA (102), which raises expectations for the
treatment of LVV (103). Indeed, in addition to IFN-g, type I
IFN is also highly expressed in the vascular lesions, and there
have been several reports of increased activation of the JAK-
STAT pathway in GCA- and TAK-T cells (17, 104–106).

Furthermore, GWAS has identified IL-12B as a susceptibility
gene for TAK (12, 107), and the IL-12B risk allele is associated
with vascular damage in TAK (108). IL-12 relies on the JAK-
STAT pathway for intracellular signal transduction. Although
the results of ustekinumab are not encouraging, JAK inhibitors
may have potential for treating TAK (109).

In conclusion, recent research advances have shed new light
on the role of T cells in the disease mechanisms of LVV. Several
treatment options targeting T cells are expected to emerge in the
near future.
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